- 1. For each of the following statements, prove that it is true or give an example to show it is false. Throughout, $A \in \mathbb{C}^{m \times m}$ unless otherwise noted.
 - (a) If A is real and λ is an eigenvalue of A, then so is $-\lambda$.
 - (b) If A is real and λ is an eigenvalue of A, then so is $\overline{\lambda}$.
 - (c) If λ is an eigenvalue of A and A is nonsingular, then λ^{-1} is an eigenvalue of A^{-1} .
 - (d) If A is Hermitian and λ is an eigenvalue of A, then $|\lambda|$ is a singular value of A.
- 2. Here is *Gerschgorin's theorem*, which holds for any $m \times m$ matrix A, symmetric or nonsymmetric:

Every eigenvalue of A lies in at least one of the m circular disks in the complex plane with centers a_{ii} and radii $\sum_{j\neq i} |a_{ij}|$. Moreover, if n of these disks form a connected domain that is disjoint from the other m-n disks, then there are precisely n eigenvalues of A within this domain.

- (a) Prove the first part of Gerschgorin's theorem. (Hint: Let λ be any eigenvalue of A, and \boldsymbol{x} a corresponding eigenvector normalized so that its largest entry is 1.)
- (b) Give estimates based on Gerschgorin's theorem for the eigenvalues of

$$A = \begin{bmatrix} 8 & 1 & 0 \\ 1 & 4 & \varepsilon \\ 0 & \varepsilon & 1 \end{bmatrix}, \qquad |\varepsilon| < 1.$$

3. Suppose we have a 3×3 matrix and wish to introduce zeros by left- and/or right-multiplications by unitary matrices Q_j such as Householder reflections or Givens rotations. Consider the following three matrix structures:

(a)
$$\begin{bmatrix} x & x & 0 \\ 0 & x & x \\ 0 & 0 & x \end{bmatrix}$$
, (b) $\begin{bmatrix} x & x & 0 \\ x & 0 & x \\ 0 & x & x \end{bmatrix}$, (c) $\begin{bmatrix} x & x & 0 \\ 0 & 0 & x \\ 0 & 0 & x \end{bmatrix}$

For each one, decide which of the following situations holds, and justify your claim.

- (i) Can be obtained by a sequence of left-multiplications by matrices Q_j ;
- (ii) Not (i), but can be obtained by a sequence of left- and right-multiplications by matrices Q_i ;
- (iii) Cannot be obtained by any sequence of left- and right-multiplications by matrices Q_j .
- 4. Let $A \in \mathbb{C}^{m \times m}$ be given, not necessarily Hermitian. Show that a number $z \in \mathbb{C}$ is a Rayleigh quotient of A if and only if it is a diagonal entry of Q^*AQ for some unitary matrix Q. Thus Rayleigh quotients are just diagonal entries of matrices, once you transform orthogonally to the right coordinate system.
- 5. The preliminary reduction to tridiagonal form would be of little use if the steps of the QR algorithm did not preserve this structure. Fortunately they do.
 - (a) In the QR factorization A = QR of a symmetric tridiagonal matrix A, which entries of R are in general nonzero? Which entries of Q? (Remember that in practice we do not form Q explicitly.)

- (b) Show that the tridiagonal structure is recovered when the product RQ is formed.
- (c) Explain how Givens rotations or 2×2 Householder reflections can be used in the computation of the QR factorization of a tridiagonal matrix, reducing the operation count far below what would be required for a full matrix.