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We know that the solution of the scattered data interpolation
problem with RBFs or kernels amounts to solving a linear system

Kc = y ,

where Kij = κ(‖x i − x j‖2) or Kij = K (x i ,x j), i , j = 1, . . . ,N.

Linear algebra tells us that this system will have a unique solution
whenever K is non-singular.

Necessary and sufficient conditions to characterize this general
non-singular case are still open.

We will focus mostly on kernels K that generate positive definite
matrices.
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Positive Definite Matrices, Kernels and Functions

Positive Definite Matrices and Kernels
Definition
A real symmetric N × N matrix K is called positive definite if its
associated quadratic form is positive for any nonzero
c = [c1, . . . , cN ]T ∈ RN , i.e.,

N∑
i=1

N∑
j=1

cicjKij > 0,

or more compactly cT Kc > 0. The matrix is called positive
semi-definite if the quadratic form is allowed to be nonnegative.

fasshauer@iit.edu MATH 590 – Chapter 2 5

For radial/isotropic kernels K , K is
a function of a distance matrix —
and Karl Menger [Men28] did
fundamental work on these!
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Positive Definite Matrices, Kernels and Functions

Positive Operators and Integrally PD Kernels

In analogy to the positive (semi-)definiteness of a symmetric matrix we
consider this notion for a self-adjoint operator [Hoc73, Section 3.5]:

Definition
A self-adjoint operator K acting on a Hilbert space H is called positive
if 〈Kf , f 〉H ≥ 0 for all f ∈ H.

This leads to another generalization [Mer09] of positive (semi-)definite
matrices:

Definition
A symmetric kernel K is called integrally positive definite on Ω× Ω if∫

Ω

∫
Ω

K (x , z)f (x)f (z)dxdz ≥ 0

for all f ∈ L2(Ω).
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Positive Definite Matrices, Kernels and Functions

If the operator K is defined as an integral operator, i.e.,

(Kf )(x) =

∫
Ω

K (x , z)f (z)dz

and
〈f ,g〉H =

∫
Ω

f (x)g(x)dx ,

then the quadratic form∫
Ω

∫
Ω

K (x , z)f (x)f (z)dxdz

is just 〈Kf , f 〉H, so that an integrally positive definite kernel is the
kernel of a positive integral operator.

Remark
Bochner [Boc33] showed that the two notions of positive definiteness
are equivalent for continuous kernels.
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Positive Definite Matrices, Kernels and Functions

Remark

Unfortunately, analysts in the early 20th century (such as
[Mer09, Mat23, Boc32]) defined positive definite functions/kernels
in analogy to positive semi-definite matrices.

This concept is not strong enough to guarantee a non-singular
interpolation matrix and so [Mic86] later defined strictly positive
definite functions (see also [Fas07]).
This leads to rather unfortunate differences in terminology used in
the context of matrices, kernels and functions.
Sometimes the literature is confusing about this and you might
find papers that use the term positive definite function/kernel in the
strict sense, and others that use it in the way we defined it above.
Hopefully, the authors are clear about their use of terminology.
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Positive Definite Matrices, Kernels and Functions

Example
The (complex-valued) kernel

Ke(x , z) = ei(x−z)·t , t ∈ Rd fixed,

is positive definite on Rd × Rd since its quadratic form is

N∑
j=1

N∑
k=1

cjckKe(x j ,xk ) =
N∑

j=1

N∑
k=1

cjckei(x j−xk )·t

=
N∑

j=1

cjeix j ·t
N∑

k=1

cke−ixk ·t

=

∣∣∣∣∣∣
N∑

j=1

cjeix j ·t

∣∣∣∣∣∣
2

≥ 0.
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Positive Definite Matrices, Kernels and Functions

Example
The cosine function gives rise to a positive definite kernel on R× R.

First we remember that for any x , z ∈ R

cos(x − z) =
1
2

(
ei(x−z) + e−i(x−z)

)
.

By our earlier example the kernel Ke(x , z) = ei(x−z)·t is positive
definite on Rd × Rd for any fixed t ∈ Rd .
Therefore, K1(x , z) = ei(x−z) and K2(x − z) = e−i(x−z) are positive
definite on R× R.
We will show below that the sum of two positive definite kernels is
positive definite. Thus,

K (x , z) = cos(x − z)

is positive definite.
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Spectral Theory of Hilbert–Schmidt Integral Operators

Hilbert–Schmidt Operators

Definition
Let H be a Hilbert space and T : H → H a bounded linear operator.
The operator T is called a Hilbert–Schmidt operator if there is an
orthonormal basis {en} in H such that

∞∑
n=1

‖T en‖2 <∞,

where ‖ · ‖ is the norm in H induced by its inner product 〈·, ·〉.

‖T ‖HS =
√∑∞

n=1 ‖T en‖2 is called the Hilbert–Schmidt norm of T .

Remark
If H is finite-dimensional, i.e., T is a matrix, then the HS-norm turns
into the Frobenius norm.
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Spectral Theory of Hilbert–Schmidt Integral Operators

Trace of a bounded linear operator

The trace of an N × N matrix T is defined as

trace T =
N∑

i=1

Tii =
N∑

i=1

eT
i Tei .

Analogously, for a bounded linear operator T we define

trace T =
∞∑

n=1

〈T en,en〉.

Sometimes the HS-norm is expressed in terms of the trace.
If T ∗ is the adjoint of T (so that 〈T f ,g〉 = 〈f , T ∗g〉) then

‖T ‖HS =
√

trace(T ∗T ).
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Spectral Theory of Hilbert–Schmidt Integral Operators

Hilbert–Schmidt integral operators and their kernels

Theorem

Let H = L2(Ω, ρ) be a Hilbert space on Ω ⊆ Rd and ρ a weight function
such that

∫
Ω ρ(x)dx = 1. Further, let the kernel K : (x , z) 7→ K (x , z) be

in L2(Ω× Ω, ρ× ρ), i.e., assume that∫
Ω

∫
Ω
|K (x , z)|2ρ(x)ρ(z)dxdz <∞.

Then the operator K defined by

(Kf )(x) =

∫
Ω

K (x , z)f (z)ρ(z)dz , f ∈ L2(Ω), (?)

is a Hilbert–Schmidt operator.
Conversely, every Hilbert–Schmidt operator on L2(Ω, ρ) is of the form
(?) for some unique kernel K : (x , z) 7→ K (x , z) in L2(Ω× Ω, ρ× ρ).

Proof.
[Bre10, Chapter 6]
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

The Hilbert–Schmidt eigenvalue problem on L2(Ω, ρ)

This eigenvalue problem can be viewed as a homogeneous Fredholm
integral equation of the second kind, i.e., for appropriate eigenvalues λ
and eigenfunctions ϕ we have∫

Ω
K (x , z)ϕ(z)ρ(z)dz = λϕ(x) ⇐⇒ (Kϕ)(x) = λϕ(x).

Using the ρ-weighted L2 inner product

〈f ,g〉L2(Ω,ρ) =

∫
Ω

f (x)g(x)ρ(x)dx ,

we can also write this as

〈K (x , ·), ϕ〉L2(Ω,ρ) = λϕ(x),

which is reminiscent of the reproducing property, but of course applies
only to the eigenfunctions of K.
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

L2-orthonormality of the eigenfunctions will play an important role in
Mercer’s theorem, i.e.,

〈ϕm, ϕn〉L2(Ω,ρ) =

∫
Ω
ϕm(x)ϕn(x)ρ(x)dx = δmn.

If we assume that K is a reproducing kernel (more details later), then
we can use its reproducing property to compute

〈Kf ,g〉HK (Ω) =

〈∫
Ω

K (·, z)f (z)ρ(z)dz ,g
〉
HK (Ω)

=

∫
Ω
〈K (·, z),g〉HK (Ω)f (z)ρ(z)dz

=

∫
Ω

g(z)f (z)ρ(z)dz

= 〈g, f 〉L2(Ω,ρ).

Thus K can be interpreted as the adjoint of the operator that
continuously embeds HK (Ω) into L2(Ω, ρ) (and so HK (Ω) ⊂ L2(Ω, ρ)).
Since K is self-adjoint we know that this embedding operator is K itself.
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〈ϕm, ϕn〉L2(Ω,ρ) =

∫
Ω
ϕm(x)ϕn(x)ρ(x)dx = δmn.

If we assume that K is a reproducing kernel (more details later), then
we can use its reproducing property to compute
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〈∫
Ω

K (·, z)f (z)ρ(z)dz ,g
〉
HK (Ω)

=

∫
Ω
〈K (·, z),g〉HK (Ω)f (z)ρ(z)dz

=

∫
Ω

g(z)f (z)ρ(z)dz

= 〈g, f 〉L2(Ω,ρ).

Thus K can be interpreted as the adjoint of the operator that
continuously embeds HK (Ω) into L2(Ω, ρ) (and so HK (Ω) ⊂ L2(Ω, ρ)).
Since K is self-adjoint we know that this embedding operator is K itself.
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

If we let
f = ϕm and g = ϕn

and employ the eigenvalue relation

Kϕm = λmϕm

we see that

〈Kf ,g〉HK (Ω) = 〈g, f 〉L2(Ω,ρ)

⇐⇒ 〈Kϕm, ϕn〉HK (Ω) = 〈ϕn, ϕm〉L2(Ω,ρ) = δnm,

so that

〈ϕm, ϕn〉HK (Ω) =

{
0, m 6= n,
1
λm
, m = n,

i.e., the eigenfunctions are also orthogonal in the RKHS HK (Ω).
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

The spectral theory is similar as in the familiar finite-dimensional case:
eigenvalues of a compact self-adjoint operator K are real
eigenfunctions associated with different eigenvalues are
orthogonal
The spectral theorem implies

Kf (x) =
∞∑

k=1

λn〈f , ϕn〉ϕn(x), f ∈ L2(Ω, ρ).

Remark
Since this identity holds for arbitrary L2 functions f , one might hope for
a series representation of the kernel K of K itself in terms of the
eigenvalues and eigenfunctions → Mercer’s theorem
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

Integral Eigenvalue Problem Example

Example (Brownian motion kernel)

Consider the domain Ω = [0,1], and let

K (x , z) = min(x , z) =

{
x , x ≤ z,
z, x > z.

Another way to write this kernel is

K (x , z) =
1
2

(x + z − |x − z|) =

{
1
2 (x + z − (z − x)) = x , x ≤ z,
1
2 (x + z − (x − z)) = z, x > z.
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

Example (cont.)
Start with the generic Hilbert–Schmidt integral eigenvalue problem

Kϕ = λϕ ⇐⇒
∫

Ω
K (x , z)ϕ(z)ρ(z)dz = λϕ(x)

and take Ω = [0,1], ρ(x) ≡ 1 and K (x , z) = min(x , z), i.e.,∫ 1

0
min(x , z)ϕ(z)dz = λϕ(x)

⇐⇒
∫ x

0
zϕ(z)dz +

∫ 1

x
xϕ(z)dz = λϕ(x)
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

Example (cont.)
Apply the differential operator d2

dx2 to the integral equation, i.e.,
d2

dx2

[∫ x

0
zϕ(z)dz +

∫ 1

x
xϕ(z)dz

]
=

d2

dx2 [λϕ(x)]

d2

dx2

[∫ x

0
zϕ(z)dz − x

∫ x

1
ϕ(z)dz

]
= λϕ′′(x)

d
dx

[
xϕ(x)−

∫ x

1
ϕ(z)dz − xϕ(x)

]
= λϕ′′(x)

− d
dx

[∫ x

1
ϕ(z)dz

]
= λϕ′′(x)

−ϕ(x) = λϕ′′(x) ⇐⇒ −ϕ′′(x) =
1
λ
ϕ(x)

Therefore, the eigenvalues of the integral operator K correspond to
reciprocals of eigenvalues of the differential operator L = − d2

dx2 . The
eigenfunctions are the same. We will solve this ODE eigenvalue
problem later.
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Spectral Theory of Hilbert–Schmidt Integral Operators The Hilbert–Schmidt eigenvalue problem

Differential and Integral Operators

Remark
Later it will be important to have an inverse relation between the
integral operator K and the differential operator L (as just
illustrated), which has K as its Green’s kernel:

All regular ordinary differential operators have compact inverse
integral operators and vice versa.
Moreover, if the differential operator is self-adjoint, so is the inverse
integral operator (see, e.g., [CH53, Chapter V], [Hoc73, Chapter 3],
[AG93, Appendix II]).
As a special case, Sturm–Liouville eigenvalue problems are inverse
to integral eigenvalue problems for compact integral operators.

As a consequence, we will see — as in the example — that both
operators have the same eigenfunctions, and that the eigenvalues
of the differential operator are reciprocals of the eigenvalues of the
integral operator.
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Hilbert–Schmidt, Mercer and Karhunen–Loève Expansions

Theorem (Mercer’s theorem [Mer09])

Let Ω ⊂ Rd , let ρ be a weight function and K ∈ L2(Ω× Ω, ρ× ρ) be a
kernel with positive integral operator

(Kf )(x) =

∫
Ω

K (x , z)f (z)ρ(z)dz .

Let ϕn ∈ L2(Ω, ρ), n = 1,2, . . . , be the L2(Ω, ρ) orthonormal
eigenfunctions of K associated with the eigenvalues λn > 0. Then the
following are true:
(1) The eigenvalues {λn}∞n=1 are absolutely summable, and so K has

finite trace.
(2) The kernel has a Mercer expansion

K (x , z) =
∞∑

n=1

λnϕn(x)ϕn(z)

which converges absolutely and uniformly on Ω.
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Hilbert–Schmidt, Mercer and Karhunen–Loève Expansions

Remark
Mercer’s theorem provides an infinite series representation (or an
eigenfunction expansion) of a positive definite kernel.

A transparent proof for a continuous kernel K in the case
Ω = [0,1] and ρ(z) = z can be found in [Hoc73, pg. 90].

A general proof is given in [Kön86, Chapter 3].

Mercer’s theorem guarantees uniform convergence of the series
whenever K is a positive operator. A related result by Schmidt
[Sch07] establishes only L2 convergence of the series, but for
arbitrary compact self-adjoint operators K.

A modern discussion of Mercer’s theorem with a number of
generalizations can be found in [SS12, Sun05].
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Hilbert–Schmidt, Mercer and Karhunen–Loève Expansions

The Karhunen-Loève expansion theorem can be viewed as a corollary
to Mercer’s theorem (but in the stochastic process setting).
It plays an important role in polynomial chaos approximations and
uncertainty quantification.

Theorem (Karhunen–Loève expansion)
A centered mean-square continuous stochastic process Y with
continuous covariance kernel K : Ω× Ω→ R has an orthogonal
expansion of the form

Yx (ω) =
∞∑

n=1

√
λnZn(ω)ϕn(x),

where λn > 0 are the eigenvalues and ϕn ∈ HK (Ω) are the associated
eigenfunctions of K, and Zn are “orthonormal” random variables

Zn(ω) =
1√
λn

∫
Ω

Yx (ω)ϕn(x)dx

such that E [ZmZn] = δmn.
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Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces (RKHSs)

Reproducing kernels were introduced by Aronszajn and Bergman in
the first half of the 20th century (see [Aro50, Ber50]).

Definition

Let Ω ⊆ Rd and let HK (Ω) be a real Hilbert space of functions
f : Ω→ R with inner product 〈·, ·〉HK (Ω). A kernel K : Ω× Ω→ R is
called reproducing kernel for HK (Ω) if
(1) K (·,x) ∈ HK (Ω) for all x ∈ Ω,
(2) 〈f ,K (·,x)〉HK (Ω) = f (x) for all f ∈ HK (Ω) and all x ∈ Ω.

The name reproducing kernel is motivated by the reproducing
property (2), which states that the reproducing kernel at x , K (·,x), is
the Riesz representer of function evaluation at x .
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Reproducing Kernel Hilbert Spaces

Properties of reproducing kernels

1 For all x , z ∈ Ω

〈K (·,x),K (·, z)〉HK (Ω) = K (x , z) = K (z ,x).

2 For every f ∈ HK (Ω) and x ∈ Ω we have

|f (x)| ≤
√

K (x ,x)‖f‖HK (Ω).

K (x ,x) = 〈K (·,x),K (·,x)〉HK (Ω) = ‖K (·,x)‖2HK (Ω) ≥ 0.

Remark
(2) shows that reproducing kernel Hilbert spaces are special “smooth”
Hilbert spaces in which point evaluation is bounded, i.e., continuous.
So, in an RKHS, values of functions at nearby points are closely related
to each other (since this is just what the concept of continuity implies).
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Reproducing Kernel Hilbert Spaces

Properties of reproducing kernels (cont.)

3 If HK is a reproducing kernel Hilbert space with reproducing
kernel K : Ω× Ω→ R, then K is positive definite.

4 Moreover, K is strictly positive definite if and only if the point
evaluation functionals δx are linearly independent in H∗K .

Remark
Here the space of bounded linear functionals on HK is known as its
dual, and denoted by H∗K .
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Reproducing Kernel Hilbert Spaces

Proof.
We analyze the quadratic form of K .

For distinct points x1, . . . ,xN and arbitrary c ∈ RN we have

N∑
i=1

N∑
j=1

cicjK (x i ,x j) =
N∑

i=1

N∑
j=1

cicj〈K (·,x i),K (·,x j)〉HK (Ω)

=

〈
N∑

i=1

ciK (·,x i),
N∑

j=1

cjK (·,x j)

〉
HK (Ω)

=

∥∥∥∥∥
N∑

i=1

ciK (·,x i)

∥∥∥∥∥
2

HK (Ω)

≥ 0.

Thus K is positive definite.
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Reproducing Kernel Hilbert Spaces

Proof (cont.).
To establish the second claim we assume K is not strictly positive
definite and show that the point evaluation functionals must be linearly
dependent.

If K is not strictly positive definite then there exist distinct points
x1, . . . ,xN and nonzero coefficients ci such that

N∑
i=1

N∑
j=1

cicjK (x i ,x j) = 0.

The same manipulation of the quadratic form as above therefore
implies

N∑
i=1

ciK (·,x i) = 0.
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Reproducing Kernel Hilbert Spaces

Proof (cont.).
Now we take the Hilbert space inner product with an arbitrary function
f ∈ HK and use the reproducing property of K to obtain

0 =

〈
f ,

N∑
i=1

ciK (·,x i)

〉
HK (Ω)

=
N∑

i=1

ci〈f ,K (·,x i)〉HK (Ω)

=
N∑

i=1

ci f (x i) =
N∑

i=1

ciδx i (f ).

This, however, implies the linear dependence of the point evaluation
functionals δx i (f ) = f (x i), i = 1, . . . ,N, since the coefficients ci were
assumed to be not all zero.
An analogous argument can be used to establish the converse. �
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Reproducing Kernel Hilbert Spaces

Remark
(3) and (4) provide one direction of the connection between strictly
positive definite kernels and reproducing kernels.

However, we are also interested in the other direction.

Since our kernel-based approximation methods generally use strictly
positive definite kernels, we want to know how to construct an
associated reproducing kernel Hilbert space. We provide that
discussion in Chapter 2 — Part 3.
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Reproducing Kernel Hilbert Spaces

Properties of reproducing kernels (cont.)

5 If K1 and K2 are reproducing kernels of spaces H1 and H2,
respectively, on the same domain Ω, then K = K1 + K2 is the
reproducing kernel of the direct sum H = H1 ⊕H2.
If H1 ∩H2 = {0}, then since H is a direct sum, H2 is the
orthogonal complement of H1 in H.

6 If K : Ω× Ω→ R is the reproducing kernel of H and Ω0 ⊂ Ω, then
K0, the restriction of K to Ω0 ×Ω0, is the reproducing kernel of H0,
a space whose elements are restrictions of elements of H to Ω0.

Remark
(5) can be generalized to non-negative linear combinations [SC08].
(6) can also be generalized and then shows that a complex-valued
kernel when restricted from a complex domain to a real subdomain is
not only a complex-valued kernel, but if the kernel is real-valued then it
is also a kernel in the purely real sense [SC08, Lemmas 4.3 & 4.4].
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Reproducing Kernel Hilbert Spaces

Properties of reproducing kernels (cont.)

7 If K1 and K2 are reproducing kernels of spaces H1 and H2 on
domains Ω1 and Ω2, respectively, then the tensor product kernel

K ((x1,x2), (z1, z2)) = K1(x1, z1)K2(x2, z2)

is the reproducing kernel of the tensor product space
H = H1 ⊗H2.

Remark
Tensor products are useful for ‘‘time-space” applications (possible PDE
project?), where K1 is a kernel in the spatial domain and K2 in time, or
to construct anisotropic kernels.
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Reproducing Kernel Hilbert Spaces

Examples

So far we have seen
K (x , z) = ‖x − z‖— norm (or distance) kernel

K (x , z) = e−ε
2‖x−z‖2

— Gaussian kernel
K (x , z) = ei(x−z)·t — special complex-valued kernel
K (x , z) = cos(x − z) — cosine kernel
K (x , z) = min(x , z) — Brownian motion kernel

We will give many more examples in Chapter 3.

Remark
Of these, only the Gaussian kernel is strictly positive definite. The last
three are positive definite (i.e., have a zero eigenvalue), and the first is
conditionally negative definite.
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Reproducing Kernel Hilbert Spaces

Remark
While the space L2(Ω) is a Hilbert space, it is not a reproducing kernel
Hilbert space.

Reasons:
L2(Ω) is not a space of functions, but of equivalence classes of
functions.
While the delta functional acts as its “reproducing kernel”, i.e.,∫

Ω
f (z)δ(x − z)dz = f (x),

it does not belong to L2(Ω). It belongs to the dual of the test
function space, and is therefore technically a distribution.

Remark
On the other hand, the Kronecker delta symbol is a reproducing kernel
for `2(R). However, `2(R) is not a Hilbert space of functions, but of
real-valued sequences.
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Feature Maps

The Role of Kernels in Machine Learning

Support vector machines are used in machine learning to
separate/classify data given in the input space.
Ideally, one wants to do this with a hyperplane. However, using a linear
separation works only for very limited cases.

Therefore, we want a nonlinear
separation.

It turns out that the setting of reproducing kernel Hilbert spaces
provides a perfect framework to accomplish this while still applying
linear techniques.
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Feature Maps

Feature Map

Lemma ([BTA04])

Consider a Hilbert space H with inner product 〈·, ·〉H and a map
Φ : Ω→ H. The kernel K : Ω× Ω→ R such that

K (x , z) = 〈Φ(x),Φ(z)〉H

is a positive definite kernel. The map Φ is called a feature map.

Thus, a kernel is just an inner product. The canonical map is given by
Φ(x) = K (·,x), and we saw earlier that

〈K (·,x),K (·, z)〉HK (Ω) = K (x , z).

A consequence of this lemma is the characterization of all possible
reproducing kernels on Ω× Ω in terms of maps into the sequence
space `2(Ω).
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Feature Maps

Theorem
A function K defined on Ω× Ω is a reproducing kernel if and only if
there exists a mapping T : Ω→ `2(A), where A is an index set, such
that for all x , z ∈ Ω

K (x , z) = 〈Tx ,Tz〉`2(A) =
∑
α∈A

(Tx )α(Tz)α.

Proof.
[BTA04, Theorem 4].

This theorem is both
a (non-unique) factorization theorem for the kernel K reminiscent
of the spectral theorem for symmetric matrices,
a way to construct reproducing kernels starting from a map T .

Given a feature map Φ : Ω→ H, the map T can be viewed as the
composition of Φ with an isometry that maps H to `2(Ω).
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Feature Maps

Example (Brownian motion kernel)

Take Ω = [0,1], H = `2(N), and

Tx = (
√
λ1ϕ1(x),

√
λ2ϕ2(x), . . .),

where λn = 4
(2n−1)2π2 and ϕn(x) =

√
2 sin

(
(2n − 1)πx

2

)
are eigenvalues

and eigenfunctions of the Brownian motion kernel K (x , z) = min(x , z).

Then

K (x , z) = 〈Tx ,Tz〉`2(N)

=
∞∑

n=1

8
(2n − 1)2π2 sin

(
(2n − 1)

πx
2

)
sin
(

(2n − 1)
πz
2

)
= min(x , z).

This is just the Mercer series for the Brownian motion kernel.

Closed form expression for the series is HW.
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Feature Maps

Remark
One can find the eigenvalues and eigenfunctions of the Brownian
motion kernel

starting from the eigenvalue problem for the integral operator K
with kernel K (x , z) = min(x , z),
transforming it to its “inverse” differential eigenvalue problem,
solving the resulting Sturm–Liouville eigenvalue problem.

We will discuss this connection later.
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Feature Maps

Example (Brownian motion kernel, Take 2)
Alternatively, we consider Tx = 1[0,x ], with 1[a,b] the indicator function
of [a,b], i.e.,

1[a,b](x) =

{
1 if x ∈ [a,b]

0 otherwise.

Also take H = L2([0,1]), which is isomorphic to `2(N) via identification
of an f ∈ H with its generalized Fourier coefficient. This gives us

K (x , z) = 〈Tx ,Tz〉L2([0,1])

=

∫ 1

0
1[0,x ](t)1[0,z](t)dt

=

∫ min(x ,z)

0
dt = min(x , z).
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Feature Maps

Example (Brownian motion kernel, Take 3)

Take the canonical feature map Tx = K (·, x) = min(·, x), and
H = HK = {f ∈ H1([0,1]), f (0) = 0} the RKHS with inner product
〈f ,g〉H =

∫ 1
0 f ′(t)g′(t)dt .

Then we have

〈Tx ,Tz〉H =

∫ 1

0

d
dt

min(t , x)
d
dt

min(t , z)dt

=

∫ 1

0
1[0,x ](t)1[0,z](t)dt = min(x , z).

Remark
Note that we also know that 〈K (·, x),K (·, z)〉HK = K (x , z), i.e., without
having to integrate,∫ 1

0

d
dt

min(t , x)
d
dt

min(t , z)dt = min(x , z).
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Feature Maps

The “Kernel Trick” in Machine Learning

The canonical feature map, i.e., Tx : Ω→ HK such that

x 7→ Tx = K (·,x)

transforms a given problem from the input space Ω (think all sorts of
stuff here) to the Hilbert space HK (think “nice” math with mostly linear
algorithms) via the reproducing kernel K .

Since Ω can be very general (e.g., texts, images, medical data, etc.)
the feature map is at the heart of applications of kernel methods to
problems in machine learning and its application is known there as the
kernel trick (see, e.g., [SS02]).

In essence, the feature map allows us to compute with all sorts of
quantities that are not at all numerical by turning, e.g., a Shakespeare
sonnet x into a function Tx that expresses — via the kernel K — the
similarity of x to all other texts in the collection Ω.
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Feature Maps

Remark
A particularly attractive feature of the kernel trick is the fact that the
actual (nonlinear) feature map need not be known; simply working with
the kernel K is sufficient and easy.

In fact, all the techniques for determining optimal classifiers via
structural risk minimization are essentially the same as our techniques
for finding optimal kernel-based approximants.

While we have not investigated this yet, the kernel-based solution to
the scattered data interpolation problem is such an optimal
approximant. That’s one reason that problem is so fundamental.
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