Math 477/577 - Computer Assignment 3, due Oct.12, 2006

1. Write a Matlab function [Q,R] $=\mathrm{mgs}(A)$ (see the discussion in the classnotes of stability of the Gram-Schmidt algorithms) that computes a reduced QR factorization $A=\hat{Q} \hat{R}$ of an $m \times n$ matrix A with $m \geq n$ using modified Gram-Schmidt orthogonalization. The output variables are a matrix $Q \in \mathbb{C}^{m \times n}$ with orthonormal columns and a triangular matrix $R \in \mathbb{C}^{n \times n}$.
2. (a) Write a Matlab program that sets up a 15×40 matrix with entries 0 everywhere except for the values 1 in the positions indicated in the picture below. The upper-leftmost 1 is in position $(2,2)$, and the lower-rightmost 1 is in position $(13,39)$. This picture was produced with the command spy (A).

(b) Call svd to compute the singular values of A, and print the results. Plot these numbers using both plot and semilogy. What is the mathematically exact rank of A ? How does this show up in the computed singular values?
(c) For each i from 1 to $\operatorname{rank}(A)$, construct the rank- i matrix B that is the best approximation to A in the 2-norm. Use the command pcolor (B) with colormap (gray) to create images of these various approximations.
3. (a) Write a Matlab function $[\mathrm{W}, \mathrm{R}]=$ house (A) that computes an implicit representation of a full QR factorization $A=Q R$ of an $m \times n$ matrix A with $m \geq n$ using Householder reflections. The output variables are a lower-triangular matrix $W \in \mathbb{C}^{m \times n}$ whose columns are the vectors \boldsymbol{v}_{k} defining the successive Householder reflections, and a triangular matrix $R \in \mathbb{C}^{n \times n}$.
(b) Write a Matlab function $\mathrm{Q}=$ form $\mathrm{Q}(\mathrm{W})$ that takes the matrix W produced by house as input and generates a corresponding $m \times m$ orthogonal matrix Q.
4. Let Z be the matrix

$$
Z=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 7 \\
4 & 2 & 3 \\
4 & 2 & 2
\end{array}\right]
$$

Compute the reduced QR factorization of Z in Matlab: by the Gram-Schmidt routine mgs of Problem 1, by the Householder routines house and formQ of the previous problem, and by Matlab's built-in command $[Q, R]=\operatorname{qr}(Z, 0)$. Compare these three and comment on any differences you see.

