
7 Boundary Value Problems for ODEs

Boundary value problems for ODEs are not covered in the textbook. We discuss this
important subject in the scalar case (single equation) only.

7.1 Boundary Value Problems: Theory

We now consider second-order boundary value problems of the general form

y′′(t) = f(t, y(t), y′(t))
a0y(a) + a1y

′(a) = α, b0y(b) + b1y
′(b) = β. (55)

Remark 1. Note that this kind of problem can no longer be converted to a system
of two first order initial value problems as we have been doing thus far.

2. Boundary value problems of this kind arise in many applications, e.g., in me-
chanics (bending of an elastic beam), fluids (flow through pipes, laminar flow in
a channel, flow through porous media), or electrostatics.

The mathematical theory for boundary value problems is more complicated (and
less well known) than for initial value problems. Therefore, we present a version of an
existence and uniqueness theorem for the general problem (55).

Theorem 7.1 Suppose f in (55) is continuous on the domain D = {(t, y, z) : a ≤
t ≤ b,−∞ < y <∞,−∞ < z <∞} and that the partial derivatives fy and fz are also
continuous on D. If

1. fy(t, y, z) > 0 for all (t, y, z) ∈ D,

2. there exists a constant M such that

|fz(t, y, z)| ≤M

for all (t, y, z) ∈ D, and

3. a0a1 ≤ 0, b0b1 ≥ 0, and |a0|+ |b0| > 0, |a0|+ |a1| > 0, |b0|+ |b1| > 0,

then the boundary value problem (55) has a unique solution.

Example Consider the BVP

y′′(t) + e−ty(t) + sin y′(t) = 0, 1 ≤ t ≤ 2,
y(1) = y(2) = 0.

To apply Theorem 7.1 we identify f(t, y, z) = −e−ty − sin z. Then

fy(t, y, z) = te−ty

which is positive for all t > 0, y, z ∈ R. So, in particular it is positive for 1 ≤ t ≤ 2.
Moreover, we identify fz(t, y, z) = − cos z, so that

|fz(t, y, z)| = | − cos z| ≤ 1 = M.

Obviously, all continuity requirements are satisfied. Finally, we have a0 = b0 = 1 and
a1 = b1 = 0, so that the third condition is also satisfied. Therefore, the given problem
has a unique solution.
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If the boundary value problem (55) takes the special form

y′′(t) = u(t) + v(t)y(t) + w(t)y′(t)
y(a) = α, y(b) = β, (56)

then it is called linear. In this case Theorem 7.1 simplifies considerably.

Theorem 7.2 If u, v, w in (56) are continuous and v(t) > 0 on [a, b], then the linear
boundary value problem (56) has a unique solution.

Remark A classical reference for the numerical solution of two-point BVPs is the book
“Numerical Methods for Two-Point Boundary Value Problems” by H. B. Keller (1968).
A modern reference is “Numerical Solution of Boundary Value Problems for Ordinary
Differential Equations” by Ascher, Mattheij, and Russell (1995).

7.2 Boundary Value Problems: Shooting Methods

One of the most popular, and simplest strategies to apply for the solution of two-point
boundary value problems is to convert them to sequences of initial value problems, and
then use the techniques developed for those methods.

We now restrict our discussion to BVPs of the form

y′′(t) = f(t, y(t), y′(t))
y(a) = α, y(b) = β. (57)

With some modifications the methods discussed below can also be applied to the more
general problem (55).

The fundamental idea on which the so-called shooting methods are based is to
formulate an initial value problem associated with (57). Namely,

y′′(t) = f(t, y(t), y′(t))
y(a) = α, y′(a) = z. (58)

After rewriting this second-order initial value problem as two first-order problems we
can solve this problem with our earlier methods (e.g., Runge-Kutta or s-step methods),
and thus obtain a solution yz. In order to see how well this solution matches the solution
y of the two-point boundary value problem (57) we compute the difference

φ(z) := yz(b)− β

at the right end of the domain. If the initial slope z was chosen correctly, then φ(z) = 0
and we have solved the problem. If φ(z) 6= 0, we can use a solver for nonlinear systems
of equations (such as functional iteration or Newton-Raphson iteration discussed in the
previous section) to find a better slope.

Remark 1. Changing the “aim” of the initial value problem by adjusting the initial
slope to “hit” the target value y(b) = β is what gave the name to this numerical
method.
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2. Even though the shooting method is fairly simple to implement, making use
of standard code for initial value problems, and a nonlinear equation solver, it
inherits the stability issues encountered earlier for IVP solvers. For boundary
value problems the situation is even worse, since even for a stable boundary value
problem, the associated initial value problem can be unstable, and thus hopeless
to solve.

We illustrate the last remark with

Example For λ < 0 the (decoupled) boundary value problem

y′1(t) = λy1(t)
y′2(t) = −λy2(t)

y1(0) = 1, y2(a) = 1

for t ∈ [0, a] is stable since the solution y1(t) = eλt, y2(t) = eaλe−λt remains bounded
for t→∞ even for large values of a. On the other hand, the initial value problem

y′1(t) = λy1(t)
y′2(t) = −λy2(t)

y1(0) = α, y2(0) = β

is unstable for any λ 6= 0 since always one of the components of the solution y1(t) =
αeλt, y2(t) = βe−λt will grow exponentially.

Remark A convergence analysis for the shooting method is very difficult since two
types of errors are now involved. On the one hand there is the error due to the IVP
solver, and on the other hand there is the error due to the discrepancy of the solution
at the right boundary.

We now explain how we can use Newton iteration as part of the shooting method.
Newton’s method for solving the nonlinear equation φ(z) = 0 is

z[i+1] = z[i] − φ(z[i])
φ′(z[i])

, i ≥ 0.

Now the problem is to obtain the value φ′(z[i]). Note that this is anything but obvious,
since we do not even have an expression for the function φ — only for the value φ(z[i]).

In order to obtain an expression for φ′(z[i]) we consider the initial value problem
(58) in the form

y′′(t, z) = f(t, y(t, z), y′(t, z))
y(a, z) = α, y′(a, z) = z. (59)

We now look at the change of the solution y with respect to the initial slope z, i.e.,

∂y′′(t, z)
∂z

=
∂

∂z
f(t, y(t, z), y′(t, z))

=
∂f

∂y

∂y

∂z
+
∂f

∂y′
∂y′

∂z
, (60)
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where we have omitted the arguments of f , y, and y′ in the second line. The initial
conditions become

∂y

∂z
(a, z) = 0, and

∂y′

∂z
(a, z) = 1.

If we introduce the notation v(t) = ∂y
∂z (t, z), then (60) becomes

v′′(t) = ∂f
∂y (t, y(t), y′(t))v(t) + ∂f

∂y′ (t, y(t), y
′(t))v′(t)

v(a) = 0, v′(a) = 1. (61)

Equation (61) is called the first variational equation of (??). We can recognize this as
another initial value problem for the function v.

Now,
φ(z) = y(b, z)− β,

so that
φ′(z) =

∂y

∂z
(b, z) = v(b).

Therefore, we can obtain the value φ′(z[i]) required in Newton’s method by solving the
initial value problem (61) up to t = b.

Algorithm

1. Provide an initial guess z0 and a tolerance δ.

2. Solve the initial value problems (58) and (61) with initial conditions

y(a) = α, y′(a) = z0, and v(a) = 0, v′(a) = 1,

respectively. Let i = 0. This provides us with φ(z[i]) = yz[i](b)− β and φ′(z[i]) =
v(b).

3. Apply Newton’s method, i.e., compute

z[i+1] = z[i] − φ(z[i])
φ′(z[i])

.

4. Check if |φ(z[i+1])| < δ. If yes, stop. Otherwise, increment i and repeat from 3.

Remark 1. Note that the computation of φ(z[i+1]) in Step 4 requires solution of
an IVP (58).

2. The initial value problems (58) and (61) can be solved simultaneously using a
vectorized IVP solver.

3. If the boundary value problem (57) is linear, then the function φ will also be linear,
and therefore a single step of the Newton method will provide the “correct” initial
slope.
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4. It is also possible to subdivide the interval [a, b], and then apply the shooting
method from both ends. This means that additional (internal boundary) condi-
tions need to be formulated that ensure that the solutions match up at the sub-
division points. This leads to a system of nonlinear equations (even in the scalar
case!) which can then be solved using a (modified) Newton-Raphson method.
This approach is known as a multiple shooting method. More details can be
found in the book ”Introduction to Numerical Analysis” by Stoer and Bulirsch
(1980).

7.3 Boundary Value Problems: Finite Differences

Again we consider the boundary value problem

y′′(t) = f(t, y(t), y′(t))
y(a) = α, y(b) = β. (62)

Now we create a uniform partition of the interval [a, b] into m+1 subintervals [tk, tk+1],
k = 0, 1, . . . ,m, where

tk = a+ kh, k = 0, 1, . . . ,m+ 1, and h =
b− a
m+ 1

.

The basic idea is to discretize the differential equation (62) on the given partition.
Before we attempt to solve the BVP (62) we first review approximation of (contin-

uous) derivatives by (discrete) differences.

7.3.1 Numerical Differentiation

From calculus we know that the value of the derivative of a given function f at some
point x in its domain can be approximated via

f ′(x) ≈ f(x+ h)− f(x)
h

, (63)

where h is small. In order to get an error estimate for this approximation we use a
Taylor expansion of f

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(η), η ∈ (x, x+ h).

This implies

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(η),

i.e., the truncation error for the standard difference approximation of the first derivative
is O(h).

We now consider a more accurate approximation. To this end we take two Taylor
expansions

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(η1), (64)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(η2). (65)
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Subtracting (65) from (64) yields

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

6
[
f ′′′(η1) + f ′′′(η2)

]
or the following formula

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (66)

for the first derivative which is more accurate than (63).
Similarly, by adding (64) and (65) we obtain the following formula for the second

derivative
f ′′(x) =

f(x− h)− 2f(x) + f(x+ h)
h2

+O(h2). (67)

As with the basic numerical integration methods, there is again a close connection
between numerical differentiation methods and polynomial interpolation. If we have
information of f at n + 1 points, then we can find an interpolating polynomial p of
degree n. We then differentiate p to get an estimate for the derivative of f .

Consider the error formula for the Lagrange form of the interpolating polynomial
(see (7) in Chapter 1)

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξx)w(x)

or

f(x) =
n∑

j=0

f(xj)pj(x) +
1

(n+ 1)!
f (n+1)(ξx)w(x)

where w(x) =
n∏

i=0

(x − xi), and the pj are the Lagrange basis polynomials as studied

in Chapter 1. It is important for the next step to note that the point ξ in the error
formula depends on the evaluation point x. This explains the use of the notation ξx.

Differentiation then leads to

f ′(x) =
n∑

j=0

f(xj)p′j(x) +
1

(n+ 1)!
f (n+1)(ξx)w′(x) +

1
(n+ 1)!

d

dx

[
f (n+1)(ξx)

]
w(x).

Let us now assume that the evaluation point x is located at one of the interpolation
nodes, xk say, i.e., we know f at certain points, and want to estimate f ′ at (some of)
those same points. Then w(xk) = 0 and

f ′(xk) =
n∑

j=0

f(xj)p′j(xk) +
1

(n+ 1)!
f (n+1)(ξxk

)w′(xk).

One can simplify this expression to

f ′(xk) =
n∑

j=0

f(xj)p′j(xk) +
1

(n+ 1)!
f (n+1)(ξxk

)
n∏

i=0
i6=k

(xk − xi). (68)
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Remark 1. If all nodes are equally spaced with spacing h, then (68) in an O(hn)
formula.

2. The values p′j(xk) in (68) are called the coefficients of the derivative formula.

Example 1. Using linear interpolation at two equally spaced points, x0 = x and
x1 = x+ h, leads to the estimate (63).

2. (66) is obtained by performing quadratic interpolation at x0 = x − h, x1 = x,
and x2 = x+ h.

3. (67) is obtained by performing quadratic interpolation at x0 = x − h, x1 = x,
and x2 = x+ h.

4. These and other examples are illustrated in the Maple worksheet 478578 DerivativeEstimates.mws.

Remark The discussion in Section 7.1 of the Iserles textbook employs a more abstract
framework based on discrete finite difference operators and formal Taylor expansions
of these operators.

We now return the the finite difference approximation of the BVP (62) and intro-
duce the following formulas for the first and second derivatives:

y′(t) =
y(t+ h)− y(t− h)

2h
− h2

6
y(3)(η)

y′′(t) =
y(t+ h)− 2y(t) + y(t− h)

h2
− h2

12
y(4)(τ). (69)

If we use the notation yk = y(tk) along with the finite difference approximations (69),
then the boundary value problem (62) becomes

y0 = α
yk+1 − 2yk + yk−1

h2
= f

(
tk, yk,

yk+1 − yk−1

2h

)
, k = 1, . . . ,m,

ym+1 = β. (70)

7.3.2 Linear Finite Differences

We now first discuss the case in which f is a linear function of y and y′, i.e.,

f(t, y(t), y′(t)) = u(t) + v(t)y(t) + w(t)y′(t).

Then (70) becomes

y0 = α
yk+1 − 2yk + yk−1

h2
= uk + vkyk + wk

yk+1 − yk−1

2h
, k = 1, . . . ,m,

ym+1 = β, (71)

where we have used the notation uk = u(tk), vk = v(tk), and wk = w(tk). This is a
system of m linear equations for the m unknowns yk, k = 1, . . . ,m. In fact, the system
is tridiagonal. This can be seen if we rewrite (71) as

y0 = α
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(
−1− wk

2
h
)
yk−1 +

(
2 + h2vk

)
yk +

(
−1 +

wk

2
h
)
yk+1 = −h2uk, k = 1, . . . ,m,
ym+1 = β,

or in matrix form

2 + h2v1 −1 + w1
2 h 0 . . . 0

−1− w2
2 h 2 + h2v2 −1 + w2

2 h
...

...
. . . . . . . . .

...

... −1− wm−1

2 h 2 + h2vm−1 −1 + wm−1

2 h
0 . . . 0 −1− wm

2 h 2 + h2vm


×

×


y1

y2
...

ym−1

ym

 =


−h2u1 − α

(
−1− w1

2 h
)

−h2u2
...

−h2um−1

−h2um − β
(
−1 + wm

2 h
)

 .

Remark As with our earlier solvers for initial value problems (which were also used
for the shooting method) the numerical solution is obtained only as a set of discrete
values {yk : k = 0, 1, . . . ,m+1}. However, all values are obtained simultaneously once
the linear system is solved.

The tridiagonal system above can be solved most efficiently if we can ensure that it
is diagonally dominant, since then a tridiagonal Gauss solver without pivoting (such as
tridiag.m; compare MATLAB 6 vs. MATLAB 7) can be applied. Diagonal dominance
for the above system means that we need to ensure

|2 + h2vk| > |1 +
h

2
wk|+ |1−

h

2
wk|.

This inequality will be satisfied if we assume vk > 0, and that the discretization is so
fine that |h2wk| < 1. Under these assumptions we get

2 + h2vk > 1 +
h

2
wk + 1− h

2
wk = 2 ⇐⇒ h2vk > 0

which is obviously true.

Remark 1. The assumption vk > 0 is no real restriction since this is also a condition
for the Existence and Uniqueness Theorem 7.2.

2. The assumption |h2wk| < 1 on the mesh size h is a little more difficult to verify.

For the linear finite difference method one can give error bounds.

85



Theorem 7.3 The maximum pointwise error of the linear finite difference method is
given by

max
k=1,...,m

|y(tk)− yk| ≤ Ch2, as h→ 0,

where y(tk) is the exact solution at tk, and yk is the corresponding approximate solution
obtained by the finite difference method.

Proof For the exact solution we have for any k = 1, . . . ,m

y′′(tk) = u(tk) + v(tk)y(tk) + w(tk)y′(tk)

or

y(tk + h)− 2y(tk) + y(tk − h)
h2

−h
2

12
y(4)(τk) = uk+vky(tk)+wk

[
y(tk + h)− y(tk − h)

2h
− h2

6
y(3)(ηk)

]
,

(72)
whereas for the approximate solution we have the relation

yk+1 − 2yk + yk−1

h2
= uk + vkyk + wk

yk+1 − yk−1

2h

(cf. (71)). Subtracting (71) from equation (72) yields

ek+1 − 2ek + ek−1

h2
= vkek + wk

ek+1 − ek
2h

+ h2gk, (73)

where
ek = y(tk)− yk

and
gk =

1
12
y(4)(τk)−

1
6
y(3)(ηk).

Since (73) is analogous to (71) it can be rewritten as(
−1− wk

2
h
)
ek−1 +

(
2 + h2vk

)
ek +

(
−1 +

wk

2
h
)
ek+1 = −h4gk.

Then we get∣∣(2 + h2vk

)
ek
∣∣ = ∣∣∣−(−1− wk

2
h
)
ek−1 −

(
−1 +

wk

2
h
)
ek+1 − h4gk

∣∣∣
and using the triangle inequality∣∣(2 + h2vk

)
ek
∣∣ ≤ ∣∣∣(−1− wk

2
h
)
ek−1

∣∣∣+ ∣∣∣(−1 +
wk

2
h
)
ek+1

∣∣∣+ ∣∣h4gk

∣∣ .
Now we let λ = ‖e‖∞ = maxj=1,...,m |ej |, and pick the index k such that

|ek| = ‖e‖∞ = λ,

i.e., we look at the largest of the errors. Therefore

|2 + h2vk| |ek|︸︷︷︸
=λ

≤ h4|gk|+ | − 1 +
wk

2
h| |ek+1|︸ ︷︷ ︸

≤λ

+| − 1− wk

2
h| |ek−1|︸ ︷︷ ︸

≤λ

.
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Using the definition of λ, and bounding |gk| by its maximum we have

λ
(
|2 + h2vk| − | − 1 +

wk

2
h| − | − 1− wk

2
h|
)
≤ h4‖g‖∞.

Using the same assumptions and arguments as in the diagonal dominance discussion
above, the expression in parentheses is equal to h2vk, and therefore we have

λh2vk ≤ h4‖g‖∞ ⇐⇒ λvk ≤ h2‖g‖∞,

or, since λ = ‖e‖∞,
max

k=1,...,m
|y(tk)− yk| ≤ Ch2,

where
C =

‖g‖∞
mina≤t≤b v(t)

.

Remark The error bound in Theorem 7.3 holds only for C4 functions y, whereas for
the solution to exist only C2 continuity is required.

7.3.3 Nonlinear Finite Differences

We now return to the original discretization

y0 = α
yk+1 − 2yk + yk−1

h2
= f

(
tk, yk,

yk+1 − yk−1

2h

)
, k = 1, . . . ,m,

ym+1 = β

of the boundary value problem (62). However, now we allow f to be a nonlinear
function. This leads to the following system of nonlinear equations:

2y1 − y2 + h2f

(
t1, y1,

y2 − α
2h

)
− α = 0

−yk−1 + 2yk − yk+1 + h2f

(
tk, yk,

yk+1 − yk−1

2h

)
= 0, k = 2, . . . ,m− 1,

−ym−1 + 2ym + h2f

(
tm, ym,

β − ym−1

2h

)
− β = 0. (74)

One can show that this system has a unique solution provided

h <
2
M
,

where M is the same as in the Existence and Uniqueness Theorem 7.1.
To solve the system we need to apply Newton iteration for nonlinear systems. This

is done by solving the linear system

J(y[i])u = −F (y[i])
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for u, and then updating
y[i+1] = y[i] + u,

where y[i] is the i-th iterate of the vector of grid values y0, y1, . . . , ym+1, and J is the
tridiagonal Jacobian matrix defined by

J(y)k` =


−1 + h

2fz

(
tk, yk,

yk+1−yk−1

2h

)
, k = `− 1, ` = 2, . . . ,m,

2 + h2fy

(
tk, yk,

yk+1−yk−1

2h

)
, k = `, ` = 1, . . . ,m,

−1− h
2fz

(
tk, yk,

yk+1−yk−1

2h

)
, k = `+ 1, ` = 1, . . . ,m− 1.

Here f = f(t, y, z) and F (y) is given by the left-hand side of the equations in (74).

Remark 1. As always, Newton iteration requires a “good” initial guess y0, . . . , ym+1.

2. One can show that the nonlinear finite difference method also has O(h2) conver-
gence order.
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