Math 477 - Homework Assignment 1, due Sept.14, 2006

1. Let B be a 4×4 matrix to which we apply the following operations:
(i) double column 1 ,
(ii) halve row 3 ,
(iii) add row 3 to row 1 ,
(iv) interchange columns 1 and 4,
(v) subtract row 2 from each of the other rows,
(vi) replace column 4 by column 3,
(vii) delete column 1 (so that the column dimension is reduced by 1).
(a) Write the result as a product of eight matrices.
(b) Write it again as a product $A B C$ (same B) of three matrices.
2. The Pythagorean theorem asserts that for a set of n orthogonal vectors $\left\{\boldsymbol{x}_{i}\right\}$,

$$
\left\|\sum_{i=1}^{n} \boldsymbol{x}_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}\right\|^{2} .
$$

(a) Prove this in the case $n=2$ by an explicit computation of $\left\|\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right\|^{2}$.
(b) Show that this computation also establishes the general case, by induction.
3. Let $A \in \mathbb{C}^{m \times m}$ be Hermitian. An eigenvector of A is a nonzero vector $x \in \mathbb{C}^{m}$ such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue.
(a) Prove that all eigenvalues of A are real.
(b) Prove that if \boldsymbol{x} and \boldsymbol{y} are eigenvectors corresponding to distinct eigenvalues, then \boldsymbol{x} and \boldsymbol{y} are orthogonal.
4. What can be said about the eigenvalues of a unitary matrix?
5. Read Section 1.4 in the classnotes (Sections 2.1 and 2.2 in Kincaid/Cheney or Lecture 13 in Trefethen/Bau contain similar information).
6. If $\frac{1}{10}$ is correctly rounded to the normalized binary number $\left(1 . a_{1} a_{2} \ldots a_{23}\right)_{2} \times 2^{m}$, what is the roundoff error? What is the relative roundoff error?
7. Give examples of real numbers x and y for which $f l(x \odot y) \neq f l(f l(x) \odot f l(y))$. Illustrate all four arithmetic operations using a machine with five decimal digits.
8. Consider the function $f(x)=x-\sin x$. Since $x \approx \sin x$ for small values of x, evaluation of f for such x involves a loss of significance. This loss of significance can be avoided by using the Taylor series expansion of $\sin x$. By using the error term of the Taylor expansion, show that at least seven terms are required if the error is not to exceed 10^{-9}.
9. Use Theorem 1.13 in the notes to estimate how many bits of precision are lost in a computer when we carry out the subtraction $x-\sin x$ for $x=\frac{1}{2}$?
10. In solving the quadratic equation $a x^{2}+b x+c=0$ by use of the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

there is a loss of significance when $4 a c$ is small relative to b^{2} because then

$$
\sqrt{b^{2}-4 a c} \approx|b| .
$$

Suggest a method to circumvent this difficulty.

