- 1. Let B be a 4×4 matrix to which we apply the following operations:
 - (i) double column 1,
 - (ii) halve row 3,
 - (iii) add row 3 to row 1,
 - (iv) interchange columns 1 and 4,
 - (v) subtract row 2 from each of the other rows,
 - (vi) replace column 4 by column 3,
 - (vii) delete column 1 (so that the column dimension is reduced by 1).
 - (a) Write the result as a product of eight matrices.
 - (b) Write it again as a product ABC (same B) of three matrices.
- 2. The Pythagorean theorem asserts that for a set of n orthogonal vectors $\{x_i\}$,

$$\left\|\sum_{i=1}^n \boldsymbol{x}_i\right\|^2 = \sum_{i=1}^n \|\boldsymbol{x}_i\|^2.$$

- (a) Prove this in the case n = 2 by an explicit computation of $||x_1 + x_2||^2$.
- (b) Show that this computation also establishes the general case, by induction.
- 3. Let $A \in \mathbb{C}^{m \times m}$ be Hermitian. An eigenvector of A is a nonzero vector $x \in \mathbb{C}^m$ such that $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue.
 - (a) Prove that all eigenvalues of A are real.
 - (b) Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x and y are orthogonal.
- 4. What can be said about the eigenvalues of a unitary matrix?
- 5. Read Section 1.4 in the classnotes (Sections 2.1 and 2.2 in Kincaid/Cheney or Lecture 13 in Trefethen/Bau contain similar information).
- 6. If $\frac{1}{10}$ is correctly rounded to the normalized binary number $(1.a_1a_2...a_{23})_2 \times 2^m$, what is the roundoff error? What is the relative roundoff error?
- 7. Give examples of real numbers x and y for which $fl(x \odot y) \neq fl(fl(x) \odot fl(y))$. Illustrate all four arithmetic operations using a machine with five decimal digits.
- 8. Consider the function $f(x) = x \sin x$. Since $x \approx \sin x$ for small values of x, evaluation of f for such x involves a loss of significance. This loss of significance can be avoided by using the Taylor series expansion of $\sin x$. By using the error term of the Taylor expansion, show that at least seven terms are required if the error is not to exceed 10^{-9} .
- 9. Use Theorem 1.13 in the notes to estimate how many bits of precision are lost in a computer when we carry out the subtraction $x \sin x$ for $x = \frac{1}{2}$?

10. In solving the quadratic equation $ax^2 + bx + c = 0$ by use of the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

there is a loss of significance when 4ac is small relative to b^2 because then

$$\sqrt{b^2 - 4ac} \approx |b|.$$

Suggest a method to circumvent this difficulty.