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Radial Kernels Isotropic radial kernels

Isotropic Radial Kernels

Of the form

K (x , z) = κ(‖x − z‖), x , z ∈ Rd , κ : R+
0 → R,

Example
Powered exponential kernel (plotted with β = 0.5,1,2, ε = 3)

κ(r) = e−(εr)
β
, β ∈ (0,2]
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Radial Kernels Isotropic radial kernels

The family of powered exponential kernels is common in the
statistics and machine learning literature since the two parameters
ε and β provide flexibility with respect to scale and smoothness.

However, the powered exponential kernel is smooth only for
β = 2, i.e., the Gaussian.

They are positive definite on Rd for all d .

The case β = 1 is known as the Ornstein–Uhlenbeck kernel, and
also corresponds to the Matérn kernel with β = d+1

2 (see next).

The Gaussian is sometimes referred to as squared exponential in
the machine learning or statistics literature.
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Radial Kernels Isotropic radial kernels

Example
Matérn (or Sobolev) kernel (plotted with d = 2, ε = 3)

κ(εr) =
Kd/2−β(εr)

(εr)d/2−β , β >
d
2

Kν : modified Bessel functions of the second kind of order ν
κ(εr) = (1 + εr)e−εr , (when β = (d + 3)/2)

κ(εr) = (1 + εr +
1
3

(εr)2)e−εr , (when β = (d + 5)/2)

κ(εr) = (1 + εr +
2
5

(εr)2 +
1
15

(εr)3)e−εr , (when β = (d + 7)/2)
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Radial Kernels Isotropic radial kernels

Matérn kernels are popular in the statistics and approximation
theory communities.

They are fundamental solutions of the d-dimensional iterated
modified Helmholtz operator in Euclidean coordinates, i.e.,

D =
(
−∇2 + ε2I

)β
,

with I the identity operator.

The parameters ε and β specify scale and smoothness of the
kernel, respectively.

Matérn kernels generate classical Sobolev spaces Hβ(Rd ) as
their RKHSs.

They are positive definite on Rd , but only when β > d
2 .
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Radial Kernels Isotropic radial kernels

Example
(Inverse) Multiquadric kernels (plotted with ε = 3)

κ(εr) = (1 + ε2r2)β, β ∈ R \ N0

β < 0: inverse MQs (positive definite)
β > 0: MQs (conditionally positive definite of different orders)

κ(εr) =
1√

1 + ε2r2
, (IMQ)

κ(εr) =
1

1 + ε2r2 , (IQ or Cauchy)

κ(εr) =
√

1 + ε2r2, (MQ)
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Radial Kernels Isotropic radial kernels

Popular mostly in approximation theory and engineering
applications.

The IQ kernel is equivalent to the rational quadratic kernel (see,
e.g., [Gen02]) since

1
1 + ε2r2 = 1− r2

θ + r2

with θ = 1/ε2. This kernel is sometimes recommended as a
computationally cheaper alternative to the Gaussian kernel in the
machine learning literature.

(Inverse) MQ kernels are (conditionally) positive definite on Rd for
all d .
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Radial Kernels Isotropic radial kernels

Oscillatory kernels (plotted with ε = 10, d = 2)

κ(εr) =
Jd/2−1(εr)

(εr)d/2−1 , (Poisson or Bessel)

κ(εr) =
sin(εr)

εr
, (wave, Poisson with d = 3)

Jν : Bessel functions of the first kind of order ν

Bessel kernels were introduced in [FLW06]. The wave kernel sometimes
appears in machine learning (see, e.g., [Gen02]).
They are positive definite only in dimension ≤ d .
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Radial Kernels Anisotropic radial kernels

Anisotropic Radial Kernels

Any isotropic radial kernel can be turned into an anisotropic radial
kernel by using a weighted 2-norm instead of an unweighted one.

Example (Anisotropic Gaussian)

K (x , z) = e−(x−z)T E(x−z),

with E a symmetric positive definite matrix.
If E = ε2Id , with Id a d × d identity matrix, then the kernel is isotropic.
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Radial Kernels Anisotropic radial kernels

Anisotropic kernels are not common in the approximation theory
literature. They have been

analyzed, e.g., in [Bax06, BDL10] and
applied, e.g., in [CBM+03, CLMM06].

But they are very popular in the literature on information-based
complexity, e.g., [NW08].

[FHW12a, FHW12b] used E = diag(ε2
1, . . . , ε

2
d ), a diagonal matrix

with dimension-dependent shape parameters, to avoid the curse
of dimensionality and obtain dimension-independent error bounds.
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Radial Kernels Anisotropic radial kernels

Remark
Some authors have applied a different scale to each basis function in
the RBF interpolation expansion resulting in, e.g.,

s(x) =
N∑

j=1

cje
−ε2

j ‖x−x j‖2
, x ∈ Rd .

Now the interpolant is no longer generated by a single kernel and the
theoretical foundation must be reconsidered.

The most promising paper to address this approach — especially on a
theoretical level — is [BLRS14], where the problem is tackled by
embedding a d-dimensional interpolation problem into Rd+1 so that the
additional dimension houses the locally varying shape parameter. In
Rd+1 one then works with a “standard” kernel with fixed global shape.
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Translation Invariant Kernels

Translation Invariant Kernels

A kernel is called translation invariant (or stationary in the statistics
literature) if K (x + h, z + h) = K (x , z) for any h ∈ Rd . This means
that K is a function of the difference of x and z , i.e., it’s of the form

K (x , z) = K̃ (x − z).

Example
Cosine kernel

K (x , z) = cos(x − z)
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Translation Invariant Kernels

In the literature on integral equations, translation invariant kernels
are often called convolution kernels.
Discretized convolution kernels (i.e., matrices) find applications in
image processing.
The Fourier transform is the ideal tool to analyze translation
invariant kernels. This results in, e.g., Bochner’s theorem.
Any nonnegative (infinite) linear combination of kernels of the form
Kn(x , z) = cos(n(x − z)) is positive definite and translation
invariant on R.

E.g., periodic univariate splines can be represented with the kernel

K (x , z) =
∞∑

n=1

2
(2nπ)2β cos (2nπ(x − z))

whose RKHS is Hβ
per(0,1) (see [Wah90, Chapter 2]).

To get a kernel in higher dimensions we can take a tensor product
of one-dimensional translation invariant kernels, e.g.,

K (x , z) =
d∏
`=1

∞∑
n=0

αn,`Kn(x`, z`), αn,` ≥ 0.
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Series Kernels

Power Series Kernels
Of the form [Zwi08]:

K (x , z) =
∑
α∈Nd

0

wα
xα

α!

zα

α!
,

∑
α∈Nd

0

wα

α!2 <∞,

Example (Exponential kernel)

K (x , z) = ex ·z =
∞∑

n=0

1
n!

(x · z)n =
∑
α∈Zd

1
|α|!

(
|α|
α

)
xαzα
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Series Kernels

Example (Taylor series kernels [ZS13])

K (x , z) =
1

(1− zx)2 =
∞∑

n=0

(n + 1)znxn, (Bergman kernel)

K (x , z) =
1

1− zx
=
∞∑

n=0

znxn, (Hardy or Szegő kernel)

K (x , z) = − ln(1− zx)

zx
=
∞∑

n=0

1
n + 1

znxn, (Dirichlet kernel)

Here x , z ∈ D, the open complex unit disk, i.e., D = {x ∈ C : |x | < 1}.
Native spaces:

Bergman space B2 = L2(D), the space of analytic functions in D
that are square summable with respect to planar Lebesgue
measure.
Hardy space H2, the space of analytic functions in D with square
summable Taylor coefficients. H2 ⊂ B2.
Dirichlet space D, the space of analytic functions in D whose
derivatives are in B2.
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Series Kernels

Other examples of series kernels are
Fourier-type series such as the periodic spline kernels,

K (x , z) =
∞∑

n=1

2
(2nπ)2β cos (2nπ(x − z)) .

Kernels specified via their Mercer/Hilbert–Schmidt series such as

K (x , z) =
∞∑

n=1

8
(2n − 1)2π2 sin

(
(2n − 1)

πx
2

)
sin
(

(2n − 1)
πz
2

)
= min(x , z).
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General Anisotropic Kernels Dot product kernels

Dot Product Kernels

These kernels depend on x and z only through their dot product. They
are also known as ridge functions (or zonal kernels if x , z ∈ S2).

Zonal kernels are of the form

K (x , z) = κ̃(x · z), x , z ∈ S2, κ̃ : [−1,1]→ R

Example (Spherical Gaussian kernel)

K (x , z) = κ̃(x · z) = e−2ε(1−x ·z), κ̃(t) = e−2ε(1−t)
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General Anisotropic Kernels Dot product kernels

Example (Polynomial kernel)

K (x , z) =
(
ε+ xT z

)β
, x , z ∈ Rd

Plays an important role in machine learning.
It is positive definite for all ε ≥ 0 and β ∈ N0.
The special case ε = 0 and β = 1 is known as the linear kernel.

Example (Sigmoid kernel)

K (x , z) = tanh(1 + εxT z), x , z ∈ Rd

Also popular in machine learning.
But this kernel is not positive definite for any choice of ε.
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General Anisotropic Kernels Dot product kernels

Remark
Ridge functions are discussed, e.g., in [CL99, Chapter 22] or
[Pin13].
They first arose in the context of computerized tomography [LS75].
Zonal functions on spheres Sd in Rd+1 can be analyzed using
Mercer series.

The expansion can be written in terms of Legendre or Gegenbauer
polynomials (and ultimately spherical harmonics).
This was done in, e.g., [Men99, RS96, XC92] (see also [SS02,
Section 4.6]).
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General Anisotropic Kernels Tensor product kernels

Tensor Product Kernels

Weighted tensor products of various univariate kernels also produce
general anisotropic kernels.

Example (Product of the Brownian motion kernel)

K (x , z) =
d∏
`=1

(1 + ε` min(x`, z`)) , ε1 ≥ ε2 ≥ . . . ≥ εd ≥ 0,

where x = (x1, . . . , xd )T ∈ Rd .
Neither radially nor translation invariant.
Positive definite in [0,1]d .

Remark
Such kernels play an important role in the theory of Monte-Carlo and
quasi Monte-Carlo methods, where they are used to avoid the curse of
dimensionality.
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General Anisotropic Kernels Tensor product kernels

Remark
A related kernel is the kernel for fractional Brownian motion (see, e.g.,
[BTA04])

K (x , z) =
1
2

(
‖x‖2β + ‖z‖2β − ‖x − z‖2β

)
, x , z ∈ Rd .

However, this kernel is not a tensor product kernel.
For β = 1

2 and d = 1 this simplifies to the standard Brownian motion
kernel.

Remark
The linear covariance kernel is actually a radial kernel even though it is
obtained by adding the kernels of two independent Brownian motions:

K (x , z) = min(x , z) + min(1− x ,1− z)

= min(x , z) + 1−max(x , z)

= 1− |x − z|.
We can also view this as a positive definite modification of the
(conditionally negative definite) norm kernel.
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General Anisotropic Kernels Tensor product kernels

Example
Brownian bridge product kernel

K (x , z) =
d∏
`=1

(min(x`, z`)− x`z`)

Neither radially nor translation invariant.
Positive definite in [0,1]d .
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Compactly Supported (Radial) Kernels

Compactly Supported (Radial) Kernels

One of the benefits of using compactly supported kernels is that —
with an appropriate scaling — they lead to sparse kernel matrices.

We concentrate on the Wendland family.

Other families have been introduced by Buhmann, Gneiting or Wu
(see [Fas07, Chapter 11]), as well as Johnson [Joh12].

We will not do much with compactly supported kernels in this
class.

These kernels are discussed in detail in [Fas07, Wen05].

Notation:
We use r = ‖x − z‖ to indicate we are working with radial kernels,
i.e., K (x , z) = κ(‖x − z‖).
Below, .= denotes equality up to a constant factor.
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Compactly Supported (Radial) Kernels

Original Wendland kernels [Wen95]

The family of kernels κd ,k includes

κd,0
.

= (1− r)`+

κd,1
.

= (1− r)`+1
+ ((`+ 1)r + 1)

κd,2
.

= (1− r)`+2
+

(
`2 + 4`+ 3

3
r2 + (`+ 2)r + 1

)
κd,3

.
= (1− r)`+3

+

(
`3 + 9`2 + 23`+ 15

15
r3 +

6`2 + 36`+ 45
15

r2 + (`+ 3)r + 1
)

d : Kd ,k strictly positive definite on Rd × Rd

k : smoothness index, i.e., κd ,k ∈ C2k (R)

`: auxiliary variable with value ` = bd
2 + k + 1c

Associated reproducing kernel Hilbert space:

HKd,k (Ω) = Hk+(d+1)/2(Rd ) (classical Sobolev space)
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Compactly Supported (Radial) Kernels

Remark

The construction of [Wen95] with RKHS Hk+(d+1)/2(Rd ) does not
allow for Sobolev spaces of integer order when d is even.

This, it appears that some functions are missing.

This gap was filled when Schaback [Sch11] derived the so-called
“missing” Wendland functions (see also [Hub12, CH14]).
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Compactly Supported (Radial) Kernels

“Missing” Wendland kernels

Typical examples of the family κ`,k are (see [CSW14, Hub12, Sch11])

κ2, 1
2
(r)

.
= (1 + 2r2)

√
1− r2 + 3r2 log

(
r

1 +
√

1− r2

)
κ3, 3

2
(r)

.
=

(
1− 7r2 − 81

4
r4
)√

1− r2 − 15
4

r4(6 + r2) log
(

r
1 +
√

1− r2

)
These formulas hold for r ∈ [0,1] and the functions are zero otherwise.

`: Sobolev smoothness, as before ` = bd
2 + k + 1c

k : half-integer, connected to smoothness of κ`,k
d : space dimension, but K2, 1

2
and K3, 3

2
both strictly positive

definite on R2 × R2

Associated reproducing kernel Hilbert space:

HK
2, 1

2
(Ω) = H2(R2), HK

3, 3
2

(Ω) = H3(R2)
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Compactly Supported (Radial) Kernels

“Original” Wendland kernels: κ3,1 (left, C2) and κ3,2 (right, C4)

“Missing” Wendland kernels: κ2,1/2 (left, C1) and κ3,3/2 (right, C3)
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Compactly Supported (Radial) Kernels

Remark
Schaback [Sch11] derived the “missing” Wendland functions using
fractional derivatives.

In contrast to the “original” Wendland functions, these new
functions are no longer polynomials on their support.

Hubbert [Hub12] gives closed form representations of both the
“original” and the “missing” Wendland functions in terms of
associated Legendre functions (of the first and second kinds).

Chernih [CSW14] showed that, as their smoothness increases, all
(appropriately normalized) Wendland functions converge to
Gaussians.
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Multiscale Kernels

General multiscale kernels [Opf06] are of the form

K (x , z) =
∑
j≥0

wjKj(x , z) =
∑
j≥0

wj
∑

k∈Zd

φ(2jx − k)φ(2jz − k),

with wj > 0 and φ a compactly supported (possibly refinable) function
whose shifts (at level j) produces the single-scale kernel Kj .

Example (Multiscale piecewise linear kernel)

K (x , z) =
3∑

j=0

2−2j
∑
k∈Z2

φ(2jx − k)ϕ(2jz − k)

with φ(x) =
∏d
`=1(1− x`)+
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Multiscale Kernels

[Opf06] described the RKHSs of these kernels.
He used them in wavelet-like applications such as image
compression.
Very little work has been performed otherwise with these kernels.
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Space-Time Kernels

Space-Time Kernels

Many problems have both a spatial as well as a temporal
component, so the idea to construct and use space-time kernel is
natural.

The most common approach is to use a tensor product kernel that
factors into a spatial and a temporal component.

But sometimes the data does not seem to allow such separability
since it contains spatio-temporal interactions which a separable
model would not be able to pick up on (see, e.g., [CH99, GGG07]).
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Space-Time Kernels

In the RBF literature these kernels are rare.

Li & Mao [LM11] solved an ill-posed inverse heat conduction problem
using an anisotropic IMQ kernel

K ((x , s), (z , t)) =
1√

1 + ε2‖x − z‖2 + γ2(s − t)2
, x , z ∈ Rd , s, t ∈ R,

where d = 1,2.

The spatial coordinates are augmented by an additional time
coordinate, but note the use of two different scale parameters.

fasshauer@iit.edu MATH 590 – Chapter 3 40

http://math.iit.edu/~fass


Space-Time Kernels

In the statistics literature space-time kernels are more common.

Stein uses kernels that are translation invariant in both space and
time, i.e., of the form K ((x , s), (z , t)) = K̃ (x − z , s− t). He derives

generalizations of Matérn kernels [Ste05], and
power law covariance functions (which generalize polyharmonic
splines) [Ste13].

Porcu [PMB07] allows for spatial anisotropy with temporal
translation invariance leading to kernels such as, e.g.,

K ((x , s), (z , t)) =
exp

(
− |s−t |2

Kspace(x ,z)

)
√

Kspace(x , z)
, x , z ∈ Rd , s, t ∈ R,

where Kspace(x , z) = log
(

2 + 1
2

(
2ε(x + z)− 1+ε(x+z)

1+ε(x−z)

))
.
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Learned Kernels

Learned Kernels

In the machine learning literature one finds kernels that are learned
directly from the data.

Micchelli and Pontil [MP05] suggest learning the kernel via
regularization techniques.

They start with a — possibly uncountable — set K of kernels and
then determine the optimal kernel for a given set of N pieces of
data {(x i , yi ) : i = 1, . . . ,N} as a finite convex combination of
kernels from K.
The set K is assumed to be compact and convex, and then the
optimal learned kernel is obtained by solving a convex optimization
problem.
Once the kernel K has been found, the kernel approximation is
obtained by solving a finite-dimensional convex optimization
problem.

Lanckriet [LCB+04] suggests that the kernel matrix (instead of the
actual kernel) can be learned from the given data by employing
semi-definite programming techniques.
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Designer Kernels

Designer Kernels

Some ideas to obtain specially designed custom kernels (or designer
kernels):

Use the basic properties of kernels discussed in Chapter 2, such
as adding, multiplying and taking positive linear combinations of
kernels.
Use ideas such as composition with multiply or completely
monotone functions (see [Fas07]) to construct new radial kernels.
Build a kernel via Mercer’s theorem by combining an appropriate
sequence of “eigenvalues” λn with a given set of orthogonal
functions.

This may mean that the closed form of the kernel may not be known
in this case.
Good example: iterated Brownian bridge kernels (see later).
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