Math 577 - Homework Assignment 2, due Sept.28, 2006

1. Determine SVDs of the following matrices. Do not use a computer, and do not use the method for hand calculations discussed in class. Use only basic properties of the SVD and note that the matrices are either diagonal matrices or rank-1 matrices:
(a) $\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right]$,
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$,
(c) $\left[\begin{array}{ll}0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right]$,
(d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$,
(e) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
2. In the discussion of matrix norms we claimed that the 2-norm of the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

is approximately 1.6180. Using the SVD, work out (the "by-hand" method is from now on allowed) the exact values of $\sigma_{\min }(A)$ and $\sigma_{\max }(A)$ for this matrix.
3. Consider the matrix

$$
A=\left[\begin{array}{cc}
-2 & 11 \\
-10 & 5
\end{array}\right]
$$

(a) Determine, on paper, a real SVD of A in the form $A=U \Sigma V^{T}$. The SVD is not unique, so find the one that has the minimal number of minus signs in U and V.
(b) List the singular values, left singular vectors, and right singular vectors of A. Draw a careful, labeled picture of the unit ball in \mathbb{R}^{2} and its image under A, together with the singular vectors, with the coordinates of their vertices labeled.
(c) What are the 1-, 2-, $\infty-$, and Frobenius norms of A ?
(d) Find A^{-1} not directly, but via the SVD.
(e) Find the eigenvalues λ_{1}, λ_{2} of A.
(f) Verify that $\operatorname{det} A=\lambda_{1} \lambda_{2}$ and $|\operatorname{det} A|=\sigma_{1} \sigma_{2}$.
(g) What is the area of the ellipsoid onto which A maps the unit ball of \mathbb{R}^{2} ?
4. Assume A is Hermitian and positive definite, i.e., A can be uniquely factored into $A=L L^{*}$ with L a lower triangular matrix with positive diagonal entries (Cholesky factorization). What is the SVD of A ?
5. If P is an orthogonal projector, then $I-2 P$ is unitary. Prove this algebraically, and give a geometric interpretation.
6. Consider the matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Answer the following questions by hand calculation.
(a) What us the orthogonal projector P onto range (A), and what is the image under P of the vector $[1,2,3]^{*}$?
(b) Same questions for B.

