1. Consider one step of the "pure" QR algorithm applied to a tridiagonal symmetric matrix $A \in$ $\mathbb{R}^{m \times m}$.
(a) If only eigenvalues are desired, then only $A^{(k)}$ is needed at step $k$, not $\underline{Q}^{(k)}$. Determine how many flops are required to get from $A^{k-1}$ to $A^{(k)}$ using standard methods studied in class.
(b) If all the eigenvectors are desired, then the matrix $\underline{Q}^{(k)}=Q^{(1)} Q^{(2)} \cdots Q^{(k)}$ will need to be accumulated too. Determine how many flops are now required to get from step $k-1$ to step $k$.
2. Show that the basic fixed-point iteration

$$
M \boldsymbol{x}^{(k)}=N \boldsymbol{x}^{(k-1)}+\boldsymbol{b}
$$

is equivalent to the following three steps:
Given $\boldsymbol{x}^{(k-1)}$
(i) compute the residual $\boldsymbol{r}^{(k-1)}=\boldsymbol{b}-A \boldsymbol{x}^{(k-1)}$,
(ii) solve $M \boldsymbol{z}^{(k-1)}=\boldsymbol{r}^{(k-1)}$ for $\boldsymbol{z}^{(k-1)}$,
(iii) define $\boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\boldsymbol{z}^{(k-1)}$.
3. Using the notation of the previous problem, show that

$$
\begin{aligned}
\boldsymbol{r}^{(k)} & =N M^{-1} \boldsymbol{r}^{(k-1)} \\
\boldsymbol{z}^{(k)} & =M^{-1} N \boldsymbol{z}^{(k-1)}
\end{aligned}
$$

4. Find the explicit form of the iteration matrix $G=M^{-1} N$ in the Gauss-Seidel method when

$$
A=\left[\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right]
$$

