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Data-dependent Basis Functions

Up until now we have mostly focused on the positive definite kernel K
and the generally infinite-dimensional Hilbert space #x(2) associated
with it.

We now focus on a specific scattered data fitting problem, i.e., we fix a
finite set (of data sites) X = {x4,...,xy} € RY and an associated
data-dependent linear function space

HK(X) = Span{K('vx'l)a s K(aXN)}
as suggested by the Haar—Mairhuber—Curtis theorem (see Chapter 1).

Then it makes sense to consider different bases for the
finite-dimensional kernel space Hx(X).

We will also consider data-independent (approximate) bases given in
terms of the first N eigenfunctions of the Hilbert—Schmidt integral
operator associated with K.
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“Standard” Basis Functions

{K(-yX1),...,K(-,xn)}

Corresponding system matrix often ill-conditioned

Gaussian standard basis function centered at (0,0) Gaussian standard basis function centered at (0.5,0.5) Gaussian standard basis fi centered at (0,0.5)
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Matrix-free Methods

Kernel interpolation leads to linear system Ke = y with matrix
Kij=K(xi,x;), i,j=1,....N
Goal: Avoid solution of linear systems
Use cardinal functions in span{K(-, x1), ..., K(-, Xn)} such that
ui(xi) =85, ivj,...,N
Then

N
s(x)=>_yly(x), xeR?
=
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Cardinal Basis Functions

Satisfy the Lagrange property
Ui(x;) = 6
so that we can find them via (hard/expensive!)
Kd(x) = k(x),

where K;j = K(x;, x;) and k = (K(-, X1), ..., K(-, xn))T.
System matrix for interpolation would be identity!

Gaussian cardinal function centered at (0,0) Gaussian cardinal function centered at (0.5,0.5) Gaussian cardinal funcf
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Data-dependent Basis Functions

Remark

@ On an infinite grid it is possible to use Fourier transform
techniques such as the Poisson summation formula to obtain
closed-from expressions of the cardinal functions.

o This was done, e.g., in [Buh90, MN90] for multiquadrics and
polyharmonic splines.

o For the Gaussian kernel an infinite cardinal basis was found in
[HMNW12], but there is also earlier work in, e.g., [BS96].

@ In the more general — scattered — setting | am aware of only one
result for univariate Gaussian cardinal functions on [—1,1] from

[PDO5]:
* —62 1 2_ 1 2 eﬁx - GBX’ g
{j(x) = e~ (b1 ”’)Heﬁxj “w J=01LN,

o

where 5 = % and the notation is based on the use of N + 1 data
points xg, ..., Xn.
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Data-dependent Basis Functions

Newton Kernels (msogj

Satisfy the Newton property

*

Vi(xj) =dj,  0<i<j<N

Compute via LU-decomposition of K [PS11].
Provide orthogonal basis for native space. System matrix is triangular.

Newton basis function centered at (0,0) for Gaussian  Newton basis function centered at (0.5,0.5) for Gaussiar  Newton basis function centered at (0,0.5) for Gaussian
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SVD and Weighted SVD Bases

Remark

By computing an SVD of the kernel matrix K one can obtain a so-called
(weighted) SVD basis for the finite-dimensional kernel space Hy(X).
This is described in [PS11].

A related method — based on a discretization of the Hilbert—Schmidlt
integral eigenvalue problem is presented in [DMS13].

The advantage of these methods (over the Hilbert—Schmidt SVD to be
discussed soon) is that they are generic and can be applied to any
kind of kernel. However, the resulting bases are usually not as robust
(for small ) as those resulting from the Hilbert—Schmidt SVD.
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Gaussian Eigenfunctions
Eigenfunctions for the 1D Gaussian kernel
K(x,z)=e =2 x zeR,

were discussed in [ZWRM98] and [RWO06] (including online errata).
The general d-dimensional case follows immediately from the
univariate one via the tensor product form of the Gaussian kernel, i.e.,

(X z) —e ¢ 2|l x— z”z — e_é 1 — He_ez(xe 22)2
where X = (x1,...,Xq), Z=(21,...,24) € RY, so that
z) = Z Anen(X)en(2)
neNd

with

d d
An = H /\nza (pn(X) = H (Pnl(xé)-
=1 =1
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Therefore we concentrate on the univariate eigenfunctions and
eigenvalues indexed by n=1,2,.... They are given by

on(X) = 1ne =" Hy_1(ax), (1)

An = 2 2 2 2 2 2 J (2)
af+ 6% +ec \af+04+¢

where the H, are Hermite polynomials of degree n, and

B 2¢ 2\ 4 B B > a2 (5
/3(1+<a>>, "=\ C=7 (1)

are constants defined in terms of € and «.
The parameter a determines the weight function
[0 242
= g X
p(X) N
used in the Hilbert-Schmidt integral operator and the associated inng *
product. '
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Data-Independent Basis Functions

Remark

It should be noted that the eigenfunctions ¢, are not the same as the
well-known classical Hermite functions, even though there is some
similarity.

The relative scaling of the arguments of the exponential function and
the Hermite polynomials are different in the two cases.
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Data-Independent Basis Functions

We now verify that

@ the eigenfunctions are orthonormal with respect to the p-weighted
L, inner product, and

@ the Hilbert—Schmidt series sums to the Gaussian kernel.
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We need the orthogonality of Hermite polynomials (see, e.g., [AS65,
Egn. (22.2.14))]), i.e.,

/ Hi(X)Hn(x)e ™ dx = /72T (n+ 1)5m.n.

Using the definition of the eigenfunctions (1) and of the weight function
(3), a substitution t = a3x gives us

o0

Lm Pm(X)en(X)p(X)dX = Ymyn [m Hrn—1(c8x)Hp—1 (aﬂx)efzazxz%e*az)fdx
B - 204_32),2 O _ 2,2
= Hm_ Hn_ a(1-p%)x= 2 a“x
/2" (m)27-TT(n) /_Oo 1(aBx)Hp_1(aBx)e ﬁe dx

_ 1 / =
/T2 T (m)2r-1T(n) /-

- \/7?\/2m_1r1m)2n—1r(n) /jo Hm,1(t)Hn,1(t)e—t2dt: S

where the last step uses the orthogonality of the Hermite polynomia 4
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Data-Independent Basis Functions

Verification of the sum of the Mercer series is a bit more involved.

The classical result needed here is Mehler’s formula (see [DLMF12,
Eqgn. (18.18.28)])

o~ Hn()Hn(2) 1 el E
2T+ 1) VIR =l &

Inserting the eigenfunctions (1) and eigenvalues (2) into the Mercer
series we have

Z)\n‘Pn(X ©n Z) Z)‘n+1‘¢0n+1(x)‘9n+1(z)

n=1 n=0
20,2 2
= Z)\n+1’)’r27+1e75 Chs )Hn(aﬂX)Hn(aﬂz)
n=0

_ a0tz )Z a? e ’ B Hn(aBx)Hp(aB2)
- =\ a2+ 02 +e2 a2+ 02 +¢2) 27M(n+1) " "

_ e*éz(x2+zz)% e Z Hp(aBx)Hn(52) e? !
B e \ a? 4 02 4 €2 2 (n+1) a? + 62 +¢€?
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Data-Independent Basis Functions

Now we let t =
Z — affz to get

ﬁ;# and apply Mehler’s formula with x — a8x and

2a2[32)(zt—a252(x2+22 )1‘2
112

> Anen(X)en(2) = 9_62(X2+22)Of

252, 2522 201 2
B 04,3 2eaﬁt af37§2 5o(1 t)(x2+22)

2(x z)?
)

where we have
@ combined all of the exponential functions,
o replaced 2a23%xzt by —a?32(x — 2)?t + o?32(x? + z2)t, and
@ separated into two exponential functions in terms of (x — z)? and
x2 + 22, respectively.
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Data-Independent Basis Functions

The remaining details for the last step are left open and can be verified
(if necessary with a computer algebra system).

They are
of [t _
e V1— 7

which takes care of both the factor multiplying the exponential
functions as well as the exponent of the first exponential function.
The other fact is

o2t — 2B — 62(1 — 3) = 0.

fasshauer@iit.edu MATH 590 19


http://math.iit.edu/~fass

Data-Independent Basis Functions

We now have established that
K(x,z) = Z)\mpn(x)‘ﬂn(z)
n=1

and -
/ om(X)en(X)p(X)AX = b

Finally, we verify that the Hilbert—Schmidt eigenvalue problem is
satisfied, i.e.,

| Ko Dentpidx = [ 3 Ampn)em(2)en(x)plx)dx

m=1 o
= Z/\mﬁpm(z)(sm,n
m=1
= Anwn(2).
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Data-Independent Basis Functions

Remark
This argument holds as soon as we
@ have the Hilbert—-Schmidt series of an arbitrary kernel and

@ know that the eigenfunctions are L,-orthonormal with respect to
some weight function p.

Moreover, the argument carries over to the multivariate case with
arbitrary domains Q C RY.
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