1. Fact: For any nonsingular $m \times m$ matrix A the *j*-th unit vector e_j can be expressed in terms of the entries of A and its inverse, i.e.,

$$e_j = \sum_{i=1}^m A^{-1}(i,j)A(:,i).$$

We say that a square or rectangular matrix R with entries R(i, j) is upper-triangular if R(i, j) = 0for i > j. By considering what space is spanned by the first n columns of R and using the fact above, show that if R is a nonsingular $m \times m$ upper-triangular matrix, then R^{-1} is also uppertriangular.

Note: The analogous result holds for lower-triangular matrices.

2. The Pythagorean theorem asserts that for a set of n orthogonal vectors $\{x_i\}$,

$$\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} = \sum_{i=1}^{n} \|x_{i}\|^{2}.$$

- (a) Prove this in the case n = 2 by an explicit computation of $||x_1 + x_2||^2$.
- (b) Show that this computation also establishes the general case, by induction.
- 3. Let $A \in \mathbb{C}^{m \times m}$ be Hermitian. An eigenvector of A is a nonzero vector $x \in \mathbb{C}^m$ such that $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue.
 - (a) Prove that all eigenvalues of A are real.
 - (b) Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x and y are orthogonal.
- 4. What can be said about the eigenvalues of a unitary matrix?
- 5. If \boldsymbol{u} and \boldsymbol{v} are *m*-vectors, the matrix $A = I + \boldsymbol{u}\boldsymbol{v}^*$ is known as a rank-one perturbation of the *identity*. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \boldsymbol{u}\boldsymbol{v}^*$ for some scalar α , and give an expression for α . For what \boldsymbol{u} and \boldsymbol{v} is A singular? If it is singular, what is null(A)?
- 6. Read Section 1.4 in the classnotes (Sections 2.1 and 2.2 in Kincaid/Cheney or Lecture 13 in Trefethen/Bau contain similar information).
- 7. If $\frac{1}{10}$ is correctly rounded to the normalized binary number $(1.a_1a_2...a_{23})_2 \times 2^m$, what is the roundoff error? What is the relative roundoff error?
- 8. In solving the quadratic equation $ax^2 + bx + c = 0$ by use of the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

there is a loss of significance when 4ac is small relative to b^2 because then

$$\sqrt{b^2 - 4ac} \approx |b|.$$

Suggest a method to circumvent this difficulty.

- 9. Arrange the following formulas in order of merit for computing $\tan x \sin x$ when x is near 0.
 - (a) $\sin x [(1/\cos x) 1],$
 - (b) $\frac{1}{2}x^3$,
 - (c) $(\sin x)/(\cos x) \sin x$,
 - (d) $(x^2/2)(1-x^2/12)\tan x$,
 - (e) $\frac{1}{2}x^2 \tan x$,
 - (f) $\tan x \sin^2 x / (\cos x + 1)$.
- 10. If at most 2 bits of precision are to be lost in the computation of $y = \sqrt{x^2 + 1} 1$, what restriction must be placed on x?