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Introduction

Over the last few lectures you learned about native spaces
(reproducing kernel Hilbert spaces associated with the kernel K ).
There are several issues with this standard theory:

We often don’t really understand what these spaces are. In
particular, it would be nice to have a more “intuitive” definition for
them. Can we say what kind of functions lie in these spaces?

What is their smoothness (like for classical Sobolev spaces)?
On what sort of length scale do these functions exist (not part of
standard Sobolev space theory)?

Standard error bounds are often sub-optimal, and proofs of
improved results are not elegant (more later).
The role and choice of the shape parameter is not fully
understood.
Ultimately: Which kernel should I use to solve my problem?

By establishing a connection between positive definite reproducing
kernels and Green’s kernels we can understand some of these issues
better. Note that some of these issues are still ongoing research.
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Green’s Kernels

We now go over some classical material related to Green’s functions.

There are many references for this material such as the books on

Applied/Functional Analysis [Che01, Fol92, HN01]

Mathematical Physics [CH53]

Boundary Value Problems [Duf01, Sta79]

and even Statistics [RS05, Chapters 20 and 21]
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Green’s Kernels Green’s kernels defined

Green’s kernels defined

Definition
A Green’s kernel G of the linear (ordinary or partial) differential
operator L on the domain Ω ⊆ Rd is defined as the solution of

LG(x , z) = δ(x − z), z ∈ Ω fixed.

Here δ(x − z) is the Dirac delta functional evaluated at x − z , i.e.,

δ(x − z) = 0 for x 6= z and
∫

Ω
δ(x)dx = 1.

In particular, δ acts as a point evaluator for any f ∈ L2(Ω), i.e.,∫
Ω

f (z)δ(x − z)dz = f (x).
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Green’s Kernels Green’s kernels defined

Remark
Homogeneous boundary or decay conditions are usually added to
make the Green’s kernel unique, i.e.,

G(x , z)|x∈∂Ω = 0 or lim
‖x‖→∞

G(x , z) = 0.

The solution of LG(x , z) = δ(x − z) without boundary conditions
is called either a fundamental solution of Lu = 0 or a full-space
Green’s kernel of L.

In the engineering literature Green’s kernels are also known as
impulse response (in signal processing),
influence function (in mechanical engineering).
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Green’s Kernels Green’s kernels defined

G is usually used to solve boundary value problems since

u(x) =

∫
Ω

G(x , z)f (z)dz

satisfies Lu = f with the appropriate boundary or decay conditions:

Lu(x) = L
∫

Ω
G(x , z)f (z)dz =

∫
Ω
LG(x , z)︸ ︷︷ ︸

=δ(x−z)

f (z)dz = f (x).

The integral operator

Gf (x) =

∫
Ω

G(x , z)f (z)dz

can be regarded as the inverse of the differential operator L, i.e.,

Lu = f ⇐⇒ u = Gf .

fasshauer@iit.edu MATH 590 9

http://math.iit.edu/~fass


Green’s Kernels Green’s kernels defined

Remark
The inverse is guaranteed to exist if and only if the homogeneous
equation Lu = 0 has only the trivial solution u = 0.

Our Hilbert–Schmidt integral operators are compact, but their
inverse differential operators are unbounded whenever HG has an
infinite-dimensional orthonormal basis.
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Green’s Kernels Eigenvalue problems

Eigenvalue problems

Consider the differential eigenvalue problem

Lϕ(x) = µρ(x)ϕ(x), ρ(x) > 0, µ 6= 0,

with eigenvalues µn, eigenfunctions ϕn, n = 1,2, . . ., weight function ρ,
and assume G is the Green’s kernel of L.
Now solve this equation in terms of G, i.e., solve Lϕ = f with
f (z) = µρ(z)ϕ(z):

ϕ(x) =

∫
Ω

G(x , z)f (z)dz ,

=

∫
Ω

G(x , z)µρ(z)ϕ(z)dz .

This looks just like our Hilbert–Schmidt eigenvalue problem but — as
we saw in the min-kernel example — with eigenvalues λn = 1

µn
:

λϕ(x) =

∫
Ω

G(x , z)ϕ(z)ρ(z)dz ⇐⇒ Gϕ(x) = λϕ(x).
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Green’s Kernels Computing Green’s kernels

Computing Green’s Kernels

We don’t want to use Green’s kernels to solve differential equations.
We want to recognize them as positive definite reproducing kernels
and use this connection

to create new reproducing kernels,
and to gain new insights about our work by drawing from known
results from harmonic analysis.

Being able to compute a specific Green’s kernel depends heavily on
the differential operator L,
the space dimension d ,
the shape of the domain Ω,
and the boundary conditions.
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Green’s Kernels Computing Green’s kernels

Example (1D ODE Boundary Value Problem)

Show that the Green’s kernel of −u′′(x) = f (x) with u(0) = u(1) = 0 is
the Brownian bridge kernel G(x , z) = min(x , z)− xz.

Solution
From the definition of the Green’s kernel one can derive that
LG(x , z) = 0 for x 6= z, z fixed,
G(x , z)|x∈{0,1} satisfies homogeneous BCs,
G is continuous at x = z,
and dG

dx has a jump discontinuity at x = z of the form

lim
x→z−

d
dx

G(x , z) = lim
x→z+

d
dx

G(x , z) + 1.

Therefore G is a piecewise defined function, i.e.,

G(x , z) =

{
G−(x , z), x < z,
G+(x , z), x > z.
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Green’s Kernels Computing Green’s kernels

Since L = − d2

dx2 it is clear that the kernel is a piecewise linear
polynomial which we express as

G(x , z) =

{
a0 + a1x , x < z,
b0 + b1(x − 1), x > z.

Let’s consider the section x < z and the left BC:

0 BC
= G(0, z) = a0 =⇒ a0 = 0.

Similarly, for x > z the right BC yields G(1, z) = b0 = 0.

Thus, so far

G(x , z) =

{
a1x , x < z,
b1(x − 1), x > z.
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Green’s Kernels Computing Green’s kernels

To determine the remaining coefficients a1 and b1 we use the interface
conditions at x = z.
Continuity of G implies

lim
x→z−

G(x , z) = lim
x→z+

G(x , z)

so that
a1z = b1(z − 1) ⇐⇒ a1 = b1

z − 1
z

.

Using the jump condition for the first derivative,

lim
x→z−

d
dx

G(x , z) = lim
x→z+

d
dx

G(x , z) + 1,

we get

a1 = b1 + 1 ⇐⇒ b1
z − 1

z
= b1 + 1 ⇐⇒ b1 = −z.
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Green’s Kernels Computing Green’s kernels

Putting everything together, we have a0 = b0 = 0, b1 = −z and
a1 = 1− z to that the Green’s kernel

G(x , z) =

{
a0 + a1x , x < z,
b0 + b1(x − 1), x > z,

turns out to be

G(x , z) =

{
(1− z)x , x < z,
−z(x − 1), x > z,

or
G(x , z) = min(x , z)− xz.

Remark
Note that G is symmetric. This will be true whenever L is a self-adjoint
differential operator.
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Green’s Kernels Computing Green’s kernels
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Figure: Plots of multiple copies of the Brownian bridge kernel, centered at
z = j

10 , j = 1, . . . ,9.
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Green’s Kernels Computing Green’s kernels

Multivariate Brownian bridge kernel

As we saw in Chapter 3, it is straightforward to extend the 1D kernel G
to a kernel in higher dimensions using a tensor product approach. In
this case, the domain will be the unit cube [0,1]d .
The kernel is then given by

K (x ,y) =
d∏
`=1

G(x`, y`) =
d∏
`=1

(min{x`, y`} − x`y`) ,

where x = (x1, . . . , xd ) and y = (y1, . . . , yd ).
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Green’s Kernels Computing Green’s kernels

Iterated Brownian Bridge Kernels

Using the differential operator

L =

(
− d2

dx2 + ε2I

)β
, β ∈ N, ε ≥ 0

and boundary conditions

G(0, z) = G′′(0, z) = . . . = G(2β−2)(0, z),

G(1, z) = G′′(1, z) = . . . = G(2β−2)(1, z).

one obtains the so-called iterated Brownian bridge kernels as Green’s
kernels of LG(x , z) = δ(x − z).

Above, we saw the example for β = 1 and ε = 0.

For β = 2, ε = 0 one obtains natural cubic interpolating splines.
We will discuss this family of kernels in Chapter 6.
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Sturm-Liouville Theory

Standard 1D SL-Theory [Fol92, Hab13]

Consider the ODE
d

dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + µσ(x)ϕ(x) = 0, x ∈ (a,b) (1)

with boundary conditions

γ1ϕ(a) + γ2ϕ
′(a) = 0

(2)
γ3ϕ(b) + γ4ϕ

′(b) = 0

where the γi are real numbers.

Definition
If p, q, σ and p′ in (1) are real-valued and continuous on [a,b] and if
p(x) and σ(x) are positive for all x in [a,b], then (1) with (2) is called a
regular Sturm-Liouville problem.

Remark
Note that the BCs don’t capture those of the periodic or singular type.

fasshauer@iit.edu MATH 590 21

http://math.iit.edu/~fass


Sturm-Liouville Theory

Facts for regular 1D SL problems

1 All eigenvalues are real.
2 There are countably many eigenvalues which can be strictly

ordered: µ1 < µ2 < µ3 < . . .
3 Every eigenvalue µn has an associated eigenfunction ϕn which is

unique up to a constant factor. Moreover, ϕn has exactly n − 1
zeros in the open interval (a,b).

4 The set of eigenfunctions, {ϕn}∞n=1, is complete, i.e., any
piecewise smooth function f can be represented by a generalized
Fourier series

f (x) ∼
∞∑

n=1

anϕn(x)

with generalized Fourier coefficients

an =

∫ b
a f (x)ϕn(x)σ(x) dx∫ b

a ϕ
2
n(x)σ(x) dx

, n = 1,2,3, . . .
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Sturm-Liouville Theory

5 The eigenfunctions associated with different eigenvalues are
orthogonal on (a,b) with respect to the weight σ, i.e.,∫ b

a
ϕn(x)ϕm(x)σ(x) dx = 0 provided λn 6= λm.

6 The Rayleigh quotient is given by

µ =
− p(x)ϕ(x)ϕ′(x)|ba +

∫ b
a

(
p(x) [ϕ′(x)]2 − q(x)ϕ2(x)

)
dx∫ b

a ϕ
2(x)σ(x) dx

7 Truncating the Fourier series yields mean-squared best
approximation:

an = arg min
αn

∥∥∥∥∥f −
M∑

n=1

αnϕn

∥∥∥∥∥
2
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Eigenfunction Expansions

Green’s kernels and eigenfunction expansions
We now study how the eigenfunctions of linear self-adjoint differential
operators, such as the SL operator, are related to Green’s kernels.
Starting from the ODE

(LG)(x , z) = δ(x − z), z fixed,

with regular SL BCs we consider the SL ODE eigenvalue problem

(Lϕ)(x) = µσ(x)ϕ(x) (3)

with the same BCs.
The choice of the weight σ is free. Once σ is chosen we have unique
eigenvalues and eigenfunctions and we write

G(x , z) =
∞∑

n=1

an(z)ϕn(x). (4)

To find an(z) we apply L and use linearity:

δ(x − z) = (LG)(x , z) =
∞∑

n=1

an(z)(Lϕn)(x)
(3)
=
∞∑

n=1

an(z)µnσ(x)ϕn(x)
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Eigenfunction Expansions

Next we multiply

δ(x − z) =
∞∑

n=1

an(z)µnσ(x)ϕn(x)

by ϕm(x) and integrate from a to b:∫ b

a
δ(x − z)ϕm(x)dx =

∞∑
n=1

an(z)µn

∫ b

a
σ(x)ϕn(x)ϕm(x)dx

Def δ, ϕ orthog
=⇒ ϕm(z) = am(z)µm

∫ b

a
σ(x)ϕ2

m(x)dx

and so
an(z) =

ϕn(z)

µn
∫ b

a ϕ
2
n(x)σ(x)dx

Putting this back into the eigenfunction expansion (4) for G we have

G(x , z) =
∞∑

n=1

ϕn(z)

µn
∫ b

a ϕ
2
n(ξ)σ(ξ)dξ

ϕn(x).
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Eigenfunction Expansions

In particular, if the eigenfunctions are orthonormal with respect to σ
then

G(x , z) =
∞∑

n=1

1
µn
ϕn(x)ϕn(z),

which matches the Mercer series for G with λn = 1
µn

(as it should be).

Remark
This approach provides an alternative approach to finding Green’s
functions in infinite series form (as opposed to the closed form
derivation we went through for the Brownian bridge kernel).

As we will see later, it is not necessary to have a closed form
representation of a kernel K in order to be able to use it to solve
the approximation problems we are interested in. In fact, it may
even be advantageous to work with its series representation,
provided it is available.
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Eigenfunction Expansions

Example (More Brownian bridge)

A simple exercise in standard SL theory tells us that the BVP

−ϕ′′(x) = µϕ(x), ϕ(0) = ϕ(1) = 0,

has eigenvalues and eigenfunctions

µn = (nπ)2, ϕn(x) = sin nπx , n = 1,2,3, . . . ,

and we can verify

G(x , z) = min(x , z)− xz =
∞∑

n=1

an(z) sin nπx

with

an(z) = 2
∫ 1

0
(min(x , z)− xz) sin nπxdx =

2
(nπ)2 sin nπz =

1
µn

ϕn(z)

‖ϕn‖2
.
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Summary

Summary

Chapters 2 and 5 tell us that we can get an eigenfunction series

K (x , z) =
∞∑

n=1

λnϕn(x)ϕn(z)

for a given positive definite kernel K . This can be done
via Mercer’s theorem using the eigenvalues and
L2(Ω, ρ)-normalized eigenfunctions of the Hilbert–Schmidt integral
operator K, i.e., as solutions of

Kϕ = λϕ, Kf (x) =

∫
Ω

K (x , z)f (z)ρ(z)dz ,

or via a generalized Fourier series based on the eigenvalues and
eigenfunctions of the corresponding SL eigenvalue problem

Lϕ =
1
λ
ρϕ, LK (x , z) = δ(x − z)

with appropriate boundary conditions.
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Summary

We will show later that such series expansions can be used to
generate the Hilbert–Schmidt SVD which allows us to compute with
kernels in a numerically stable and highly accurate way.
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