1. Given $A \in \mathbb{C}^{m \times n}$ of rank n and $b \in \mathbb{C}^m$, consider the block 2×2 system of equations

$$\left[\begin{array}{cc} I & A \\ A^* & O \end{array}\right] \left[\begin{array}{c} \boldsymbol{r} \\ \boldsymbol{x} \end{array}\right] = \left[\begin{array}{c} \boldsymbol{b} \\ \boldsymbol{0} \end{array}\right],$$

where I is the $m \times m$ identity matrix. Show that this system has a unique solution $[r, x]^T$, and that the vectors r and x are the residual and the solution of the least squares problem:

Given $A \in \mathbb{C}^{m \times n}$ of full rank, $m \geq n$, $\boldsymbol{b} \in \mathbb{C}^m$, find $\boldsymbol{x} \in \mathbb{C}^n$ such that $\|\boldsymbol{b} - A\boldsymbol{x}\|$ is minimized.

- 2. Suppose $A \in \mathbb{C}^{m \times m}$ so that its upper-left $k \times k$ blocks A(1:k,1:k) are nonsingular (so that existence of an LU factorization is guaranteed) and that A is banded with bandwidth 2p+1, i.e., $a_{ij} = 0$ for |i-j| > p. What can you say about the sparsity pattern of the factors L and U of A?
- 3. Suppose an $m \times m$ matrix A is written in the block form $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, where A_{11} is $n \times n$ and A_{22} is $(m-n) \times (m-n)$. Assume that A is such that its LU factorization exists. Verify the formula

$$\begin{bmatrix} I & O \\ -A_{21}A_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{bmatrix}$$

for "elimination" of the block A_{21} . The matrix $A_{22} - A_{21}A_{11}^{-1}A_{12}$ is known as the *Schur complement* of A_{11} in A.

4. Let A be the 4×4 matrix

$$A = \left[\begin{array}{rrrr} -1 & 1 & 0 & -3 \\ 1 & 0 & 3 & 1 \\ 0 & 1 & -1 & -1 \\ 3 & 0 & 1 & 2 \end{array} \right].$$

- (a) Compute the LU factorization of A with and without partial pivoting.
- (b) Determine det(A) from the 2 LU factorizations of A obtained in (a).
- (c) Describe how Gaussian elimination with partial pivoting can be used to find the determinant of a general square matrix.
- 5. Let A be a nonsingular square matrix and let A = QR and $A^*A = U^*U$ be QR and Cholesky factorizations, respectively, with the usual normalizations $r_{jj}, u_{jj} > 0$. Is it true or false that R = U? Explain.
- 6. Fill in the details needed in class, i.e., show that $x^*Ay = \overline{y^*Ax}$ provided A is Hermitian.
- 7. Prove another claim made in class: Show $A \in \mathbb{C}^{m \times m}$ is positive definite and $X \in \mathbb{C}^{m \times m}$ has full rank if and only if X^*AX is positive definite.