1. Consider the matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

used on the previous homework.
(a) Using any method you like, determine (on paper) a reduced QR factorization $A=\hat{Q} \hat{R}$ and a full QR factorization $A=Q R$.
(b) Again using any method you like, determine reduced and full QR factorizations $B=\hat{Q} \hat{R}$ and $B=Q R$.
2. Apply the Gram-Schmidt process (on paper) to the three vectors $[3,4,0]^{T},[1,1,1]^{T}$, and $[1,2,0]^{T}$.
3. Let A be an $m \times n$ matrix. Determine the exact number of floating point additions, subtractions, multiplications and divisions involved in performing the classical and modified Gram-Schmidt algorithms as listed in the classnotes.

