Math 577 - Homework Assignment 1, due Sept.14, 2006

1. Fact: For any nonsingular $m \times m$ matrix A the j-th unit vector \boldsymbol{e}_{j} can be expressed in terms of the entries of A and its inverse, i.e.,

$$
\boldsymbol{e}_{j}=\sum_{i=1}^{m} A^{-1}(i, j) A(:, i)
$$

We say that a square or rectangular matrix R with entries $R(i, j)$ is upper-triangular if $R(i, j)=0$ for $i>j$. By considering what space is spanned by the first n columns of R and using the fact above, show that if R is a nonsingular $m \times m$ upper-triangular matrix, then R^{-1} is also uppertriangular.
Note: The analogous result holds for lower-triangular matrices.
2. The Pythagorean theorem asserts that for a set of n orthogonal vectors $\left\{\boldsymbol{x}_{i}\right\}$,

$$
\left\|\sum_{i=1}^{n} \boldsymbol{x}_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}\right\|^{2}
$$

(a) Prove this in the case $n=2$ by an explicit computation of $\left\|\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right\|^{2}$.
(b) Show that this computation also establishes the general case, by induction.
3. Let $A \in \mathbb{C}^{m \times m}$ be Hermitian. An eigenvector of A is a nonzero vector $x \in \mathbb{C}^{m}$ such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue.
(a) Prove that all eigenvalues of A are real.
(b) Prove that if \boldsymbol{x} and \boldsymbol{y} are eigenvectors corresponding to distinct eigenvalues, then \boldsymbol{x} and \boldsymbol{y} are orthogonal.
4. What can be said about the eigenvalues of a unitary matrix?
5. If \boldsymbol{u} and \boldsymbol{v} are m-vectors, the matrix $A=I+\boldsymbol{u} \boldsymbol{v}^{*}$ is known as a rank-one perturbation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1}=I+\alpha \boldsymbol{u} \boldsymbol{v}^{*}$ for some scalar α, and give an expression for α. For what \boldsymbol{u} and \boldsymbol{v} is A singular? If it is singular, what is $\operatorname{null}(A)$?
6. Read Section 1.4 in the classnotes (Sections 2.1 and 2.2 in Kincaid/Cheney or Lecture 13 in Trefethen/Bau contain similar information).
7. If $\frac{1}{10}$ is correctly rounded to the normalized binary number $\left(1 . a_{1} a_{2} \ldots a_{23}\right)_{2} \times 2^{m}$, what is the roundoff error? What is the relative roundoff error?
8. In solving the quadratic equation $a x^{2}+b x+c=0$ by use of the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

there is a loss of significance when $4 a c$ is small relative to b^{2} because then

$$
\sqrt{b^{2}-4 a c} \approx|b|
$$

Suggest a method to circumvent this difficulty.
9. Arrange the following formulas in order of merit for computing $\tan x-\sin x$ when x is near 0 .
(a) $\sin x[(1 / \cos x)-1]$,
(b) $\frac{1}{2} x^{3}$,
(c) $(\sin x) /(\cos x)-\sin x$,
(d) $\left(x^{2} / 2\right)\left(1-x^{2} / 12\right) \tan x$,
(e) $\frac{1}{2} x^{2} \tan x$,
(f) $\tan x \sin ^{2} x /(\cos x+1)$.
10. If at most 2 bits of precision are to be lost in the computation of $y=\sqrt{x^{2}+1}-1$, what restriction must be placed on x ?

