
MATH 590: Meshfree Methods
Non-Symmetric Kernel Collocation for the

Solution of Elliptic Partial Differential Equations

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Fall 2014

fasshauer@iit.edu MATH 590 1

http://math.iit.edu/~fass

Outline

1 Kansa’s Approach

2 MATLAB Implementation of Kansa’s Method

3 Error Bounds for Non-Symmetric Collocation

4 Non-Symmetric Collocation with the Hilbert–Schmidt SVD

5 Toward Solving the Navier-Stokes Equations

fasshauer@iit.edu MATH 590 2

http://math.iit.edu/~fass

In this chapter we discuss how the techniques we studied for
interpolation can be applied to the numerical solution of elliptic PDEs.

The resulting numerical method will be a collocation approach based
on positive definite kernels.

In the PDE literature this is also often referred to as a strong form
solution.

To make the discussion transparent we will focus on the case of a time
independent linear elliptic PDE in R2.

fasshauer@iit.edu MATH 590 3

http://math.iit.edu/~fass

In this chapter we discuss how the techniques we studied for
interpolation can be applied to the numerical solution of elliptic PDEs.

The resulting numerical method will be a collocation approach based
on positive definite kernels.

In the PDE literature this is also often referred to as a strong form
solution.

To make the discussion transparent we will focus on the case of a time
independent linear elliptic PDE in R2.

fasshauer@iit.edu MATH 590 3

http://math.iit.edu/~fass

In this chapter we discuss how the techniques we studied for
interpolation can be applied to the numerical solution of elliptic PDEs.

The resulting numerical method will be a collocation approach based
on positive definite kernels.

In the PDE literature this is also often referred to as a strong form
solution.

To make the discussion transparent we will focus on the case of a time
independent linear elliptic PDE in R2.

fasshauer@iit.edu MATH 590 3

http://math.iit.edu/~fass

In this chapter we discuss how the techniques we studied for
interpolation can be applied to the numerical solution of elliptic PDEs.

The resulting numerical method will be a collocation approach based
on positive definite kernels.

In the PDE literature this is also often referred to as a strong form
solution.

To make the discussion transparent we will focus on the case of a time
independent linear elliptic PDE in R2.

fasshauer@iit.edu MATH 590 3

http://math.iit.edu/~fass

Kansa’s Approach

Outline

1 Kansa’s Approach

2 MATLAB Implementation of Kansa’s Method

3 Error Bounds for Non-Symmetric Collocation

4 Non-Symmetric Collocation with the Hilbert–Schmidt SVD

5 Toward Solving the Navier-Stokes Equations

fasshauer@iit.edu MATH 590 4

http://math.iit.edu/~fass

Kansa’s Approach

A now very popular non-symmetric method for the solution of elliptic
PDEs with RBFs was suggested by Ed Kansa in [Kan90].

An alternative to
Kansa’s method
is a symmetric approach proposed in [Fas97].

However, we will not have time to cover this alternative approach.

To begin, it will help to recall some of the basics of scattered data
interpolation with kernels in Rd .

fasshauer@iit.edu MATH 590 5

http://math.iit.edu/~fass

Kansa’s Approach

A now very popular non-symmetric method for the solution of elliptic
PDEs with RBFs was suggested by Ed Kansa in [Kan90].

An alternative to
Kansa’s method
is a symmetric approach proposed in [Fas97].

However, we will not have time to cover this alternative approach.

To begin, it will help to recall some of the basics of scattered data
interpolation with kernels in Rd .

fasshauer@iit.edu MATH 590 5

http://math.iit.edu/~fass

Kansa’s Approach

For scattered data interpolation we are given data {x i , yi},
i = 1, . . . ,N, x i ∈ Rd , where we think of the yi being samples of a
function f : Rd → R.

The goal is to find an interpolant of the form

s(x) =
N∑

j=1

cjK (x ,x j), x ∈ Rd , (1)

such that
s(x i) = yi , i = 1, . . . ,N.

The solution leads to a linear system Kc = y with

Kij = K (x i ,x j), i , j = 1, . . . ,N. (2)

The matrix K is non-singular for a large class of kernels including
(inverse) multiquadrics, Gaussians, Matérn kernels and the CSRBFs
of Wendland.

fasshauer@iit.edu MATH 590 6

http://math.iit.edu/~fass

Kansa’s Approach

For scattered data interpolation we are given data {x i , yi},
i = 1, . . . ,N, x i ∈ Rd , where we think of the yi being samples of a
function f : Rd → R.
The goal is to find an interpolant of the form

s(x) =
N∑

j=1

cjK (x ,x j), x ∈ Rd , (1)

such that
s(x i) = yi , i = 1, . . . ,N.

The solution leads to a linear system Kc = y with

Kij = K (x i ,x j), i , j = 1, . . . ,N. (2)

The matrix K is non-singular for a large class of kernels including
(inverse) multiquadrics, Gaussians, Matérn kernels and the CSRBFs
of Wendland.

fasshauer@iit.edu MATH 590 6

http://math.iit.edu/~fass

Kansa’s Approach

For scattered data interpolation we are given data {x i , yi},
i = 1, . . . ,N, x i ∈ Rd , where we think of the yi being samples of a
function f : Rd → R.
The goal is to find an interpolant of the form

s(x) =
N∑

j=1

cjK (x ,x j), x ∈ Rd , (1)

such that
s(x i) = yi , i = 1, . . . ,N.

The solution leads to a linear system Kc = y with

Kij = K (x i ,x j), i , j = 1, . . . ,N. (2)

The matrix K is non-singular for a large class of kernels including
(inverse) multiquadrics, Gaussians, Matérn kernels and the CSRBFs
of Wendland.

fasshauer@iit.edu MATH 590 6

http://math.iit.edu/~fass

Kansa’s Approach

For scattered data interpolation we are given data {x i , yi},
i = 1, . . . ,N, x i ∈ Rd , where we think of the yi being samples of a
function f : Rd → R.
The goal is to find an interpolant of the form

s(x) =
N∑

j=1

cjK (x ,x j), x ∈ Rd , (1)

such that
s(x i) = yi , i = 1, . . . ,N.

The solution leads to a linear system Kc = y with

Kij = K (x i ,x j), i , j = 1, . . . ,N. (2)

The matrix K is non-singular for a large class of kernels including
(inverse) multiquadrics, Gaussians, Matérn kernels and the CSRBFs
of Wendland.

fasshauer@iit.edu MATH 590 6

http://math.iit.edu/~fass

Kansa’s Approach

We now switch to the collocation solution of PDEs.

Assume we are given
a domain Ω ⊂ Rd ,
and a linear elliptic PDE of the form

Lu(x) = f (x), x in Ω, (3)

with (for simplicity of description) Dirichlet boundary conditions

Bu(x) = u(x) = g(x), x on ∂Ω. (4)

For Kansa’s collocation method we then choose to represent the
approximate solution û by a kernel expansion analogous to that used
for scattered data interpolation, i.e.,

û(x) =
N∑

j=1

cjK (x , z j). (5)

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass

Kansa’s Approach

We now switch to the collocation solution of PDEs.
Assume we are given

a domain Ω ⊂ Rd ,

and a linear elliptic PDE of the form

Lu(x) = f (x), x in Ω, (3)

with (for simplicity of description) Dirichlet boundary conditions

Bu(x) = u(x) = g(x), x on ∂Ω. (4)

For Kansa’s collocation method we then choose to represent the
approximate solution û by a kernel expansion analogous to that used
for scattered data interpolation, i.e.,

û(x) =
N∑

j=1

cjK (x , z j). (5)

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass

Kansa’s Approach

We now switch to the collocation solution of PDEs.
Assume we are given

a domain Ω ⊂ Rd ,
and a linear elliptic PDE of the form

Lu(x) = f (x), x in Ω, (3)

with (for simplicity of description) Dirichlet boundary conditions

Bu(x) = u(x) = g(x), x on ∂Ω. (4)

For Kansa’s collocation method we then choose to represent the
approximate solution û by a kernel expansion analogous to that used
for scattered data interpolation, i.e.,

û(x) =
N∑

j=1

cjK (x , z j). (5)

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass

Kansa’s Approach

We now switch to the collocation solution of PDEs.
Assume we are given

a domain Ω ⊂ Rd ,
and a linear elliptic PDE of the form

Lu(x) = f (x), x in Ω, (3)

with (for simplicity of description) Dirichlet boundary conditions

Bu(x) = u(x) = g(x), x on ∂Ω. (4)

For Kansa’s collocation method we then choose to represent the
approximate solution û by a kernel expansion analogous to that used
for scattered data interpolation, i.e.,

û(x) =
N∑

j=1

cjK (x , z j). (5)

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass

Kansa’s Approach

We now switch to the collocation solution of PDEs.
Assume we are given

a domain Ω ⊂ Rd ,
and a linear elliptic PDE of the form

Lu(x) = f (x), x in Ω, (3)

with (for simplicity of description) Dirichlet boundary conditions

Bu(x) = u(x) = g(x), x on ∂Ω. (4)

For Kansa’s collocation method we then choose to represent the
approximate solution û by a kernel expansion analogous to that used
for scattered data interpolation, i.e.,

û(x) =
N∑

j=1

cjK (x , z j). (5)

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass

Kansa’s Approach

To be able to easier distinguish between points that act as centers
and those that act as “data sites” we now introduce the following
notation for

centers Z = {z1, . . . , zN} and
collocation points X = {x1, . . . ,xN} ⊂ Ω.

While formally different, these points will often physically coincide.

A scenario with Z 6= X will be explored later.

For the following discussion we assume the simplest possible
setting, i.e., Z = X and no polynomial terms are added to the
expansion (5).

fasshauer@iit.edu MATH 590 8

http://math.iit.edu/~fass

Kansa’s Approach

To be able to easier distinguish between points that act as centers
and those that act as “data sites” we now introduce the following
notation for

centers Z = {z1, . . . , zN} and
collocation points X = {x1, . . . ,xN} ⊂ Ω.

While formally different, these points will often physically coincide.

A scenario with Z 6= X will be explored later.

For the following discussion we assume the simplest possible
setting, i.e., Z = X and no polynomial terms are added to the
expansion (5).

fasshauer@iit.edu MATH 590 8

http://math.iit.edu/~fass

Kansa’s Approach

To be able to easier distinguish between points that act as centers
and those that act as “data sites” we now introduce the following
notation for

centers Z = {z1, . . . , zN} and
collocation points X = {x1, . . . ,xN} ⊂ Ω.

While formally different, these points will often physically coincide.

A scenario with Z 6= X will be explored later.

For the following discussion we assume the simplest possible
setting, i.e., Z = X and no polynomial terms are added to the
expansion (5).

fasshauer@iit.edu MATH 590 8

http://math.iit.edu/~fass

Kansa’s Approach

To be able to easier distinguish between points that act as centers
and those that act as “data sites” we now introduce the following
notation for

centers Z = {z1, . . . , zN} and
collocation points X = {x1, . . . ,xN} ⊂ Ω.

While formally different, these points will often physically coincide.

A scenario with Z 6= X will be explored later.

For the following discussion we assume the simplest possible
setting, i.e., Z = X and no polynomial terms are added to the
expansion (5).

fasshauer@iit.edu MATH 590 8

http://math.iit.edu/~fass

Kansa’s Approach

The collocation matrix that arises when matching the differential
equation (3) and the boundary conditions (4) at the collocation points
X will be of the form

K =

[
KL
KB

]
, (6)

where the two blocks are generated as follows:

(KL)ij = LK (x , z j)|x=x i , x i ∈ Xint, z j ∈ Z,
(KB)ij = BK (x , z j)|x=x i = K (x i , z j), x i ∈ Xbdy, z j ∈ Z.

Here the set X of collocation points is split into
a set Xint of interior points,
and a set Xbdy of boundary points.

The problem is well-posed if the N × N linear system Kc = y , with y a
vector consisting of entries f (x i), x i ∈ Xint, followed by g(x i),
x i ∈ Xbdy, has a unique solution.

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass

Kansa’s Approach

The collocation matrix that arises when matching the differential
equation (3) and the boundary conditions (4) at the collocation points
X will be of the form

K =

[
KL
KB

]
, (6)

where the two blocks are generated as follows:

(KL)ij = LK (x , z j)|x=x i , x i ∈ Xint, z j ∈ Z,
(KB)ij = BK (x , z j)|x=x i = K (x i , z j), x i ∈ Xbdy, z j ∈ Z.

Here the set X of collocation points is split into
a set Xint of interior points,
and a set Xbdy of boundary points.

The problem is well-posed if the N × N linear system Kc = y , with y a
vector consisting of entries f (x i), x i ∈ Xint, followed by g(x i),
x i ∈ Xbdy, has a unique solution.

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass

Kansa’s Approach

The collocation matrix that arises when matching the differential
equation (3) and the boundary conditions (4) at the collocation points
X will be of the form

K =

[
KL
KB

]
, (6)

where the two blocks are generated as follows:

(KL)ij = LK (x , z j)|x=x i , x i ∈ Xint, z j ∈ Z,
(KB)ij = BK (x , z j)|x=x i = K (x i , z j), x i ∈ Xbdy, z j ∈ Z.

Here the set X of collocation points is split into
a set Xint of interior points,
and a set Xbdy of boundary points.

The problem is well-posed if the N × N linear system Kc = y , with y a
vector consisting of entries f (x i), x i ∈ Xint, followed by g(x i),
x i ∈ Xbdy, has a unique solution.

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass

Kansa’s Approach

The collocation matrix that arises when matching the differential
equation (3) and the boundary conditions (4) at the collocation points
X will be of the form

K =

[
KL
KB

]
, (6)

where the two blocks are generated as follows:

(KL)ij = LK (x , z j)|x=x i , x i ∈ Xint, z j ∈ Z,
(KB)ij = BK (x , z j)|x=x i = K (x i , z j), x i ∈ Xbdy, z j ∈ Z.

Here the set X of collocation points is split into
a set Xint of interior points,
and a set Xbdy of boundary points.

The problem is well-posed if the N × N linear system Kc = y , with y a
vector consisting of entries f (x i), x i ∈ Xint, followed by g(x i),
x i ∈ Xbdy, has a unique solution.

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass

Kansa’s Approach

Remark
A change in the boundary conditions (4) is as simple as

making changes to a few rows of the matrix K in (6)
as well as on the right-hand side y .

The description here is rather general with no particular kernel in
mind. However, Kansa specifically proposed to use multiquadric
RBFs in (5), and consequently the method is sometimes also
called the multiquadric method.
Kansa also suggests the use of varying shape parameters εj ,
j = 1, . . . ,N.

While the theoretical analysis of the resulting method is nearly
intractable, Kansa showed that this technique improves the
accuracy and stability of the method.
In an RBF-FD setting, the recent paper [BMK12] studies the use of
(optimal) variable shape parameters.
Some promising insights into the theoretical aspects of varying
shape parameters (in the interpolation setting) were recently
provided in [BLRS14].

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Kansa’s Approach

Remark
A change in the boundary conditions (4) is as simple as

making changes to a few rows of the matrix K in (6)
as well as on the right-hand side y .

The description here is rather general with no particular kernel in
mind. However, Kansa specifically proposed to use multiquadric
RBFs in (5), and consequently the method is sometimes also
called the multiquadric method.

Kansa also suggests the use of varying shape parameters εj ,
j = 1, . . . ,N.

While the theoretical analysis of the resulting method is nearly
intractable, Kansa showed that this technique improves the
accuracy and stability of the method.
In an RBF-FD setting, the recent paper [BMK12] studies the use of
(optimal) variable shape parameters.
Some promising insights into the theoretical aspects of varying
shape parameters (in the interpolation setting) were recently
provided in [BLRS14].

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Kansa’s Approach

Remark
A change in the boundary conditions (4) is as simple as

making changes to a few rows of the matrix K in (6)
as well as on the right-hand side y .

The description here is rather general with no particular kernel in
mind. However, Kansa specifically proposed to use multiquadric
RBFs in (5), and consequently the method is sometimes also
called the multiquadric method.
Kansa also suggests the use of varying shape parameters εj ,
j = 1, . . . ,N.

While the theoretical analysis of the resulting method is nearly
intractable, Kansa showed that this technique improves the
accuracy and stability of the method.
In an RBF-FD setting, the recent paper [BMK12] studies the use of
(optimal) variable shape parameters.
Some promising insights into the theoretical aspects of varying
shape parameters (in the interpolation setting) were recently
provided in [BLRS14].

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Kansa’s Approach

Remark
A change in the boundary conditions (4) is as simple as

making changes to a few rows of the matrix K in (6)
as well as on the right-hand side y .

The description here is rather general with no particular kernel in
mind. However, Kansa specifically proposed to use multiquadric
RBFs in (5), and consequently the method is sometimes also
called the multiquadric method.
Kansa also suggests the use of varying shape parameters εj ,
j = 1, . . . ,N.

While the theoretical analysis of the resulting method is nearly
intractable, Kansa showed that this technique improves the
accuracy and stability of the method.

In an RBF-FD setting, the recent paper [BMK12] studies the use of
(optimal) variable shape parameters.
Some promising insights into the theoretical aspects of varying
shape parameters (in the interpolation setting) were recently
provided in [BLRS14].

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Kansa’s Approach

Remark
A change in the boundary conditions (4) is as simple as

making changes to a few rows of the matrix K in (6)
as well as on the right-hand side y .

The description here is rather general with no particular kernel in
mind. However, Kansa specifically proposed to use multiquadric
RBFs in (5), and consequently the method is sometimes also
called the multiquadric method.
Kansa also suggests the use of varying shape parameters εj ,
j = 1, . . . ,N.

While the theoretical analysis of the resulting method is nearly
intractable, Kansa showed that this technique improves the
accuracy and stability of the method.
In an RBF-FD setting, the recent paper [BMK12] studies the use of
(optimal) variable shape parameters.

Some promising insights into the theoretical aspects of varying
shape parameters (in the interpolation setting) were recently
provided in [BLRS14].

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Kansa’s Approach

Remark
A change in the boundary conditions (4) is as simple as

making changes to a few rows of the matrix K in (6)
as well as on the right-hand side y .

The description here is rather general with no particular kernel in
mind. However, Kansa specifically proposed to use multiquadric
RBFs in (5), and consequently the method is sometimes also
called the multiquadric method.
Kansa also suggests the use of varying shape parameters εj ,
j = 1, . . . ,N.

While the theoretical analysis of the resulting method is nearly
intractable, Kansa showed that this technique improves the
accuracy and stability of the method.
In an RBF-FD setting, the recent paper [BMK12] studies the use of
(optimal) variable shape parameters.
Some promising insights into the theoretical aspects of varying
shape parameters (in the interpolation setting) were recently
provided in [BLRS14].

fasshauer@iit.edu MATH 590 10

http://math.iit.edu/~fass

Kansa’s Approach

Problem with Kansa’s method:

For a constant shape parameter ε the matrix K may be singular for
certain configurations of the centers z j .
Originally, Kansa assumed that the non-singularity results
established by Micchelli for interpolation matrices would carry over
to the PDE case.
As the numerical experiments of [HS01] show, this is not so.

This fact is not really surprising since the matrix for the collocation
problem is composed of rows that are built from different functions,
which — depending on the differential operator L— might not even
correspond to a positive definite kernel.
The results for the non-singularity of interpolation matrices,
however, are based on the fact that K is generated by a single
(conditionally) positive definite kernel K .

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Kansa’s Approach

Problem with Kansa’s method:
For a constant shape parameter ε the matrix K may be singular for
certain configurations of the centers z j .

Originally, Kansa assumed that the non-singularity results
established by Micchelli for interpolation matrices would carry over
to the PDE case.
As the numerical experiments of [HS01] show, this is not so.

This fact is not really surprising since the matrix for the collocation
problem is composed of rows that are built from different functions,
which — depending on the differential operator L— might not even
correspond to a positive definite kernel.
The results for the non-singularity of interpolation matrices,
however, are based on the fact that K is generated by a single
(conditionally) positive definite kernel K .

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Kansa’s Approach

Problem with Kansa’s method:
For a constant shape parameter ε the matrix K may be singular for
certain configurations of the centers z j .
Originally, Kansa assumed that the non-singularity results
established by Micchelli for interpolation matrices would carry over
to the PDE case.

As the numerical experiments of [HS01] show, this is not so.
This fact is not really surprising since the matrix for the collocation
problem is composed of rows that are built from different functions,
which — depending on the differential operator L— might not even
correspond to a positive definite kernel.
The results for the non-singularity of interpolation matrices,
however, are based on the fact that K is generated by a single
(conditionally) positive definite kernel K .

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Kansa’s Approach

Problem with Kansa’s method:
For a constant shape parameter ε the matrix K may be singular for
certain configurations of the centers z j .
Originally, Kansa assumed that the non-singularity results
established by Micchelli for interpolation matrices would carry over
to the PDE case.
As the numerical experiments of [HS01] show, this is not so.

This fact is not really surprising since the matrix for the collocation
problem is composed of rows that are built from different functions,
which — depending on the differential operator L— might not even
correspond to a positive definite kernel.
The results for the non-singularity of interpolation matrices,
however, are based on the fact that K is generated by a single
(conditionally) positive definite kernel K .

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Kansa’s Approach

Problem with Kansa’s method:
For a constant shape parameter ε the matrix K may be singular for
certain configurations of the centers z j .
Originally, Kansa assumed that the non-singularity results
established by Micchelli for interpolation matrices would carry over
to the PDE case.
As the numerical experiments of [HS01] show, this is not so.

This fact is not really surprising since the matrix for the collocation
problem is composed of rows that are built from different functions,
which — depending on the differential operator L— might not even
correspond to a positive definite kernel.

The results for the non-singularity of interpolation matrices,
however, are based on the fact that K is generated by a single
(conditionally) positive definite kernel K .

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Kansa’s Approach

Problem with Kansa’s method:
For a constant shape parameter ε the matrix K may be singular for
certain configurations of the centers z j .
Originally, Kansa assumed that the non-singularity results
established by Micchelli for interpolation matrices would carry over
to the PDE case.
As the numerical experiments of [HS01] show, this is not so.

This fact is not really surprising since the matrix for the collocation
problem is composed of rows that are built from different functions,
which — depending on the differential operator L— might not even
correspond to a positive definite kernel.
The results for the non-singularity of interpolation matrices,
however, are based on the fact that K is generated by a single
(conditionally) positive definite kernel K .

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass

Kansa’s Approach

Nevertheless, an indication of the success of Kansa’s method are the
early papers [Dub92, Dub94, GCK96, Kan92, MK94] and many, many
more since.

Since the numerical experiments of Hon and Schaback show that
Kansa’s method cannot be well-posed for arbitrary center locations, it
is an open question to find sufficient conditions on the center locations
that guarantee invertibility of the Kansa matrix.

One possible approach — built on the basic ideas of greedy algorithms
(see, e.g., [Fas07, Chapter 33]) — is to adaptively select “good”
centers from a large set of possible candidates.

Following this strategy it is possible to ensure invertibility of the
collocation matrix throughout the iterative algorithm.

This approach is described in the paper [LOS06] (see discussion and
example later).

fasshauer@iit.edu MATH 590 12

http://math.iit.edu/~fass

Kansa’s Approach

Nevertheless, an indication of the success of Kansa’s method are the
early papers [Dub92, Dub94, GCK96, Kan92, MK94] and many, many
more since.

Since the numerical experiments of Hon and Schaback show that
Kansa’s method cannot be well-posed for arbitrary center locations, it
is an open question to find sufficient conditions on the center locations
that guarantee invertibility of the Kansa matrix.

One possible approach — built on the basic ideas of greedy algorithms
(see, e.g., [Fas07, Chapter 33]) — is to adaptively select “good”
centers from a large set of possible candidates.

Following this strategy it is possible to ensure invertibility of the
collocation matrix throughout the iterative algorithm.

This approach is described in the paper [LOS06] (see discussion and
example later).

fasshauer@iit.edu MATH 590 12

http://math.iit.edu/~fass

Kansa’s Approach

Nevertheless, an indication of the success of Kansa’s method are the
early papers [Dub92, Dub94, GCK96, Kan92, MK94] and many, many
more since.

Since the numerical experiments of Hon and Schaback show that
Kansa’s method cannot be well-posed for arbitrary center locations, it
is an open question to find sufficient conditions on the center locations
that guarantee invertibility of the Kansa matrix.

One possible approach — built on the basic ideas of greedy algorithms
(see, e.g., [Fas07, Chapter 33]) — is to adaptively select “good”
centers from a large set of possible candidates.

Following this strategy it is possible to ensure invertibility of the
collocation matrix throughout the iterative algorithm.

This approach is described in the paper [LOS06] (see discussion and
example later).

fasshauer@iit.edu MATH 590 12

http://math.iit.edu/~fass

Kansa’s Approach

Nevertheless, an indication of the success of Kansa’s method are the
early papers [Dub92, Dub94, GCK96, Kan92, MK94] and many, many
more since.

Since the numerical experiments of Hon and Schaback show that
Kansa’s method cannot be well-posed for arbitrary center locations, it
is an open question to find sufficient conditions on the center locations
that guarantee invertibility of the Kansa matrix.

One possible approach — built on the basic ideas of greedy algorithms
(see, e.g., [Fas07, Chapter 33]) — is to adaptively select “good”
centers from a large set of possible candidates.

Following this strategy it is possible to ensure invertibility of the
collocation matrix throughout the iterative algorithm.

This approach is described in the paper [LOS06] (see discussion and
example later).

fasshauer@iit.edu MATH 590 12

http://math.iit.edu/~fass

Kansa’s Approach

Nevertheless, an indication of the success of Kansa’s method are the
early papers [Dub92, Dub94, GCK96, Kan92, MK94] and many, many
more since.

Since the numerical experiments of Hon and Schaback show that
Kansa’s method cannot be well-posed for arbitrary center locations, it
is an open question to find sufficient conditions on the center locations
that guarantee invertibility of the Kansa matrix.

One possible approach — built on the basic ideas of greedy algorithms
(see, e.g., [Fas07, Chapter 33]) — is to adaptively select “good”
centers from a large set of possible candidates.

Following this strategy it is possible to ensure invertibility of the
collocation matrix throughout the iterative algorithm.

This approach is described in the paper [LOS06] (see discussion and
example later).

fasshauer@iit.edu MATH 590 12

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method

Outline

1 Kansa’s Approach

2 MATLAB Implementation of Kansa’s Method

3 Error Bounds for Non-Symmetric Collocation

4 Non-Symmetric Collocation with the Hilbert–Schmidt SVD

5 Toward Solving the Navier-Stokes Equations

fasshauer@iit.edu MATH 590 13

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method

We present a number of MATLAB implementations for
standard Laplace/Possion problems,
problems with variable coefficients,
and problems with mixed or piecewise defined boundary conditions.

We provide a fairly detailed presentation since the MATLAB code
changes rather significantly from one problem to another.

Most of the test examples are similar to those in [LCC03].

All problems are 2D elliptic with known analytic solution.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method

We present a number of MATLAB implementations for
standard Laplace/Possion problems,
problems with variable coefficients,
and problems with mixed or piecewise defined boundary conditions.

We provide a fairly detailed presentation since the MATLAB code
changes rather significantly from one problem to another.

Most of the test examples are similar to those in [LCC03].

All problems are 2D elliptic with known analytic solution.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method

We present a number of MATLAB implementations for
standard Laplace/Possion problems,
problems with variable coefficients,
and problems with mixed or piecewise defined boundary conditions.

We provide a fairly detailed presentation since the MATLAB code
changes rather significantly from one problem to another.

Most of the test examples are similar to those in [LCC03].

All problems are 2D elliptic with known analytic solution.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method

We present a number of MATLAB implementations for
standard Laplace/Possion problems,
problems with variable coefficients,
and problems with mixed or piecewise defined boundary conditions.

We provide a fairly detailed presentation since the MATLAB code
changes rather significantly from one problem to another.

Most of the test examples are similar to those in [LCC03].

All problems are 2D elliptic with known analytic solution.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Consider the following Poisson problem with Dirichlet boundary
conditions:

∇2u(x , y) = −5
4
π2 sin(πx) cos

(πy
2

)
, (x , y) ∈ Ω = [0,1]2, (7)

u(x , y) = sin(πx), (x , y) ∈ Γ1,

u(x , y) = 0, (x , y) ∈ Γ2,

where Γ1 = {(x , y) : 0 ≤ x ≤ 1, y = 0} and Γ2 = ∂Ω \ Γ1.

The exact solution is given by

u(x , y) = sin(πx) cos
(πy

2

)
.

fasshauer@iit.edu MATH 590 15

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Consider the following Poisson problem with Dirichlet boundary
conditions:

∇2u(x , y) = −5
4
π2 sin(πx) cos

(πy
2

)
, (x , y) ∈ Ω = [0,1]2, (7)

u(x , y) = sin(πx), (x , y) ∈ Γ1,

u(x , y) = 0, (x , y) ∈ Γ2,

where Γ1 = {(x , y) : 0 ≤ x ≤ 1, y = 0} and Γ2 = ∂Ω \ Γ1.

The exact solution is given by

u(x , y) = sin(πx) cos
(πy

2

)
.

fasshauer@iit.edu MATH 590 15

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Program (KansaLaplace_2D.m)
1 rbf = @(e,r) 1./sqrt(1+(e*r).^2); ep = 3;
2 Lrbf = @(e,r) e^2*((e*r).^2-2)./(1+(e*r).^2).^(5/2);
3 u = @(x,y) sin(pi*x).*cos(pi*y/2);
4 Lu = @(x,y) -1.25*pi^2*sin(pi*x).*cos(pi*y/2);
5 N = 289; [collpts, N] = CreatePoints(N, 2, ’u’);
6a indx = find(collpts(:,1)==0 | collpts(:,2)==0 | ...
6b collpts(:,1)==1 | collpts(:,2)==1);
7 bdypts = collpts(indx,:); % find boundary points
8 intpts = collpts(setdiff([1:N],indx),:); % interior points
9 ctrs = [intpts; bdypts];

10 M = 1600; epoints = CreatePoints(M,2,’u’);
11 DM_eval = DistanceMatrix(epoints,ctrs);
12 EM = rbf(ep,DM_eval);
13 exact = u(epoints(:,1),epoints(:,2));
14 DM_int = DistanceMatrix(intpts,ctrs); LCM = Lrbf(ep,DM_int);
15 DM_bdy = DistanceMatrix(bdypts,ctrs); BCM = rbf(ep,DM_bdy);
16 CM = [LCM; BCM];
17a rhs = [Lu(intpts(:,1),intpts(:,2)); ...
17b u(bdypts(:,1),bdypts(:,2))];
18 s = EM * (CM\rhs);
19 rms_err = norm(s-exact)/sqrt(M);

fasshauer@iit.edu MATH 590 16

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
We “cheat” when we define the right-hand side of the problem (on line
17) since we simply evaluate the known solution on the boundary.

Of course, in general the solution will not be known, and this will not be
possible.

In that case one would have to replace line 17 by something like (see
KansaLaplace_2D.m on the website)

rhs = zeros(N,1); NI = size(intpts,1);
rhs(1:NI) = Lu(intpts(:,1),intpts(:,2));
indx = find(bdypts(:,2)==0);
rhs(NI+indx) = sin(pi*bdypts(indx,1));

fasshauer@iit.edu MATH 590 17

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
We “cheat” when we define the right-hand side of the problem (on line
17) since we simply evaluate the known solution on the boundary.

Of course, in general the solution will not be known, and this will not be
possible.

In that case one would have to replace line 17 by something like (see
KansaLaplace_2D.m on the website)

rhs = zeros(N,1); NI = size(intpts,1);
rhs(1:NI) = Lu(intpts(:,1),intpts(:,2));
indx = find(bdypts(:,2)==0);
rhs(NI+indx) = sin(pi*bdypts(indx,1));

fasshauer@iit.edu MATH 590 17

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
We “cheat” when we define the right-hand side of the problem (on line
17) since we simply evaluate the known solution on the boundary.

Of course, in general the solution will not be known, and this will not be
possible.

In that case one would have to replace line 17 by something like (see
KansaLaplace_2D.m on the website)

rhs = zeros(N,1); NI = size(intpts,1);
rhs(1:NI) = Lu(intpts(:,1),intpts(:,2));
indx = find(bdypts(:,2)==0);
rhs(NI+indx) = sin(pi*bdypts(indx,1));

fasshauer@iit.edu MATH 590 17

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Figure: Collocation points (interior: blue circles, boundary: red crosses) and
centers (interior: blue circles, boundary: green circles) (left) and
non-symmetric RBF collocation solution (right) using IMQs with ε = 3 and
N = 289 points.

fasshauer@iit.edu MATH 590 18

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

There are several ways to handle collocation of the boundary
conditions:

The most natural approach is to use those collocation points that
lie on the boundary as boundary collocation points (and centers).
This matches the theory discussed earlier and is what is
implemented in the code above.

We can create additional collocation points for the boundary
conditions. These points can lie anywhere on the boundary.
This is what is implemented in the code in [Fas07] (see also
KansaLaplace_2DBook.m on the website).

fasshauer@iit.edu MATH 590 19

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

There are several ways to handle collocation of the boundary
conditions:

The most natural approach is to use those collocation points that
lie on the boundary as boundary collocation points (and centers).
This matches the theory discussed earlier and is what is
implemented in the code above.

We can create additional collocation points for the boundary
conditions. These points can lie anywhere on the boundary.
This is what is implemented in the code in [Fas07] (see also
KansaLaplace_2DBook.m on the website).

fasshauer@iit.edu MATH 590 19

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

There are several ways to handle collocation of the boundary
conditions:

The most natural approach is to use those collocation points that
lie on the boundary as boundary collocation points (and centers).
This matches the theory discussed earlier and is what is
implemented in the code above.

We can create additional collocation points for the boundary
conditions. These points can lie anywhere on the boundary.
This is what is implemented in the code in [Fas07] (see also
KansaLaplace_2DBook.m on the website).

fasshauer@iit.edu MATH 590 19

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Now we have several choices for the boundary centers:

We can let the boundary centers coincide with the boundary
collocation points.

This approach will lead to a singular collocation matrix for uniform
interior points (since that set already contains points on the
boundary, and therefore duplicate columns are created).
This approach does work if we take the interior collocation points to
be Halton points (or some other set of points that do not lie on the
boundary).
This approach can be realized by uncommenting the line
bdyctrs = bdydata;

in the MATLAB routine KansaLaplace_2DBook.m.
However, care must be taken that the Halton points do not include
the origin, i.e., the MATLAB haltonset command will not work
without modification.

fasshauer@iit.edu MATH 590 20

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Now we have several choices for the boundary centers:

We can let the boundary centers coincide with the boundary
collocation points.

This approach will lead to a singular collocation matrix for uniform
interior points (since that set already contains points on the
boundary, and therefore duplicate columns are created).

This approach does work if we take the interior collocation points to
be Halton points (or some other set of points that do not lie on the
boundary).
This approach can be realized by uncommenting the line
bdyctrs = bdydata;

in the MATLAB routine KansaLaplace_2DBook.m.
However, care must be taken that the Halton points do not include
the origin, i.e., the MATLAB haltonset command will not work
without modification.

fasshauer@iit.edu MATH 590 20

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Now we have several choices for the boundary centers:

We can let the boundary centers coincide with the boundary
collocation points.

This approach will lead to a singular collocation matrix for uniform
interior points (since that set already contains points on the
boundary, and therefore duplicate columns are created).
This approach does work if we take the interior collocation points to
be Halton points (or some other set of points that do not lie on the
boundary).

This approach can be realized by uncommenting the line
bdyctrs = bdydata;

in the MATLAB routine KansaLaplace_2DBook.m.
However, care must be taken that the Halton points do not include
the origin, i.e., the MATLAB haltonset command will not work
without modification.

fasshauer@iit.edu MATH 590 20

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Now we have several choices for the boundary centers:

We can let the boundary centers coincide with the boundary
collocation points.

This approach will lead to a singular collocation matrix for uniform
interior points (since that set already contains points on the
boundary, and therefore duplicate columns are created).
This approach does work if we take the interior collocation points to
be Halton points (or some other set of points that do not lie on the
boundary).
This approach can be realized by uncommenting the line
bdyctrs = bdydata;

in the MATLAB routine KansaLaplace_2DBook.m.

However, care must be taken that the Halton points do not include
the origin, i.e., the MATLAB haltonset command will not work
without modification.

fasshauer@iit.edu MATH 590 20

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Now we have several choices for the boundary centers:

We can let the boundary centers coincide with the boundary
collocation points.

This approach will lead to a singular collocation matrix for uniform
interior points (since that set already contains points on the
boundary, and therefore duplicate columns are created).
This approach does work if we take the interior collocation points to
be Halton points (or some other set of points that do not lie on the
boundary).
This approach can be realized by uncommenting the line
bdyctrs = bdydata;

in the MATLAB routine KansaLaplace_2DBook.m.
However, care must be taken that the Halton points do not include
the origin, i.e., the MATLAB haltonset command will not work
without modification.

fasshauer@iit.edu MATH 590 20

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

We can create additional boundary centers outside the domain
(see KansaLaplace_2DBook.m or the discussion in [Fas07])).

We follow this approach in most experiments since it seems to be
slightly more accurate.
Placing boundary centers away from the boundary has been
recommended by a number of authors.
This approach takes us into the realm of kernel methods for which
the centers differ from the data sites (or collocation points), and we
stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds).
It is an open problem how to find the best location for the boundary
centers.
We take them a small distance perpendicularly from the boundary
collocation points (see the following figure).

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

We can create additional boundary centers outside the domain
(see KansaLaplace_2DBook.m or the discussion in [Fas07])).

We follow this approach in most experiments since it seems to be
slightly more accurate.

Placing boundary centers away from the boundary has been
recommended by a number of authors.
This approach takes us into the realm of kernel methods for which
the centers differ from the data sites (or collocation points), and we
stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds).
It is an open problem how to find the best location for the boundary
centers.
We take them a small distance perpendicularly from the boundary
collocation points (see the following figure).

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

We can create additional boundary centers outside the domain
(see KansaLaplace_2DBook.m or the discussion in [Fas07])).

We follow this approach in most experiments since it seems to be
slightly more accurate.
Placing boundary centers away from the boundary has been
recommended by a number of authors.

This approach takes us into the realm of kernel methods for which
the centers differ from the data sites (or collocation points), and we
stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds).
It is an open problem how to find the best location for the boundary
centers.
We take them a small distance perpendicularly from the boundary
collocation points (see the following figure).

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

We can create additional boundary centers outside the domain
(see KansaLaplace_2DBook.m or the discussion in [Fas07])).

We follow this approach in most experiments since it seems to be
slightly more accurate.
Placing boundary centers away from the boundary has been
recommended by a number of authors.
This approach takes us into the realm of kernel methods for which
the centers differ from the data sites (or collocation points), and we
stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds).

It is an open problem how to find the best location for the boundary
centers.
We take them a small distance perpendicularly from the boundary
collocation points (see the following figure).

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

We can create additional boundary centers outside the domain
(see KansaLaplace_2DBook.m or the discussion in [Fas07])).

We follow this approach in most experiments since it seems to be
slightly more accurate.
Placing boundary centers away from the boundary has been
recommended by a number of authors.
This approach takes us into the realm of kernel methods for which
the centers differ from the data sites (or collocation points), and we
stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds).
It is an open problem how to find the best location for the boundary
centers.

We take them a small distance perpendicularly from the boundary
collocation points (see the following figure).

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

We can create additional boundary centers outside the domain
(see KansaLaplace_2DBook.m or the discussion in [Fas07])).

We follow this approach in most experiments since it seems to be
slightly more accurate.
Placing boundary centers away from the boundary has been
recommended by a number of authors.
This approach takes us into the realm of kernel methods for which
the centers differ from the data sites (or collocation points), and we
stated earlier that not much is known theoretically about this setting
(i.e., invertibility of system matrices or error bounds).
It is an open problem how to find the best location for the boundary
centers.
We take them a small distance perpendicularly from the boundary
collocation points (see the following figure).

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Figure: Collocation points (interior: blue circles, boundary: red crosses) and
centers (interior: blue circles, boundary: green crosses) (left) and
non-symmetric RBF collocation solution (right) using IMQs with ε = 3 and
N = 289 interior points.

fasshauer@iit.edu MATH 590 22

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Nint centers on boundary centers outside

RMS-error cond(A) RMS-error cond(A)

9 5.642192e-02 5.276474e+02 6.029293e-02 4.399608e+02
25 1.039322e-02 3.418858e+03 4.187975e-03 2.259698e+03
81 2.386062e-03 1.726995e+06 4.895870e-04 3.650369e+05
289 4.904715e-05 1.706884e+10 2.668524e-05 5.328110e+09

1089 3.676576e-08 1.446865e+18 1.946954e-08 5.015917e+17

Table: Non-symmetric collocation solution with IMQs, ε = 3 and interior
Halton points.

fasshauer@iit.edu MATH 590 23

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Nint Gaussian IMQ

RMS-error cond(A) RMS-error cond(A)

3× 3 1.981675e-01 1.258837e+03 1.526456e-01 2.794516e+02
5× 5 7.199931e-03 4.136193e+03 6.096534e-03 2.409431e+03
9× 9 1.947108e-04 2.529708e+10 8.071271e-04 8.771630e+05

17× 17 4.174290e-08 5.335000e+19 3.219110e-05 5.981238e+10
33× 33 1.408750e-05 7.106505e+20 1.552047e-07 1.706638e+20

Table: Non-symmetric collocation solution with Gaussians and IMQs, ε = 3
and uniform interior points and boundary centers outside the domain.

fasshauer@iit.edu MATH 590 24

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Several observations can be made by looking at the tables.

The use of Halton points instead of uniform points seems to be
beneficial since both the errors and the condition numbers are
smaller (cf. the right parts of the tables).

Placement of the boundary centers outside the domain seems to
be advantageous since again both the errors and the condition
numbers decrease.

Gaussians are more prone to ill-conditioning than inverse
multiquadrics.

fasshauer@iit.edu MATH 590 25

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Several observations can be made by looking at the tables.

The use of Halton points instead of uniform points seems to be
beneficial since both the errors and the condition numbers are
smaller (cf. the right parts of the tables).

Placement of the boundary centers outside the domain seems to
be advantageous since again both the errors and the condition
numbers decrease.

Gaussians are more prone to ill-conditioning than inverse
multiquadrics.

fasshauer@iit.edu MATH 590 25

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Several observations can be made by looking at the tables.

The use of Halton points instead of uniform points seems to be
beneficial since both the errors and the condition numbers are
smaller (cf. the right parts of the tables).

Placement of the boundary centers outside the domain seems to
be advantageous since again both the errors and the condition
numbers decrease.

Gaussians are more prone to ill-conditioning than inverse
multiquadrics.

fasshauer@iit.edu MATH 590 25

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Several observations can be made by looking at the tables.

The use of Halton points instead of uniform points seems to be
beneficial since both the errors and the condition numbers are
smaller (cf. the right parts of the tables).

Placement of the boundary centers outside the domain seems to
be advantageous since again both the errors and the condition
numbers decrease.

Gaussians are more prone to ill-conditioning than inverse
multiquadrics.

fasshauer@iit.edu MATH 590 25

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Of course, these are rather superficial observations based on only
a few numerical experiments.

For many of these claims there is no theoretical foundation, and
many more experiments would be needed to make a more
conclusive statement (for example, no attempt was made here to
find the best approximations, i.e., optimize the value of the shape
parameter).

Also, one could experiment with different values of the shape
parameter on the boundary and in the interior (as suggested, e.g.,
in [KC92, WKL06]).

fasshauer@iit.edu MATH 590 26

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Of course, these are rather superficial observations based on only
a few numerical experiments.

For many of these claims there is no theoretical foundation, and
many more experiments would be needed to make a more
conclusive statement (for example, no attempt was made here to
find the best approximations, i.e., optimize the value of the shape
parameter).

Also, one could experiment with different values of the shape
parameter on the boundary and in the interior (as suggested, e.g.,
in [KC92, WKL06]).

fasshauer@iit.edu MATH 590 26

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 1

Remark
Of course, these are rather superficial observations based on only
a few numerical experiments.

For many of these claims there is no theoretical foundation, and
many more experiments would be needed to make a more
conclusive statement (for example, no attempt was made here to
find the best approximations, i.e., optimize the value of the shape
parameter).

Also, one could experiment with different values of the shape
parameter on the boundary and in the interior (as suggested, e.g.,
in [KC92, WKL06]).

fasshauer@iit.edu MATH 590 26

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

Consider the following elliptic equation with variable coefficients and
homogeneous Dirichlet boundary conditions on Ω = [0,1]2:

∂

∂x

(
a(x , y)

∂

∂x
u(x , y)

)
+

∂

∂y

(
b(x , y)

∂

∂y
u(x , y)

)
= f (x , y), (x , y) ∈ Ω,

u(x , y) = 0, (x , y) ∈ Γ = ∂Ω,

where

f (x , y) = −16x(1− x)(3− 2y)ex−y + 32y(1− y)(3x2 + y2 − x − 2),

and the coefficients are given by

a(x , y) = 2− x2 − y2, b(x , y) = ex−y .

The exact solution for this problem is given by

u(x , y) = 16x(1− x)y(1− y).

fasshauer@iit.edu MATH 590 27

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

Consider the following elliptic equation with variable coefficients and
homogeneous Dirichlet boundary conditions on Ω = [0,1]2:

∂

∂x

(
a(x , y)

∂

∂x
u(x , y)

)
+

∂

∂y

(
b(x , y)

∂

∂y
u(x , y)

)
= f (x , y), (x , y) ∈ Ω,

u(x , y) = 0, (x , y) ∈ Γ = ∂Ω,

where

f (x , y) = −16x(1− x)(3− 2y)ex−y + 32y(1− y)(3x2 + y2 − x − 2),

and the coefficients are given by

a(x , y) = 2− x2 − y2, b(x , y) = ex−y .

The exact solution for this problem is given by

u(x , y) = 16x(1− x)y(1− y).

fasshauer@iit.edu MATH 590 27

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

Program (KansaEllipticVC_2D.m)
1 rbf = @(e,r) 1./sqrt(1+(e*r).^2); ep = 3;
2 dxrbf = @(e,r,dx) -dx*e^2./(1+(e*r).^2).^(3/2);
3 dyrbf = @(e,r,dy) -dy*e^2./(1+(e*r).^2).^(3/2);
4a dxxrbf = @(e,r,dx) e^2*(3*(e*dx).^2-1-(e*r).^2)./...
4b (1+(e*r).^2).^(5/2);
5a dyyrbf = @(e,r,dy) e^2*(3*(e*dy).^2-1-(e*r).^2)./...
5b (1+(e*r).^2).^(5/2);
6 u = @(x,y) 16*x.*(1-x).*y.*(1-y);
7a Lu = @(x,y) -16*x.*exp(x-y).*(1-x).*(3-2*y)+...
7b 32*y.*(1-y).*(3*x.^2+y.^2-x-2);
8 a = @(x,y) 2-x.^2-y.^2; ax = @(x,y) -2*x;
9 b = @(x,y) exp(x-y); by = @(x,y)-exp(x-y);

10 N = 289; [collpts, N] = CreatePoints(N, 2, ’u’);
11a indx = find(collpts(:,1)==0 | collpts(:,2)==0 | ...
11b collpts(:,1)==1 | collpts(:,2)==1);
12 bdypts = collpts(indx,:); % uniform boundary pts
13 [intpts, N] = CreatePoints(N, 2, ’h’); %Halton inside
14 sn = sqrt(N); h = 1/(sn-1);
15 bdyctrs = bdypts; bdyctrs = (1+2*h)*bdyctrs-h;
16 ctrs = [intpts; bdyctrs];

fasshauer@iit.edu MATH 590 28

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

Program (KansaEllipticVC_2D.m (cont.))
17 M = 1600; epoints = CreatePoints(M,2,’u’);
18 DM_eval = DistanceMatrix(epoints,ctrs);
19 EM = rbf(ep,DM_eval);
20 exact = u(epoints(:,1),epoints(:,2));
21 DM_int = DistanceMatrix(intpts,ctrs);
22 DM_bdy = DistanceMatrix(bdypts,ctrs);
23 dx_int = Differencematrix(intpts(:,1),ctrs(:,1));
24 dy_int = Differencematrix(intpts(:,2),ctrs(:,2));
25a LCM = diag(ax(intpts(:,1)))*dxrbf(ep,DM_int,dx_int)+...
25b diag(a(intpts(:,1),intpts(:,2))) * ...
25c dxxrbf(ep,DM_int,dx_int) + ...
25d diag(by(intpts(:,1),intpts(:,2))) * ...
25e dyrbf(ep,DM_int,dy_int) + ...
25f diag(b(intpts(:,1),intpts(:,2))) * ...
25g dyyrbf(ep,DM_int,dy_int);
26 BCM = rbf(ep,DM_bdy);
27 CM = [LCM; BCM];
28 rhs = [Lu(intpts(:,1),intpts(:,2)); zeros(4*(sn-1),1)];
29 s = EM * (CM\rhs);
30 rms_err = norm(s-exact)/sqrt(M);

fasshauer@iit.edu MATH 590 29

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

In the following table we compare the solution obtained with
Gaussians
and inverse multiquadrics

based on interior Halton points.

The boundary centers are taken to lie outside the domain.

For Gaussians we need to replace lines 1–5 of
KansaEllipticVC_2D.m by

1 rbf = @(e,r) exp(-(e*r).^2); ep = 3;
2 dxrbf = @(e,r,dx) -2*dx*e^2.*exp(-(e*r).^2);
3 dyrbf = @(e,r,dy) -2*dy*e^2.*exp(-(e*r).^2);
4a dxxrbf = @(e,r,dx) 2*e^2*(2*(e*dx).^2-1) .* ...
4b exp(-(e*r).^2);
5a dyyrbf = @(e,r,dy) 2*e^2*(2*(e*dy).^2-1) .* ...
5b exp(-(e*r).^2);

fasshauer@iit.edu MATH 590 30

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

In the following table we compare the solution obtained with
Gaussians
and inverse multiquadrics

based on interior Halton points.

The boundary centers are taken to lie outside the domain.

For Gaussians we need to replace lines 1–5 of
KansaEllipticVC_2D.m by

1 rbf = @(e,r) exp(-(e*r).^2); ep = 3;
2 dxrbf = @(e,r,dx) -2*dx*e^2.*exp(-(e*r).^2);
3 dyrbf = @(e,r,dy) -2*dy*e^2.*exp(-(e*r).^2);
4a dxxrbf = @(e,r,dx) 2*e^2*(2*(e*dx).^2-1) .* ...
4b exp(-(e*r).^2);
5a dyyrbf = @(e,r,dy) 2*e^2*(2*(e*dy).^2-1) .* ...
5b exp(-(e*r).^2);

fasshauer@iit.edu MATH 590 30

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

In the following table we compare the solution obtained with
Gaussians
and inverse multiquadrics

based on interior Halton points.

The boundary centers are taken to lie outside the domain.

For Gaussians we need to replace lines 1–5 of
KansaEllipticVC_2D.m by

1 rbf = @(e,r) exp(-(e*r).^2); ep = 3;
2 dxrbf = @(e,r,dx) -2*dx*e^2.*exp(-(e*r).^2);
3 dyrbf = @(e,r,dy) -2*dy*e^2.*exp(-(e*r).^2);
4a dxxrbf = @(e,r,dx) 2*e^2*(2*(e*dx).^2-1) .* ...
4b exp(-(e*r).^2);
5a dyyrbf = @(e,r,dy) 2*e^2*(2*(e*dy).^2-1) .* ...
5b exp(-(e*r).^2);

fasshauer@iit.edu MATH 590 30

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

Nint Gaussian IMQ

RMS-error cond(A) RMS-error cond(A)

9 6.852103e-02 8.874341e+03 1.123770e-01 6.954910e+02
25 1.091888e-02 4.898291e+03 1.123575e-02 3.302471e+03
81 1.854386e-04 1.286993e+09 1.370992e-03 4.992219e+05
289 8.445637e-07 7.031011e+19 8.105109e-05 7.527456e+09

1089 2.559824e-05 4.553162e+20 7.041415e-08 7.785955e+17

Table: Solution with Gaussians and IMQs, ε = 3 and interior Halton points.

fasshauer@iit.edu MATH 590 31

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 2

Figure: Non-symmetric collocation solution (left) and error plot (right) using
IMQs with ε = 3 and N = 289 interior Halton points.

fasshauer@iit.edu MATH 590 32

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Consider the Poisson problem with mixed boundary conditions

∇2u(x , y) = −5.4x , (x , y) ∈ Ω = [0,1]2,

∂

∂n
u(x , y) = 0, (x , y) ∈ Γ1 ∪ Γ3,

u(x , y) = 0.1, (x , y) ∈ Γ2,

u(x , y) = 1, (x , y) ∈ Γ4,

where

Γ1 = {(x , y) : 0 ≤ x ≤ 1, y = 0},
Γ2 = {(x , y) : x = 1, 0 ≤ y ≤ 1},
Γ3 = {(x , y) : 0 ≤ x ≤ 1, y = 1},
Γ4 = {(x , y) : x = 0, 0 ≤ y ≤ 1}.

The exact solution is given by

u(x , y) = 1− 0.9x3.

fasshauer@iit.edu MATH 590 33

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Consider the Poisson problem with mixed boundary conditions

∇2u(x , y) = −5.4x , (x , y) ∈ Ω = [0,1]2,

∂

∂n
u(x , y) = 0, (x , y) ∈ Γ1 ∪ Γ3,

u(x , y) = 0.1, (x , y) ∈ Γ2,

u(x , y) = 1, (x , y) ∈ Γ4,

where

Γ1 = {(x , y) : 0 ≤ x ≤ 1, y = 0},
Γ2 = {(x , y) : x = 1, 0 ≤ y ≤ 1},
Γ3 = {(x , y) : 0 ≤ x ≤ 1, y = 1},
Γ4 = {(x , y) : x = 0, 0 ≤ y ≤ 1}.

The exact solution is given by

u(x , y) = 1− 0.9x3.

fasshauer@iit.edu MATH 590 33

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Remark
The normal derivative on the edges is given by:

on Γ1: ∂
∂y

on Γ3: − ∂
∂y

Therefore, the MATLAB program also requires the y-partial of the
basic function.

Note that this time we need to carefully pick out the different
boundary collocation points (see lines 7–11).

fasshauer@iit.edu MATH 590 34

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Remark
The normal derivative on the edges is given by:

on Γ1: ∂
∂y

on Γ3: − ∂
∂y

Therefore, the MATLAB program also requires the y-partial of the
basic function.

Note that this time we need to carefully pick out the different
boundary collocation points (see lines 7–11).

fasshauer@iit.edu MATH 590 34

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Remark
The normal derivative on the edges is given by:

on Γ1: ∂
∂y

on Γ3: − ∂
∂y

Therefore, the MATLAB program also requires the y-partial of the
basic function.

Note that this time we need to carefully pick out the different
boundary collocation points (see lines 7–11).

fasshauer@iit.edu MATH 590 34

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Program (KansaLaplaceMixedBC_2D.m)

1 rbf = @(e,r) 1./sqrt(1+(e*r).^2); ep = 3;
2 dyrbf = @(e,r,dy) -dy*e^2./(1+(e*r).^2).^(3/2);
3 Lrbf = @(e,r) e^2*((e*r).^2-2)./(1+(e*r).^2).^(5/2);
4 u = @(x,y) 1-0.9*x.^3+0*y;
5 Lu = @(x,y) -5.4*x+0*y;
6 N = 289; [collpts, N] = CreatePoints(N, 2, ’u’);
7 indx1 = find(collpts(:,2)==0 & collpts(:,1)~=1);
8 indx2 = find(collpts(:,1)==1 & collpts(:,2)~=1);
9 indx3 = find(collpts(:,2)==1 & collpts(:,1)~=0);

10 indx4 = find(collpts(:,1)==0 & collpts(:,2)~=0);
11 bdypts = collpts([indx1;indx2;indx3;indx4],:);
12 [intpts, N] = CreatePoints(N, 2, ’h’);
13 sn = sqrt(N); h = 1/(sn-1);
14 bdyctrs = bdypts; bdyctrs = (1+2*h)*bdyctrs-h;
15 ctrs = [intpts; bdyctrs];

fasshauer@iit.edu MATH 590 35

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Program (KansaLaplaceMixedBC_2D.m (cont.))
16 M = 1600; epoints = CreatePoints(M,2,’u’);
17 DM_eval = DistanceMatrix(epoints,ctrs);
18 EM = rbf(ep,DM_eval);
19 exact = u(epoints(:,1),epoints(:,2));
20 DM_int = DistanceMatrix(intpts,ctrs);
21 DM_bdy = DistanceMatrix(bdypts,ctrs);
22 dy_bdy = Differencematrix(bdypts(:,2),ctrs(:,2));
23 LCM = Lrbf(ep,DM_int);
24 BCM1 = -dyrbf(ep,DM_bdy(1:sn-1,:),dy_bdy(1:sn-1,:));
25 BCM2 = rbf(ep,DM_bdy(sn:2*sn-2,:));
26a BCM3 = dyrbf(ep,DM_bdy(2*sn-1:3*sn-3,:),...
26b dy_bdy(2*sn-1:3*sn-3,:));
27 BCM4 = rbf(ep,DM_bdy(3*sn-2:end,:));
28 CM = [LCM; BCM1; BCM2; BCM3; BCM4];
29a rhs = [Lu(intpts(:,1),intpts(:,2)); zeros(sn-1,1); ...
29b 0.1*ones(sn-1,1); zeros(sn-1,1); ones(sn-1,1)];
30 s = EM * (CM\rhs);
31 rms_err = norm(s-exact)/sqrt(M);

fasshauer@iit.edu MATH 590 36

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Nint Gaussian IMQ

RMS-error cond(A) RMS-error cond(A)

9 3.423330e-01 5.430073e+03 7.937403e-02 2.782348e+02
25 1.065826e-02 1.605086e+03 5.605445e-03 1.680888e+03
81 5.382387e-04 3.684159e+08 1.487160e-03 2.611650e+05
289 6.181855e-06 1.452124e+19 1.822077e-04 3.775455e+09

1089 2.060470e-06 1.628262e+21 1.822221e-07 3.155751e+17

Table: Non-symmetric collocation solution with Gaussians and IMQs, ε = 3
and interior Halton points.

fasshauer@iit.edu MATH 590 37

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Figure: Approximate solution (left) and error plot (right) using IMQs with ε = 3
and N = 289 interior Halton points.

fasshauer@iit.edu MATH 590 38

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Remark
Note that — even though the problem has a symmetric solution —
the approximate solution is not quite symmetric (as demonstrated
by the error plot). This is due to the use of interior Halton points.

The same happened in the previous example.

In [LCC03] the authors report that the non-symmetric collocation
solution for this problem with multiquadric RBFs is several orders
of magnitude more accurate than a solution with piecewise linear
finite elements using the same number of nodes.

fasshauer@iit.edu MATH 590 39

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Remark
Note that — even though the problem has a symmetric solution —
the approximate solution is not quite symmetric (as demonstrated
by the error plot). This is due to the use of interior Halton points.
The same happened in the previous example.

In [LCC03] the authors report that the non-symmetric collocation
solution for this problem with multiquadric RBFs is several orders
of magnitude more accurate than a solution with piecewise linear
finite elements using the same number of nodes.

fasshauer@iit.edu MATH 590 39

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 3

Remark
Note that — even though the problem has a symmetric solution —
the approximate solution is not quite symmetric (as demonstrated
by the error plot). This is due to the use of interior Halton points.
The same happened in the previous example.

In [LCC03] the authors report that the non-symmetric collocation
solution for this problem with multiquadric RBFs is several orders
of magnitude more accurate than a solution with piecewise linear
finite elements using the same number of nodes.

fasshauer@iit.edu MATH 590 39

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 4

Theorem ([LOS06])
Let Λ be an infinite set of real-valued linear functionals so that the PDE
problem corresponds to λ[u] = fλ, λ ∈ R, and let ΛN ⊂ Λ be the finite
set of test functionals used to discretize the PDE problem. Assume the
kernel K to be smooth enough to guarantee that the functions
λxK (x , ·) for λ ∈ Λ are continuous. Then the set of functions
{λx

i K (x , ·), λi ∈ ΛN}Ni=1 is linearly independent, and hence Kansa’s
collocation matrix K with Kij = λx

i K (x , z j) is nonsingular for properly
chosen trial centers z j .

Remark
The functionals in Λ capture the action of both differential and
boundary operators of the PDE problem.
The functions λx

i K (x , ·), i = 1, . . . ,N define the rows of K.
The trial functions K (·, z j), j = 1, . . . ,N define the columns of K.

fasshauer@iit.edu MATH 590 40

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 4

One way to ensure the use of properly chosen trial functions is to
pick a discretization, i.e., pick a set λN , and then
use a (column-pivoted) QR decomposition of a short and fat
matrix K̂ based on a set Z of M � N reasonably well distributed
trial centers to find a full-rank (square) collocation matrix K.

Note that the set of trial centers may include points outside the domain
Ω.

fasshauer@iit.edu MATH 590 41

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 4

Example ([LOS06])
Use multiquadrics in the form

K (x , z) =

√
1 +
‖x − z‖2

c2

for

∆u = f in Ω

u = g on ∂Ω

with g(x , y) = 1
2 log(x2 − 4x + 8 + y2 − 4y) and f = ∆g.

Collocation at N = Nint + Nbdy points picked from a set of 1116 test
functional candidates.
M = 47229, so that trial centers Z come from M equally spaced points
in [−6,6].
A greedy matrix-free algorithm was used to pick the points (see
[LOS06] for details).

fasshauer@iit.edu MATH 590 42

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 4

fasshauer@iit.edu MATH 590 43

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 4

Observations:
about 110 points chosen,
small c (i.e., large ε) results in many trial centers and test
functionals and high accuracy,
trial centers chosen pretty uniformly and close to the domain Ω.

fasshauer@iit.edu MATH 590 44

http://math.iit.edu/~fass

MATLAB Implementation of Kansa’s Method Example 4

Observations:
only 40 points chosen,
large c (i.e., small ε) results in ill-conditioning, so use only a few
centers and test functionals, but still get good accuracy,
all but one trial center chosen outside the domain Ω.

fasshauer@iit.edu MATH 590 45

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

Outline

1 Kansa’s Approach

2 MATLAB Implementation of Kansa’s Method

3 Error Bounds for Non-Symmetric Collocation

4 Non-Symmetric Collocation with the Hilbert–Schmidt SVD

5 Toward Solving the Navier-Stokes Equations

fasshauer@iit.edu MATH 590 46

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

Due to the known counterexamples from [HS01] for the non-symmetric
method, a convergence analysis is still lacking for that method.

However, for an adaptive version of the non-symmetric method (see
Ex. 4 above) Schaback has analyzed the convergence in
[Sch05, Sch10] and the more “applied” paper [LS08].

They establish that the nonsymmetric collocation method, if carried out
with smooth kernel-based trial functions and sufficiently many test
functionals, converges at the same rate as interpolation of the solution.
Thus, trial spaces formed using multiquadrics or Gaussians result in
exponential convergence if the solution is analytic.

fasshauer@iit.edu MATH 590 47

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

Due to the known counterexamples from [HS01] for the non-symmetric
method, a convergence analysis is still lacking for that method.

However, for an adaptive version of the non-symmetric method (see
Ex. 4 above) Schaback has analyzed the convergence in
[Sch05, Sch10] and the more “applied” paper [LS08].

They establish that the nonsymmetric collocation method, if carried out
with smooth kernel-based trial functions and sufficiently many test
functionals, converges at the same rate as interpolation of the solution.
Thus, trial spaces formed using multiquadrics or Gaussians result in
exponential convergence if the solution is analytic.

fasshauer@iit.edu MATH 590 47

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

Due to the known counterexamples from [HS01] for the non-symmetric
method, a convergence analysis is still lacking for that method.

However, for an adaptive version of the non-symmetric method (see
Ex. 4 above) Schaback has analyzed the convergence in
[Sch05, Sch10] and the more “applied” paper [LS08].

They establish that the nonsymmetric collocation method, if carried out
with smooth kernel-based trial functions and sufficiently many test
functionals, converges at the same rate as interpolation of the solution.
Thus, trial spaces formed using multiquadrics or Gaussians result in
exponential convergence if the solution is analytic.

fasshauer@iit.edu MATH 590 47

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

Optimal rates of convergence for general operator equations in strong
form or weak form were recently proven in [Sch10] assuming

the numerical method is based on residual minimization
and using the sampling inequalities of [NWW05] mentioned in our
general error discussion.

In [LLS09] the authors use arbitrary-precision arithmetic in
Mathematica (100 digits) to show that the nonsymmetric collocation
converges even faster than the interpolant to the solution. However,
they used shape parameters from [HLC07], which were determined to
be “optimal” for the PDE they used.

fasshauer@iit.edu MATH 590 48

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

Optimal rates of convergence for general operator equations in strong
form or weak form were recently proven in [Sch10] assuming

the numerical method is based on residual minimization
and using the sampling inequalities of [NWW05] mentioned in our
general error discussion.

In [LLS09] the authors use arbitrary-precision arithmetic in
Mathematica (100 digits) to show that the nonsymmetric collocation
converges even faster than the interpolant to the solution. However,
they used shape parameters from [HLC07], which were determined to
be “optimal” for the PDE they used.

fasshauer@iit.edu MATH 590 48

http://math.iit.edu/~fass

Error Bounds for Non-Symmetric Collocation

fasshauer@iit.edu MATH 590 49

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Outline

1 Kansa’s Approach

2 MATLAB Implementation of Kansa’s Method

3 Error Bounds for Non-Symmetric Collocation

4 Non-Symmetric Collocation with the Hilbert–Schmidt SVD

5 Toward Solving the Navier-Stokes Equations

fasshauer@iit.edu MATH 590 50

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Transitioning to the Stable Basis (based on [McC13])
In order to overcome potential ill-conditioning, we can apply the stable
basis. In the standard basis, our approximate solution is of the form

û(x) =
N∑

j=1

cjK (x , z j) = k(x)T c,

where

k(x)T = (K (x , z1), . . . ,K (x , zN)).

To shift to the stable basis, our solution should take the form

ûs(x) =
N∑

j=1

bjψj(x) = ψ(x)T b,

where

ψ(x)T = (ψ1(x), . . . , ψN(x)).

fasshauer@iit.edu MATH 590 51

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Transitioning to the Stable Basis (based on [McC13])
In order to overcome potential ill-conditioning, we can apply the stable
basis. In the standard basis, our approximate solution is of the form

û(x) =
N∑

j=1

cjK (x , z j) = k(x)T c,

where

k(x)T = (K (x , z1), . . . ,K (x , zN)).

To shift to the stable basis, our solution should take the form

ûs(x) =
N∑

j=1

bjψj(x) = ψ(x)T b,

where

ψ(x)T = (ψ1(x), . . . , ψN(x)).

fasshauer@iit.edu MATH 590 51

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Transitioning to the Stable Basis
Recall the Hilbert–Schmidt SVD:

K = ΨΛ1ΦT
1

= Φ

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 .

Each row of this matrix can be thought of as

k(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
Λ1ΦT

1

with the vector of eigenfunctions truncated to length M > N

φ(x)T = (ϕ1(x), . . . , ϕM(x)).

Recall: Each row of K corresponds to a collocation point, and each
column corresponds to a kernel center.

fasshauer@iit.edu MATH 590 52

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Transitioning to the Stable Basis
Recall the Hilbert–Schmidt SVD:

K = ΨΛ1ΦT
1

= Φ

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 .

Each row of this matrix can be thought of as

k(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
Λ1ΦT

1

with the vector of eigenfunctions truncated to length M > N

φ(x)T = (ϕ1(x), . . . , ϕM(x)).

Recall: Each row of K corresponds to a collocation point, and each
column corresponds to a kernel center.

fasshauer@iit.edu MATH 590 52

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Derivatives in the Stable Basis
Solving BVPs via collocation requires differentiating the basis:

Dû(x) =
N∑

j=1

cjDK (x , z j) = Dk(x)T c

=

(
Dφ(x)T

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1

)
c

Here D is either L or B based on the collocation point location.
Note that D affects only the x-variable of K (x , z j).

In order to create the stable basis we identify Λ1ΦT
1 c = b and

ψ(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
Dûs(x) =

(
Dφ(x)T

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

))
b

fasshauer@iit.edu MATH 590 53

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Derivatives in the Stable Basis
Solving BVPs via collocation requires differentiating the basis:

Dû(x) =
N∑

j=1

cjDK (x , z j) = Dk(x)T c

=

(
Dφ(x)T

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1

)
c

Here D is either L or B based on the collocation point location.
Note that D affects only the x-variable of K (x , z j).
In order to create the stable basis we identify Λ1ΦT

1 c = b and

ψ(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
Dûs(x) =

(
Dφ(x)T

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

))
b

fasshauer@iit.edu MATH 590 53

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Stable Basis Collocation
Our original collocation matrix can be converted to

(
KL
KB

)
=

ΦL

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1

ΦB

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1

 =

(
ΦL
ΦB

)(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 .

This changes our system to(
ΦL
ΦB

)(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 c =

(
f
g

)
,(

ΦL
ΦB

)(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
b =

(
f
g

)
,(

ΨL
ΨB

)
b =

(
f
g

)
.

We can now perform collocation stably (without inverting Λ1).

fasshauer@iit.edu MATH 590 54

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Stable Basis Collocation
Our original collocation matrix can be converted to

(
KL
KB

)
=

ΦL

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1

ΦB

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1

 =

(
ΦL
ΦB

)(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 .

This changes our system to(
ΦL
ΦB

)(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 c =

(
f
g

)
,(

ΦL
ΦB

)(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
b =

(
f
g

)
,(

ΨL
ΨB

)
b =

(
f
g

)
.

We can now perform collocation stably (without inverting Λ1).
fasshauer@iit.edu MATH 590 54

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Stable Basis Collocation

There is a clear benefit to using the stable Gaussian basis.
fasshauer@iit.edu MATH 590 55

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Polynomial Example (based on [Tre00])
N = 16;
NN = 200;
xx = pickpoints(-1,1,NN);
f = @(x) -sinh(x)./(1+cosh(x)).^2;
exact = @(x) sinh(x)./(1+cosh(x));

[D,t] = cheb(N);
D2 = D^2;
D2([1,end],:) = [1,zeros(1,N-1);zeros(1,N-1),1];
rhs = [exact(t(1));f(t(2:end-1));exact(t(end))];

u = D2\rhs;
pcoef = polyfit(t,u,N-1);
polyprediction = polyval(pcoef,xx);
err_Trefethen = errcompute(polyprediction,exact(xx))

fasshauer@iit.edu MATH 590 56

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Kernel Example (Direct)
N = 16; NN = 200;
x = pickpoints(-1,1,N,’cheb’);
xx = pickpoints(-1,1,NN);
f = @(x) -sinh(x)./(1+cosh(x)).^2;
exact = @(x) sinh(x)./(1+cosh(x));

rbf = @(e,r) exp(-(e*r).^2);
d2rbf = @(e,r) 2*e^2*(2*(e*r).^2-1).*exp(-(e*r).^2);
ep = 1;

r = DistanceMatrix(x,x); D2 = d2rbf(ep,r); K = rbf(ep,r);
D2([1,end],:) = K([1,end],:);
rhs = [exact(x(1));f(x(2:end-1));exact(x(end))];

coef = D2\rhs;
reval = DistanceMatrix(xx,x); Keval = rbf(ep,reval);
err_Kansa = errcompute(Keval*coef,exact(xx));

fasshauer@iit.edu MATH 590 57

http://math.iit.edu/~fass

Non-Symmetric Collocation with the Hilbert–Schmidt SVD

Kernel Example (HS-SVD)
N = 16; NN = 200;
x = pickpoints(-1,1,N,’cheb’);
xx = pickpoints(-1,1,NN);
f = @(x) -sinh(x)./(1+cosh(x)).^2;
exact = @(x) sinh(x)./(1+cosh(x));

ep = 1;

GQR = gqr_solveprep(0,x,ep);
phi_B = gqr_phi(GQR,x([1,end]));
phi_L = gqr_phi(GQR,x(2:end-1),2);
K = [phi_B;phi_L]*[eye(N);GQR.Rbar];
rhs = [exact(x([1,end]));f(x(2:end-1))];

GQR.coef = K\rhs;
err_GQR = errcompute(gqr_eval(GQR,xx),exact(xx));

fasshauer@iit.edu MATH 590 58

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations

Outline

1 Kansa’s Approach

2 MATLAB Implementation of Kansa’s Method

3 Error Bounds for Non-Symmetric Collocation

4 Non-Symmetric Collocation with the Hilbert–Schmidt SVD

5 Toward Solving the Navier-Stokes Equations

fasshauer@iit.edu MATH 590 59

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations

Toward Solving the Navier-Stokes Equations

In order to be able tackle more sophisticated PDEs we need to be able
to better handle a number of issues:

computational efficiency for large problems (e.g., local
representations)
Eulerian and semi-Lagrangian solvers for fluid flow problems
adaptivity
special properties of solution (divergence-free, rotation-free, etc.)

In the remaining few slides we present a few initial investigations in this
direction performed by a former student.
Other research with significant progress is under way by, e.g.,
[FW07, FW09a, FP08, Fus08b, FNWW09, Wen09, WFY10a].

fasshauer@iit.edu MATH 590 60

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations

Toward Solving the Navier-Stokes Equations

In order to be able tackle more sophisticated PDEs we need to be able
to better handle a number of issues:

computational efficiency for large problems (e.g., local
representations)
Eulerian and semi-Lagrangian solvers for fluid flow problems
adaptivity
special properties of solution (divergence-free, rotation-free, etc.)

In the remaining few slides we present a few initial investigations in this
direction performed by a former student.
Other research with significant progress is under way by, e.g.,
[FW07, FW09a, FP08, Fus08b, FNWW09, Wen09, WFY10a].

fasshauer@iit.edu MATH 590 60

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Convection in Earth Mantle

[WFY10b] to illustrate [WFY10a]
fasshauer@iit.edu MATH 590 61

MantleConvectionSimulationHybridRBF.mp4
Media File (video/mp4)

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

Ex.1: Lid-driven cavity flow

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X−axis

Y
−

ax
is

Figure: (a) Schematic of the driven cavity problem and (b) Distribution of the RBF
centers.

Features in the flow depend on the Reynolds number

Re = UL/ν, (for us L = U = 1)

fasshauer@iit.edu MATH 590 62

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

We now describe an
Eulerian (observe the flow from a fixed outside point)
and semi-Lagrangian (observe the flow from a moving inside
point)

method to solve the Navier-Stokes equations.

We solve the Navier-Stokes equations in the primitive-variables form
(directly measurable variables – as opposed to conserved variables
such as momentum or mass) for the velocity components and the
pressure at each time step.

For this set of experiments spatial derivatives are approximated using
a local RBF method.

fasshauer@iit.edu MATH 590 63

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

Since the pressure term does not have an explicit evolution equation,
we use a fractional-step method to compute the velocity and pressure
fields.
Using a Crank-Nicholson scheme in the Eulerian framework we need
to solve at each time step

u?i = un
i −∆t

(
un

j
∂un

i
∂xj

)
(8)

u??i −
(

∆t
Re

)
∇2 u??i = u?i (9)

∂2p
∂xj∂xj

=
1

∆t
∂u??i
∂xi

(10)

un+1
i = u??i −∆t

∂p
∂xi

(11)

The subscript i in ui refers to the i th component of the velocity field and
the superscript n + 1 in un+1 refers to the velocity at the time step n + 1.

fasshauer@iit.edu MATH 590 64

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

−1 −0.6 −0.2 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

U−Velocity
Y

−
ax

is

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

X−axis

V
−

V
el

oc
ity

Figure: Plot of streamfunction for (a) Re=100 (1681 nodes) (b) Re=1000 (5041
nodes) (c) Re=3200 (8281 nodes) (d) Comparison of centerline velocities for Re=3200
(solid lines) with [GGS82] (symbols). Simulation performed in the Eulerian framework
– time-dependent problem run to steady-state.

fasshauer@iit.edu MATH 590 65

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

For the semi-Lagrangian approach we compute the convective term
in (8) by tracking the evolution of particles in the domain and recording
the velocities associated with the particles.
Using a second-order Adams-Bashforth method with a
Crank-Nicholson scheme we need to solve

ûi − 2ui(xn
d) + 1

2ui(xn−1
d)

∆t
= 0 (12)

∂2p
∂xj∂xj

=
1

∆t
∂ûi

∂xi
(13)

ˆ̂ui = ûi −∆t
∂p
∂xi

(14)

3
2

un+1
i −

(
∆t
Re

)
∂2un+1

j

∂xj∂xj
= ˆ̂ui (15)

The term ui(xn
d) in (12) represents the i th velocity component at the

departure locations xd at time tn.

fasshauer@iit.edu MATH 590 66

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

To solve (12) we need to compute the velocities at different spatial
locations: requires an accurate interpolation scheme
According to [XK01] any semi-Lagrangian method has order of
accuracy

O
(

(∆t)α +
(∆x)β+1

∆t

)
,

where α is the accuracy of the temporal scheme and β is the order of
the interpolation scheme.

Remark
The equations being solved for the Eulerian and the semi-Lagrangian
method are virtually identical. The only difference lies with the
convective term.

fasshauer@iit.edu MATH 590 67

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

−1 −0.6 −0.2 0.2 0.6 1
0

0.2

0.4

0.6

0.8

1

U−Velocity

Y
−

ax
is

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

X−axis

V
−

V
el

oc
ity

Figure: Plot of streamfunction for (a) Re=100 (1681 nodes) (b) Re=1000 (5041
nodes) (c) Re=3200 (8281 nodes) (d) Comparison of centerline velocities for Re=3200
(solid lines) with [GGS82] (symbols). Simulation performed in the semi-Lagrangian
framework – time-dependent problem run to steady-state.

fasshauer@iit.edu MATH 590 68

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations RBF Collocation for Viscous Incompressible Fluid Flow

Effect of the interpolation scheme in the semi-Lagrangian method:
using a small local support (on the order of 10–12 grid points) for
the interpolation led to numerical diffusion. The numerical method
was stable, but the solution invariably resembled Stokes flow –
even for a high Reynolds number
The solutions in the figure used supports with about 40 points.
With more points the computational cost increases.

Comparison of Eulerian and semi-Lagrangian schemes:
The semi-Lagrangian scheme requires more operations per time
step, but we can take larger time steps and so the cost is roughly
the same.
The semi-Lagrangian scheme is highly parallelizable, so we can
performing numerical simulations on high-performance computer
clusters.

fasshauer@iit.edu MATH 590 69

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Adaptivity

We know that Gaussian RBF interpolation is spectrally accurate.

We now explore the effect of adaptivity.

Two major advantages of adaptivity:
adaptivity will let us efficiently resolve regions of high vorticity
without having to uniformly increase the number of nodes
by correctly implementing adaptivity one can produce very
accurate results [DH07]

fasshauer@iit.edu MATH 590 70

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Adaptivity I

Sub-sampling algorithm similar to [DH07]:
Select initial distribution
Select test-points such that they lie mid-point between two centers
and compute residual at test-points
If a group of test-centers surrounding an “active” center falls below
a certain threshold, eliminate that center.
If a given test-point is above a certain threshold, promote that
test-point to a center.
Repeat recursively until stabilized.

Remark
The algorithm is extremely fast and the adaptivity converges within
10-15 iterations. In higher-dimensional cases, locations of test-points
are determined with the help of d-dimensional Voronoi cells.

fasshauer@iit.edu MATH 590 71

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

X−axis →

F
(x

)
→

Error =1.019e−008

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

M
ax

im
um

 E
rr

or
 →

Number of Centers →

Figure: (a) RBF approximation for Runge function. (b) Spectral convergence of
adaptive RBF scheme.

fasshauer@iit.edu MATH 590 72

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Ex.2: Burgers’ equation

We now consider Burgers’ equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 , 0 < x < 1,

u(0, t) = u(1, t) = 0,

u(x ,0) = sin(2πx) +
1
2

sin(πx).

Also used in [DH07].
Discretize using a method of lines and do time-stepping with an
explicit Runge-Kutta method.
Apply the spatial adaptive algorithm at each time step.

fasshauer@iit.edu MATH 590 73

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Figure: Burgers’ solution using adaptive RBFs for (a) ν = 0.01 (b) ν = 0.00001.

fasshauer@iit.edu MATH 590 74

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Observations concerning incompressible flows

Adaptivity will enable us to efficiently resolve regions of high
vorticity without having to uniformly increase the number of nodes
in our numerical simulations.
As a consequence, the overall scheme will be able to produce
very accurate results.
Currently, the ALE method is the only method that employs an
adaptive grid. We do not directly deal with grids but have to
choose where to best place the interpolation nodes to achieve
high accuracy.
We determine these locations by checking at each time step if the
residuals are below a certain tolerance (see also
[Sar05, DH07, SW00]).
Interesting to explore whether it is more efficient to develop
cost-functions for adaptivity that are dependent on physical
phenomena on mathematical properties such as the condition
number of the interpolation matrix.

fasshauer@iit.edu MATH 590 75

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Divergence-free RBFs

For the semi-Lagrangian scheme we need to perform interpolation to
compute the velocities at arbitrary nodal locations.

On the other hand, the conservation of mass equations states that the
flow is divergence-free.

Using matrix-valued RBFs, we can directly build this property into our
basis.

Remark
Divergence-free interpolation using RBFs has been studied
theoretically by [NW94, Low05, Fus08b, Fus08a, FNWW09, FW09b].

fasshauer@iit.edu MATH 590 76

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Remark
To our knowledge fluid flow problems have never been considered in
the divergence-free framework.
The papers [Wen09, SW11, FW13] on

stationary Stokes flow
Darcy flow in porous media
reaction and diffusion of chemicals on biological cells or
membranes, and pattern formations in biology

come closest.

fasshauer@iit.edu MATH 590 77

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Any divergence-free vector field u can be written as u = ∇×w , where
w is a (divergence-free) vector potential.
If we approximate w in terms of vector-kernels

w = ∇×
N∑

j=1

cjK (·, z j),

where cj = [cj,x , cj,y , cj,z]T , then

u = ∇×∇×
N∑

j=1

cjK (·, z j)

=
(
−∆I +∇∇T

) N∑
j=1

cjK (·, z j),

where ∆ is the Laplacian, I is an identity matrix, and ∇ is the gradient
operator.
−→ Divergence-free matrix-valued kernels

fasshauer@iit.edu MATH 590 78

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

The use of divergence-free interpolation essentially reduces the
Navier-Stokes equations to the solution of a Laplace problem for
pressure.

With solid boundaries everywhere (as for the driven-cavity problem),
no pressure correction is needed.

Potential for significant savings in computational cost.

fasshauer@iit.edu MATH 590 79

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

Ex.3: Hill’s spherical vortex

We use adaptive divergence-free RBFs to approximate the velocity
field.

We use the same adaptive sub-sampling algorithm as above.

Velocities (in 2D) are approximated as

u = −
N∑

j=1

cj
∂2K (·, z j)

∂y2 +
N∑
`=1

d`
∂2K (·, z`)
∂x∂y

(16)

v =
N∑

j=1

cj
∂2K (·, z j)

∂x∂y
−

N∑
`=1

d`
∂2K (·, z`)

∂x2 (17)

The result is a system of 2N equations rather than N.

fasshauer@iit.edu MATH 590 80

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X axis →

Y
 a

xi
s

→

Figure: (a) Streamlines for Hill’s vortex. (b) Location of RBF centers (N = 900). (c)
Absolute error for divergence-free adaptive RBF interpolation, O(10−4). (d) Absolute
error for divergence-free RBF interpolation, O(10−2).

fasshauer@iit.edu MATH 590 81

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

So far, most of the discussion has focussed on elliptic PDEs.

An important part of the theoretical foundation for time-dependent
PDEs is the convergence and stability of the kernel-based approach.

The manuscript [HS10] provides the equivalent of a CFL condition for
the solution of the standard heat equation with a method of lines
approach that uses positive definite kernels for the spatial
discretization and an Euler method in time.

The kernel-based CFL condition mirrors that for standard
finite-difference methods and requires that the time step ∆t satisfies
∆t ≤ C(∆x)2, where C is some positive constant and ∆x denotes the
spacing of equidistant spatial collocation points.

fasshauer@iit.edu MATH 590 82

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

So far, most of the discussion has focussed on elliptic PDEs.

An important part of the theoretical foundation for time-dependent
PDEs is the convergence and stability of the kernel-based approach.

The manuscript [HS10] provides the equivalent of a CFL condition for
the solution of the standard heat equation with a method of lines
approach that uses positive definite kernels for the spatial
discretization and an Euler method in time.

The kernel-based CFL condition mirrors that for standard
finite-difference methods and requires that the time step ∆t satisfies
∆t ≤ C(∆x)2, where C is some positive constant and ∆x denotes the
spacing of equidistant spatial collocation points.

fasshauer@iit.edu MATH 590 82

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

So far, most of the discussion has focussed on elliptic PDEs.

An important part of the theoretical foundation for time-dependent
PDEs is the convergence and stability of the kernel-based approach.

The manuscript [HS10] provides the equivalent of a CFL condition for
the solution of the standard heat equation with a method of lines
approach that uses positive definite kernels for the spatial
discretization and an Euler method in time.

The kernel-based CFL condition mirrors that for standard
finite-difference methods and requires that the time step ∆t satisfies
∆t ≤ C(∆x)2, where C is some positive constant and ∆x denotes the
spacing of equidistant spatial collocation points.

fasshauer@iit.edu MATH 590 82

http://math.iit.edu/~fass

Toward Solving the Navier-Stokes Equations Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

So far, most of the discussion has focussed on elliptic PDEs.

An important part of the theoretical foundation for time-dependent
PDEs is the convergence and stability of the kernel-based approach.

The manuscript [HS10] provides the equivalent of a CFL condition for
the solution of the standard heat equation with a method of lines
approach that uses positive definite kernels for the spatial
discretization and an Euler method in time.

The kernel-based CFL condition mirrors that for standard
finite-difference methods and requires that the time step ∆t satisfies
∆t ≤ C(∆x)2, where C is some positive constant and ∆x denotes the
spacing of equidistant spatial collocation points.

fasshauer@iit.edu MATH 590 82

http://math.iit.edu/~fass

Appendix References

References I

[BLRS14] Mira Bozzini, Licia Lenarduzzi, Milvia Rossini, and Robert Schaback,
Interpolation with variably scaled kernels, IMA Journal of Numerical
Analysis (2014).

[BMK12] Victor Bayona, Miguel Moscoso, and Manuel Kindelan, Optimal variable
shape parameter for multiquadric based RBF-FD method, Journal of
Computational Physics 231 (2012), no. 6, 2466–2481.

[DH07] T. A. Driscoll and A. Heryudono, Adaptive residual subsampling methods
for radial basis function interpolation and collocation problems, Comput.
Math. Appl. 53 (2007), no. 6, 927–939.

[Dub92] M. R. Dubal, Construction of three-dimensional black-hole initial data via
multiquadrics, Phys. Rev. D, 45 (1992), 1178–1187.

[Dub94] , Domain decomposition and local refinement for multiquadric
approximations. I: Second-order equations in one-dimension, J. Appl. Sc.
Comp. 1 (1994), 146–171.

fasshauer@iit.edu MATH 590 83

http://math.iit.edu/~fass

Appendix References

References II

[Fas97] G. E. Fasshauer, Solving partial differential equations by collocation with
radial basis functions, Surface Fitting and Multiresolution Methods
(C. Rabut A. Le Méhauté and L. L. Schumaker, eds.), University Press,
1997, pp. 131–138.

[Fas07] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB,
Interdisciplinary Mathematical Sciences, vol. 6, World Scientific
Publishing Co., Singapore, 2007.

[FNWW09] E. Fuselier, F. Narcowich, J. Ward, and G. Wright, Error and stability
estimates for surface-divergence free RBF interpolants on the sphere,
Math. Comp. 78 (2009), no. 268, 2157–2186.

[FP08] B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions
on a sphere, SIAM J. Sci. Comput. 30 (2008), no. 1, 60–80.

[Fus08a] E. Fuselier, Improved stability estimates and a characterization of the
native space for matrix-valued RBFs, Adv. Comput. Math. 29 (2008),
no. 3, 311–313.

fasshauer@iit.edu MATH 590 84

http://math.iit.edu/~fass

Appendix References

References III

[Fus08b] , Sobolev-type approximation rates for divergence-free and
curl-free RBF interpolants, Math. Comp. 77 (2008), no. 263, 1407–1423.

[FW07] Natasha Flyer and Grady B. Wright, Transport schemes on a sphere
using radial basis functions, Journal of Computational Physics 226
(2007), no. 1, 1059–1084.

[FW09a] , A radial basis function method for the shallow water equations on
a sphere, Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Science 465 (2009), no. 2106, 1949 –1976.

[FW09b] Edward J. Fuselier and Grady B. Wright, Stability and error estimates for
vector field interpolation and decomposition on the sphere with RBFs,
SIAM Journal on Numerical Analysis 47 (2009), no. 5, 3213–3239.

[FW13] , A high-order kernel method for diffusion and reaction-diffusion
equations on surfaces, Journal of Scientific Computing 56 (2013), no. 3,
535–565.

fasshauer@iit.edu MATH 590 85

http://math.iit.edu/~fass

Appendix References

References IV

[GCK96] M. A. Golberg, C. S. Chen, and S. R. Karur, Improved multiquadric
approximation for partial differential equations, Eng. Anal. with Bound.
Elem. 18 (1996), 9–17.

[GGS82] U Ghia, K. N Ghia, and C. T Shin, High-Re solutions for incompressible
flow using the Navier–Stokes equations and a multigrid method, Journal
of Computational Physics 48 (1982), no. 3, 387–411.

[HLC07] C.-S. Huang, C.-F. Lee, and A.H.-D. Cheng, Error estimate, optimal shape
factor, and high precision computation of multiquadric collocation method,
Engineering Analysis with Boundary Elements 31 (2007), no. 7, 614–623.

[HS01] Y. C. Hon and R. Schaback, On unsymmetric collocation by radial basis
functions, Applied Mathematics and Computation 119 (2001), no. 2–3,
177–186.

[HS10] Y. C. Hon and R. Schaback, Meshless kernel techniques for the heat
equation, 2010.

fasshauer@iit.edu MATH 590 86

http://math.iit.edu/~fass

Appendix References

References V

[Kan90] E. J. Kansa, Multiquadrics–A scattered data approximation scheme with
applications to computational fluid-dynamics–II solutions to parabolic,
hyperbolic and elliptic partial differential equations, Computers &
Mathematics with Applications 19 (1990), no. 8-9, 147–161.

[Kan92] E. J. Kansa, A strictly conservative spatial approximation scheme for the
governing engineering and physics equations over irregular regions and
inhomogeneous scattered nodes, Comput. Math. Appl. 24 (1992),
169–190.

[KC92] E. J. Kansa and R. E. Carlson, Improved accuracy of multiquadric
interpolation using variable shape parameters, Comput. Math. Appl. 24
(1992), 99–120.

[LCC03] J. Li, A. H.-D. Cheng, and C-S. Chen, On the efficiency and exponential
convergence of multiquadric collocation method compared to finite
element method, Engineering Analysis with Boundary Elements 27
(2003), no. 3, 251–257.

fasshauer@iit.edu MATH 590 87

http://math.iit.edu/~fass

Appendix References

References VI

[LLS09] Cheng-Feng Lee, Leevan Ling, and Robert Schaback, On convergent
numerical algorithms for unsymmetric collocation, Advances in
Computational Mathematics 30 (2009), no. 4, 339–354.

[LOS06] Leevan Ling, Roland Opfer, and Robert Schaback, Results on meshless
collocation techniques, Engineering Analysis with Boundary Elements 30
(2006), no. 4, 247–253.

[Low05] S. Lowitzsch, Matrix-valued radial basis functions: stability estimates and
applications, Advances in Computational Mathematics 23 (2005), no. 3,
299–315.

[LS08] Leevan Ling and Robert Schaback, Stable and convergent unsymmetric
meshless collocation methods, SIAM Journal on Numerical Analysis 46
(2008), no. 3, 1097–1115.

[McC13] Michael McCourt, Using Gaussian eigenfunctions to solve boundary
value problems, Advances in Applied Mathematics and Mechanics 5
(2013), 569–594.

fasshauer@iit.edu MATH 590 88

http://math.iit.edu/~fass

Appendix References

References VII

[MK94] G. J. Moridis and E. J. Kansa, The Laplace transform multiquadric
method: A highly accurate scheme for the numerical solution of linear
partial differential equations, J. Appl. Sc. Comp. 1 (1994), 375–407.

[NW94] F. J. Narcowich and J. D. Ward, Generalized Hermite interpolation via
matrix-valued conditionally positive definite functions, Mathematics of
Computation 63 (1994), no. 208, 661–687.

[NWW05] F. J. Narcowich, J. D. Ward, and H. Wendland, Sobolev bounds on
functions with scattered zeros, with applications to radial basis function
surface fitting, Math. Comp. 74 (2005), 743–763.

[Sar05] Scott A. Sarra, Adaptive radial basis function methods for time dependent
partial differential equations, Applied Numerical Mathematics 54 (2005),
no. 1, 79 – 94.

[Sch05] Robert Schaback, Multivariate interpolation by polynomials and radial
basis functions, Constructive Approximation 21 (2005), 293–317.

fasshauer@iit.edu MATH 590 89

http://math.iit.edu/~fass

Appendix References

References VIII

[Sch10] R. Schaback, Unsymmetric meshless methods for operator equations,
Numerische Mathematik 114 (2010), no. 4, 629–651.

[SW00] R. Schaback and H. Wendland, Adaptive greedy techniques for
approximate solution of large RBF systems, Numer. Algorithms 24
(2000), 239–254.

[SW11] D. Schräder and H. Wendland, A high-order, analytically divergence-free
discretization method for Darcy’s problem, Math. Comp. 80 (2011),
263–277.

[Tre00] Lloyd N. Trefethen, Spectral Methods in MATLAB, Software,
Environments, Tools, SIAM: Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2000.

[Wen09] Holger Wendland, Divergence-free kernel methods for approximating the
Stokes problem, SIAM Journal on Numerical Analysis 47 (2009), no. 4,
3158–3179.

fasshauer@iit.edu MATH 590 90

http://math.iit.edu/~fass

Appendix References

References IX

[WFY10a] G. B. Wright, N. Flyer, and D. A. Yuen, A hybrid radial basis
function-pseudospectral method for thermal convection in a 3-D spherical
shell, Geochem. Geophys. Geosyst. 11 (2010), Q07003.

[WFY10b] , Mantle convection simulation with a hybrid radial basis
function/chebyshev pseudospectral method,
http://www.youtube.com/watch?v=-kDb0HlDsIM, 2010.

[WKL06] J. Wertz, E. J. Kansa, and L. Ling, The role of the multiquadric shape
parameters in solving elliptic partial differential equations, Comput. Math.
Appl. 51 (2006), no. 8, 1335–1348.

[XK01] Dongbin Xiu and George Em Karniadakis, A semi-Lagrangian high-order
method for Navier–Stokes equations, Journal of Computational Physics
172 (2001), no. 2, 658–684.

fasshauer@iit.edu MATH 590 91

http://math.iit.edu/~fass

	Kansa's Approach
	Matlab Implementation of Kansa's Method
	Example 1
	Example 2
	Example 3
	Example 4

	Error Bounds for Non-Symmetric Collocation
	Non-Symmetric Collocation with the Hilbert–Schmidt SVD
	Toward Solving the Navier-Stokes Equations
	Convection in Earth Mantle
	RBF Collocation for Viscous Incompressible Fluid Flow
	Adaptive RBF Collocation for Viscous Incompressible Fluid Flow

	Appendix

