
4 Stiffness and Stability

In addition to having a stable problem, i.e., a problem for which small changes in the
initial conditions elicit only small changes in the solution, there are two basic notions
of numerical stability. The first notion of stability is concerned with the behavior of
the numerical solution for a fixed value t > 0 as h→ 0.

Definition 4.1 A numerical IVP solver is zero stable if small perturbations in the
initial conditions do not cause the numerical approximation to diverge away from the
true solution provided the true solution of the initial value problem is bounded.

For a consistent s-step method one can show that the notion of stability and the
fact that its characteristic polynomial ρ satisfies the root condition are equivalent.
Therefore, as mentioned earlier, for an s-step method we have

convergence ⇐⇒ consistent & stable.

This concept of stability also plays an important role in determining the global
truncation error. In fact, for a convergent (consistent and stable) method the local
truncation errors add up as expected, i.e., a convergent s-step method with O(hp+1)
local truncation error has a global error of order O(hp).

4.1 Linear Stability Analysis

A second notion of stability is concerned with the behavior of the solution as t → ∞
with a fixed stepsize h. This notion of stability is often referred to as absolute stability,
and it is important when dealing with stiff ODEs. An absolutely stable numerical
method is one for which the numerical solution of a stable problem behaves also in this
controlled fashion.

A Model Problem: For λ ∈ R we consider the family of scalar linear initial value
problems (the discussion in the book by Iserles uses the analogous system case)

y′(t) = λy(t), t ∈ [0, T ],
y(0) = y0.

The solution of this problem is given by

y(t) = y0e
λt.

Now we take the same differential equation, but with perturbed initial condition

yδ(0) = y0 + δ.

Then the general solution still is yδ(t) = ceλt. However, the initial condition now
implies

yδ(t) = (y0 + δ)eλt.

Therefore, if λ ≤ 0, a small change in the initial condition causes only a small change
in the solution and therefore the problem is a stable problem. However, if λ > 0, then
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large changes in the solution will occur (even for small perturbations of the initial
condition), and the problem is unstable. Therefore, when studying the stability of
numerical methods we will consider the model problem for λ ≤ 0 only. Even though
we will study only stability with respect to the model problem, it can be shown that
the results of this analysis also apply to other linear (and some nonlinear) problems.

Example We study how Euler’s method behaves for the stable model problem above,
i.e., in the case λ ≤ 0. Since f(t, y) = λy(t) Euler’s method states that

yn+1 = yn + hf(tn, yn)
= yn + hλyn

= (1 + λh)yn.

Therefore, by induction,
yn = (1 + λh)ny0.

Since the exact problem has an exponentially decaying solution for λ < 0, a stable
numerical method should exhibit the same behavior. Therefore, in order to ensure
stability of Euler’s method we need that the so-called growth factor |1 + λh| < 1. For
real λ < 0 this is equivalent to

−2 < hλ < 0 ⇐⇒ h <
−2
λ
.

Thus, Euler’s method is only conditionally stable, i.e., the step size has to be chosen
sufficiently small to ensure stability.

The set of λh for which the growth factor is less than one is called the linear stability
domain D (or region of absolute stability).

Example For Euler’s method we have

|1 + λh| < 1

so that (for complex λ)

DEuler = {z = λh ∈ C : |z + 1| < 1},

a rather small circular subset of the left half of the complex plane.
FIGURE

Example On the other hand, we can show that the implicit or backward Euler method

yn+1 = yn + hf(tn+1, yn+1)

is unconditionally stable for the above problem.
To see this we have

yn+1 = yn + hλyn+1

or
yn+1 =

1
1− λh

yn.
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Therefore,

yn =
(

1
1− λh

)n

y0.

Now, for (real) λ < 0, the growth factor(
1

1− λh

)
< 1

for any h > 0, and we can choose the step size h arbitrarily large.
Of course, this statement pertains only to the stability of the method. In order to

achieve an appropriate accuracy, h still has to be chosen reasonably small. However,
as we will see below, we do not have to worry about stepsize constraints imposed by
the stiffness of the problem.

If we allow complex λ, then the linear stability domain for the backward Euler
method is given by the entire negative complex half-plane, i.e.,

DbackwardEuler = {z = λh ∈ C : Rez < 0} = C−.

In general, absolute stability of a linear multistep formula can be determined with
the help of its characteristic polynomials. In fact, an s-step method is absolutely stable
if the roots of the polynomial φ = ρ − λhσ lie inside the unit disk. Here ρ and σ are
defined as earlier, i.e.,

ρ(w) =
s∑

m=0

amw
m

σ(w) =
s∑

m=0

bmw
m

and am and bm are the coefficients of the s-step method

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m, yn+m)

with f(tn+m, yn+m) = λyn+m, m = 0, . . . , s, given by the model problem.
The linear stability domain of an s-step method is then the region in the complex

plane for which the roots of the polynomial φ = ρ− λhσ lie inside the unit disk.

Example For Euler’s method ρ(w) = w − 1, and σ(w) = 1, so that

φ(w) = ρ(w)− λhσ(w) = (w − 1)− λh = w − (1 + λh)

with root 1 + λh. The region of absolute stability D is therefore

DEuler = {z = λh ∈ C : |1 + z| < 1},

the same region we found earlier.
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4.2 Stiffness

The phenomenon of stiffness is not precisely defined in the literature. Some attempts
at describing a stiff problem are:

• A problem is stiff if it contains widely varying time scales, i.e., some components
of the solution decay much more rapidly than others.

• A problem is stiff if the stepsize is dictated by stability requirements rather than
by accuracy requirements.

• A problem is stiff if explicit methods don’t work, or work only extremely slowly.

• A linear problem is stiff if all of its eigenvalues have negative real part, and the
stiffness ratio (the ratio of the magnitudes of the real parts of the largest and
smallest eigenvalues) is large.

• More generally, a problem is stiff if the eigenvalues of the Jacobian of f differ
greatly in magnitude.

Example A stiff ODE is illustrated in the Matlab script StiffDemo2.m. If one lights
a match, the ball of flame grows rapidly until it reaches critical size. Then it remains
at that size because the amount of oxygen being consumed by the combustion in the
interior of the ball balances the amount available through the surface. The model is

y′(t) = y2(t)− y3(t), y(0) = δ, t ∈ [0, 2/δ].

The scalar quantity y(t) represents the radius of the ball of flame at time t. The y2

and y3 terms in the model come from the surface area and volume, respectively. The
critical parameter is the initial radius, δ, which is “small”. The solution is sought on
an interval of time inversely proportional to δ. The solution to this problem will grow
very slowly until t reaches 1/δ, then a quick transition occurs to a value close to 1,
where the solution then remains. The exact solution is given by

y(t) =
1

W (aea−t) + 1
,

where W is the Lambert W function (the solution of the equation W (z)eW (z) = z) and
a = 1/δ − 1 (see the Maple worksheet StiffDemo2.mws).

Note how it takes the “non-stiff” solver ode45 — an adaptive explicit fourth-fifth
order Runge-Kutta method — in StiffDemo2.m longer and longer to obtain a solution
for decreasing values of δ. The stiff solver ode23s is an adaptive second-third order
Rosenbrock method.

This problem is initially not stiff, but becomes so as the solution approaches the
steady state of 1.

Remark 1. Stiff ODEs arise in various applications; e.g., when modeling chemical
reactions, in control theory, or electrical circuits, such as the Van der Pol equation
in relaxation oscillation (see the Matlab script VanderPolDemo.m).

2. One way to deal with a stiff problem is to have an unconditionally stable solver.

66



4.3 A-Stability

Often unconditional stability, in fact, unconditional stability for the model problem

y′(t) = λy(t), t ∈ [0, T ]
y(0) = y0

is all that is needed for an effective stiff solver. This property is usually called A-
stability.

Definition 4.2 A numerical IVP solver is A-stable if its region of absolute stability
includes the entire complex half-plane with negative real part, C−.

We already have seen one A-stable method earlier: the backward (or implicit) Euler
method

yn+1 = yn + hf(tn+1,yn+1).

In general, only implicit methods are candidates for stiff solvers. In particular, a
corollary to Lemma 4.2 in the Iserles book states that no explicit Runge-Kutta can be
A-stable. The case of s-step methods is covered in the book by Iserles in the form of
Lemmas 4.7 and 4.8. Moreover, the following theorem (Dahlquist’s Second Barrier)
reveals the limited accuracy that can be achieved by A-stable s-step methods.

Theorem 4.3 If a linear s-step method is A-stable then it must be an implicit method.
Moreover, the order of the method is at most 2.

Theorem 4.3 implies that the only other s-step Adams method we need to consider
is the implicit trapezoid method (or second-order Adams-Moulton method) introduced
earlier:

yn+2 = yn+1 +
h

2
[f(tn+2,yn+2) + f(tn+1,yn+1)] . (48)

To see that the implicit trapezoid method is A-stable we consider

yn+2 = yn+1 +
h

2
λ [yn+2 + yn+1]

or
(1− λh

2
)yn+2 = (1 + λ

h

2
)yn+1.

Therefore, as can be verified easily by induction,

yn =

(
1 + λh

2

1− λh
2

)n

y0,

and, for λ < 0, the growth factor

1 + λh
2

1− λh
2

=
2 + λh

2− λh
< 1

for any h > 0. In other words, the linear stability domain for the trapezoidal rule is

DTR = {z = λh ∈ C : Rez < 0} = C−.
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Another method admitted by the Second Dahlquist Barrier is the second-order BDF
method. It can also be shown to be A-stable.

As mentioned above, explicit Runge-Kutta methods cannot be A-stable. However,
all implict Gauss-Legendre (Runge-Kutta) methods — such as the implicit midpoint
rule — are A-stable.

Remark Of course, one can also try to develop methods that do not completely satisfy
the condition of A-stability, and hope to achieve higher order by doing this. The state-
of-the-art stiff solvers today fall into one of the following two categories:

1. Higher-order BDF methods are almost A-stable (see Figure 4.4 in the Iserles
book). This kind of stability is referred to as A(α)-stability, where α indicates
the angle of diversion from the vertical imaginary axis. Gear methods are based
on such BDF methods, and achieve higher-order along with numerical stability
for stiff problems by monitoring the largest and smallest eigenvalues of the Jaco-
bian matrix, and thus assessing and dealing with the stiffness adaptively. Gear
methods employ variable order as well as variable step size. In MATLAB, Gear
methods are implemented in the stiff solver ode15s. In Maple some of these
methods are available through the method=lsode option (invoking the Livermore
ODEPACK by Hindmarsh) to dsolve,numeric.

2. Another class of stiff solvers are so-called Rosenbrock methods (which are related
to implicit Runge-Kutta methods). In MATLAB a second-third order Rosenbrock
method is implemented in the routine ode23s. In Maple a third-fourth order
Rosenbrock method is the default implementation in dsolve,numeric with the
stiff=true option.

References for this subject are the books “Numerical Initial Value Problems in
Ordinary Differential Equations” by Bill Gear (1971), or “Solving Ordinary Differential
Equations II, Stiff and Differential-Algebraic Problems” by Hairer and Wanner (1991),
or the two books “Numerical Solution of Ordinary Differential Equations” by Larry
Shampine (1994) and “Computer Solution of Ordinary Differential Equations: the
Initial Value Problem” by Shampine and Gordon (1975).
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