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Introduction

Introduction

In this chapter we will derive series representations — and where
feasible also closed-form representations — for the family of iterated
Brownian bridge kernels.

We split the exposition into two parts:

piecewise polynomial splines (corresponds to ε = 0)
case with general ε

Then we look at various properties of these kernels, including MATLAB

illustrations.
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Introduction

Iterated Kernels
Given a symmetric positive definite kernel K1 on Ω× Ω, we can apply
the Hilbert–Schmidt integral operator K to generate a new positive
definite kernel, a so-called iterated kernel.

We fix z ∈ Ω and use the absolutely converging Mercer series of K1 to
see that

KK1(x , z) =

∫
Ω

K1(x , t)K1(t , z)ρ(t)dt

=

∫
Ω

K1(x , t)
∞∑

n=1

λnϕn(z)ϕn(t)ρ(t)dt

=
∞∑

n=1

λnϕn(z)

∫
Ω

K1(x , t)ϕn(t)ρ(t)dt .

Since ϕn are the eigenfunctions of K corresponding to λn we have∫
Ω

K1(x , t)ϕn(t)ρ(t)dt = λnϕn(x).
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Introduction

Inserting ∫
Ω

K1(x , t)ϕn(t)ρ(t)dt = λnϕn(x).

into

KK1(x , z) =
∞∑

n=1

λnϕn(z)

∫
Ω

K1(x , t)ϕn(t)ρ(t)dt

gives

KK1(x , z) =
∞∑

n=1

λ2
nϕn(x)ϕn(z)

= K2(x , z),

a new kernel K2 with the same eigenfunctions as K1, but whose
eigenvalues are the squares of those of K1.
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Introduction

Remark
For a translation-invariant kernel — and therefore also for a radial
kernel — the operation described above is a convolution.

The iterated kernel is smoother than the original one.
The process can be repeated, leading to a family of kernels with
increasing smoothness (determined by the decay of the
eigenvalues) all built from a common set of eigenfunctions.
This provides another way to design a custom family of kernels.

Construction of smoother kernels via iteration is a classical idea
(see, e.g., [CH53, Section III.5.3], [Sta79, Section 6.3]).
We will construct our iterated kernels via an iterated differential
operator.

I prefer this approach since here the boundary conditions are
explicitly specified.
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Iterated Brownian Bridge Kernels Basic Piecewise Polynomial Spline Kernels

Basic Piecewise Polynomial Spline Kernels

In Chapter 5 we showed that the differential operator L = − d2

dx2

coupled with the BCs K (0, z) = K (1, z) = 0 gives rise to the Brownian
bridge kernel

K1(x , z) = min(x , z)− xz.

The associated eigenvalue problem was

Lϕ = µϕ, ϕ(0) = ϕ(1) = 0,

with eigenvalues and normalized eigenfunctions

µn = (nπ)2 , ϕn(x) =
√

2 sin nπx , n = 1,2, . . . .

The generalized Fourier series (Mercer series) of the kernel is

K1(x , z) = min(x , z)− xz =
∞∑

n=1

2
n2π2 sin nπx sin nπz.
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Iterated Brownian Bridge Kernels Basic Piecewise Polynomial Spline Kernels

Now, the eigenvalue problem Lβϕ = ηϕ has eigenvalues η = µβ and
the same eigenfunctions as before provided we use the BCs

ϕ(0) = ϕ(1) = ϕ′′(0) = ϕ′′(1) = . . . = ϕ(2β−2)(0) = ϕ(2β−2)(1) = 0.

Therefore, setting β = 2 we can derive the kernel (see HW)

K2(x , z) =

{
1
6x(1− z)

(
1− x2 − (1− z)2) , 0 ≤ x ≤ z ≤ 1,

1
6z(1− x)

(
1− z2 − (1− x)2) , 0 ≤ z ≤ x ≤ 1.

Its eigenfunction expansion is given by

K2(x , z) =
∞∑

n=1

2
n4π4 sin nπx sin nπz.

For any fixed value of z this is a natural cubic spline that interpolates
zero at x = 0 and x = 1.
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Iterated Brownian Bridge Kernels Basic Piecewise Polynomial Spline Kernels

Remark
K1 and K2 satisfy zero boundary conditions.

K1(0, zj) = 0 for any point zj and so an entire row of K will be zero
if x = 0 or x = 1 are included as data sites.

Since K1 is symmetric an entire column will be zero if zj = 0 or
zj = 1 is a center.

To prevent this from happening we must exclude x = 0 and x = 1
from the sets of kernel centers and also from the data sites.

This imposes a restriction on the problems we can accurately
solve with K1 or K2. These problems must satisfy the same
homogeneous BCs as the kernel.
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Iterated Brownian Bridge Kernels Basic Piecewise Polynomial Spline Kernels

Adding a kernel for null(L)

To be able to interpolate nonzero values at the endpoints x = 0 and
x = 1 with K1 or K2 we could create a second (polynomial) kernel for
the null space of the L and L2.

These kernels would be a linear or cubic polynomial.

This polynomial kernel can be added to K1,0 or K2,0 to yield a sum
kernel which can handle arbitrary non-homogeneous boundary
conditions (see, e.g., [RS05, Chapter 21]).

Alternatively, we can add the linear interpolant p(x) = (1− x)y1 + xyN ,
where y1 and yN are the data values at x = 0 and x = 1, respectively,
to the (homogeneous) kernel interpolant.

We could also subtract the linear interpolant from the data in a
preprocessing step.
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Higher-order Piecewise Polynomial Spline Kernels of
Odd Degree

We now consider Kβ, the Green’s kernel of the differential operator

Lβ = (−1)β
d2β

dx2β , β ∈ N,

with boundary conditions

d2ν−2

dx2ν−2 Kβ(x , z)|x=0 =
d2ν−2

dx2ν−2 Kβ(x , z)|x=1 = 0, ν = 1, . . . , β,

where z is fixed.

Our discussion of the two special cases, K1 and K2 above suggests
that the kernel Kβ will be a piecewise polynomial spline.
We now derive closed form representations for these piecewise
polynomial spline kernels.
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Iterated Brownian Bridge Kernels Higher-order Piecewise Polynomial Spline Kernels of Odd Degree

Remark
This idea is related to the more general concept of L-splines (see, e.g.,
[SV67, SV72, Var87]).

Our discussion of iterated kernels implies that the Mercer series for Kβ,
β = 1,2, . . ., is given by

Kβ(x , z) =
∞∑

n=1

2
(nπ)2β sin(nπx) sin(nπz)

provided we use the boundary conditions from above, i.e.,

d2ν−2

dx2ν−2 Kβ(x , z)|x=0 =
d2ν−2

dx2ν−2 Kβ(x , z)|x=1 = 0, ν = 1, . . . , β, z fixed.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass


Iterated Brownian Bridge Kernels Higher-order Piecewise Polynomial Spline Kernels of Odd Degree

Remark
This idea is related to the more general concept of L-splines (see, e.g.,
[SV67, SV72, Var87]).

Our discussion of iterated kernels implies that the Mercer series for Kβ,
β = 1,2, . . ., is given by

Kβ(x , z) =
∞∑

n=1

2
(nπ)2β sin(nπx) sin(nπz)

provided we use the boundary conditions from above, i.e.,

d2ν−2

dx2ν−2 Kβ(x , z)|x=0 =
d2ν−2

dx2ν−2 Kβ(x , z)|x=1 = 0, ν = 1, . . . , β, z fixed.

fasshauer@iit.edu MATH 590 14

http://math.iit.edu/~fass


Iterated Brownian Bridge Kernels Higher-order Piecewise Polynomial Spline Kernels of Odd Degree

Using the eigenvalues and eigenfunctions

µn = (nπ)2β , ϕn(x) =
√

2 sin(nπx), n = 1,2, . . . ,

we now derive a closed form for the Mercer series of Kβ which shows
that it is indeed a piecewise polynomial of degree 2β − 1.

Main ingredients in the derivation:
standard trigonometric identity

2 sin(A) sin(B) = cos(A− B)− cos(A + B)

with A = nπx and B = nπz,
two applications of the cosine series expansion of Bernoulli
polynomials (see, e.g., [DLMF12, Eq. 24.8.1] and [OLBC10])

B2β(t) = (−1)β+1 2(2β)!

(2π)2β

∞∑
n=1

n−2β cos(2πnt), 0 ≤ t ≤ 1, β = 1,2, . . . ,

setting t = x−z
2 and t = x+z

2 , respectively.
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setting t = x−z
2 and t = x+z

2 , respectively.
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Since the Bernoulli formula requires 0 ≤ t ≤ 1 we need to treat the
cases x ≥ z and z ≥ x separately.

However, it is possible to combine the two resulting formulas into the
desired symmetric closed form representation

Kβ(x , z) = (−1)β−1 22β−1

(2β)!

[
B2β

(
|x − z|

2

)
− B2β

(
x + z

2

)]
,

which is valid for any 0 ≤ x , z ≤ 1.
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Bernoulli polynomials of degree n can be defined as (see, e.g.,
[DLMF12, Eq. 24.6.7] and [OLBC10])

Bn(x) =
n∑

k=0

1
k + 1

k∑
j=0

(−1)j
(

k
j

)
(x + j)n.

The first few polynomials are given by

B0(x) = 1,

B1(x) = x − 1
2
,

B2(x) = x2 − x +
1
6
,

B3(x) = x3 − 3
2

x2 +
1
2

x .

If we want to use kernels based on these polynomials to solve PDEs
we also need to know their derivatives:

B′n(x) = nBn−1(x)
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With this knowledge about Bernoulli polynomials it is easy to verify that
the closed form representation

Kβ(x , z) = (−1)β−1 22β−1

(2β)!

[
B2β

(
|x − z|

2

)
− B2β

(
x + z

2

)]
results (as we had earlier) in

K1(x , z) = min(x , z)− xz =

{
x − xz, 0 ≤ x ≤ z,
z − xz, z ≤ x ≤ 1,

(i.e., the Brownian bridge kernel) and

K2(x , z) =

{ 1
6x(1− z)(x2 + z2 − 2z), 0 ≤ x ≤ z,
1
6(1− x)z(x2 + z2 − 2x), z ≤ x ≤ 1.

For a fixed z, K3(x , z) gives piecewise quintic polynomials in x , and so
on.
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Plots of Piecewise Polynomial Spline Kernels
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Figure: β = 1
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Plots of Piecewise Polynomial Spline Kernels
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Plots of Piecewise Polynomial Spline Kernels
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Plots of Piecewise Polynomial Spline Kernels
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Plots of Piecewise Polynomial Spline Kernels
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Figure: β = 20
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Limitations of this representation are:
Clearly, this is not a good basis for practical implementations since
the set of translates of the kernel Kβ(·, z) for different centers z
becomes very nearly linearly dependent for larger β (the plots for
β = 7 and β = 20 are virtually the same).

Advantages of this representation are:
We can represent natural splines of all orders simply by changing
the eigenvalues in the series expansion.
Once we understand stable computation we will be able to
compute stably (although probably not as efficiently as with
B-splines) with the eigenfunction basis.
We will be able to move effortlessly to a related, iterated Brownian
bridge, space which has a lot more added flexibility through the
introduction of the shape parameter ε (next subsection).
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General Iterated Brownian Bridge Kernels

If we change the differential operator to L = − d2

dx2 + ε2I then the
eigenfunctions remain unchanged and the eigenvalues are shifted.
Therefore, the SL eigenvalue problem

Lβϕ = µϕ

with BCs

ϕ(0) = ϕ(1) = ϕ′′(0) = ϕ′′(1) = . . . = ϕ(2β−2)(0) = ϕ(2β−2)(1) = 0

results in the eigenpairs

µn =
(

n2π2 + ε2
)β
, ϕn(x) =

√
2 sin (nπx) .

The generalized Fourier series of the iterated Brownian bridge kernels
is

Kβ,ε(x , z) =
∞∑

n=1

2
(

n2π2 + ε2
)−β

sin (nπx) sin (nπz) .
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Closed form representations for the iterated Brownian bridge kernels
with ε > 0 are more complicated than those for piecewise polynomial
splines (ε = 0).

For β = 1 we can obtain (proceeding similarly to what we did for
the ε = 0 case in Chapter 5)

K1,ε(x , z) =

{sinh(εx) sinh(ε(1−z))
ε sinh(ε) , 0 ≤ x ≤ z ≤ 1,

sinh(εz) sinh(ε(1−x))
ε sinh(ε) , 0 ≤ z ≤ x ≤ 1,

=
sinh (εmin(x , z)) sinh (ε(1−max(x , z)))

ε sinh(ε)
, x , z ∈ [0,1].
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The closed form expression for K2,ε is considerably more complex:

K2,ε(x , z) =
1

2ε3 sinh(ε)[
εmin(x , z) cosh (εmin(x , z)) sinh (ε (1−max(x , z)))

+ε (1−max(x , z)) sinh (εmin(x , z)) cosh (ε (max(x , z)− 1))

+ (ε coth(ε) + 1) sinh (εmin(x , z)) sinh (ε (max(x , z)− 1))
]

It was found by two REU students, Casey Bylund and Will Mayner.
For larger β and ε > 0 closed form representations are unknown
(to me).

This is not a drawback. It might even be preferable to work with
the series form of K . However, if we use an eigenexpansion
directly we ignore the special structure of this series. The
Hilbert–Schmidt SVD will exploit this structure.
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Plots of Iterated Brownian bridge Kernels

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Figure: β = 1, ε = 10
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Plots of Iterated Brownian bridge Kernels
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Figure: β = 2, ε = 10
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Plots of Iterated Brownian bridge Kernels
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Plots of Iterated Brownian bridge Kernels
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Plots of Iterated Brownian bridge Kernels
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Figure: β = 20, ε = 50
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Remark
Recall that the translates of the piecewise polynomial kernel Kβ,0
become increasingly linearly dependent as β increases.

Now we can increase ε to counter-balance this effect.
For large values of ε the iterated Brownian bridge kernels more
and more resemble translated Gaussian kernels as β →∞.
However, by construction, these Gaussian-like iterated Brownian
bridge kernels obey zero boundary conditions.
It is known [UAE92] that B-splines tend to Gaussians as the
smoothness index β →∞, so it is not surprising that we see
similar “convergence” for iterated Brownian bridge kernels.
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We now discuss
truncation of the Mercer series of the iterated Brownian bridge
kernel,

numerical evidence for order of convergence for interpolation with
these kernels as ε and β vary,

effects of the boundary conditions in interpolation problems.

Some of the behavior observed in this section will be supported by
theoretical analysis later on.
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The Mercer series for iterated Brownian bridge kernels is of the form

Kβ,ε(x , z) =
∞∑

n=1

2(
n2π2 + ε2

)β sin (nπx) sin (nπz) ,

with Hilbert-Schmidt eigenvalues and normalized eigenfunctions given
by

λn =
1(

n2π2 + ε2
)β , ϕn(x) =

√
2 sin (nπx) . (1)

Clearly,
the eigenfunctions are bounded by

√
2,

and, for a fixed value of ε, the eigenvalues decay as n−2β.

Remark
The boundedness of the eigenfunctions is not guaranteed for arbitrary
positive definite kernels.
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The plots of the iterated Brownian bridge kernels above were
obtained by evaluating the Mercer series (see code below).
Of course, in practice we cannot evaluate such an infinite series.
It needs to be truncated, and we need to ensure that this
truncation does not reduce accuracy.
This concern is valid for series in general, but the uniform
convergence of the Mercer series allows us to guarantee a
truncation value MTOL exists, beyond which the remaining terms
are less than some tolerance σTOL.
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The truncation length M needed for accurate representation of the
entries K (x i ,x j) of K can be easily determined as a function of β and ε:

In order to ensure that the M + 1st term contributes nothing of
significance relative to the first term we want

λM+1 < σTOLλ1,

where σTOL denotes a (small) tolerance for the desired accuracy such
as machine precision εmach.

Using (1) and solving for M yields

MTOL(β, ε;σTOL) =

⌈
1
π

√
σ
−1/β
TOL (π2 + ε2)− ε2

⌉
,

where dxe denotes the smallest integer greater than or equal to x (the
ceiling of x).
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Parameters Precision
β ε 10−5 10−10 10−15

1 .1 3× 102 1× 105 3× 107

1 1 3× 102 1× 105 3× 107

1 10 1× 103 3× 105 1× 108

2 10 6× 101 1× 103 2× 104

3 10 2× 101 2× 102 1× 103

5 10 1× 101 3× 102 1× 102

7 10 7× 100 2× 101 4× 101

Table: Truncation values MTOL required for series generated by various
combinations of ε and β to reach certain precisions specified by σTOL. The
precision column is the ratio of the last and first eigenvalues, λM+1/λ1.
Increases in ε require a greater MTOL, whereas increases in β require a
smaller MTOL.
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Program (PlotKernelSeries.m)
% Evaluates iterated Brownian bridge kernels using Mercer series
1 x = linspace(0,1,11)’; xx = linspace(0,1,1201)’;

%% iterated Brownian bridge kernel
2 x=x(2:end-1); N = length(x);
3 ep = 50; beta = 20;
4 phifunc = @(n,x) sqrt(2)*sin(pi*x*n);
5 lambdafunc = @(n) ((n*pi).^2+ep^2).^(-beta);

%% Mercer series
6 if beta < 3
7 M = 1000;
8 else
9 M = ceil(1/pi*sqrt(eps^(-1/beta)*(N^2*pi^2+ep^2)-ep^2));

10 end
11 Lambda = diag(lambdafunc(1:M));
12 Phi_interp = phifunc(1:M,x);
13 Phi_eval = phifunc(1:M,xx);
14 Kbasis = Phi_eval*Lambda*Phi_interp’/Lambda(1,1);
%% Plot kernel basis obtained via Mercer series
15 plot(xx,Kbasis)
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Remark
PlotKernelSeries.m provides a simple (but vectorized)
MATLAB script that allows us to use the Mercer series for iterated
Brownian bridge kernels with arbitrary β and ε.

Since the truncation values in the table show that MTOL is very
large for β = 1,2 (and we should therefore use the closed-form
representation), for simplicity we just fix M = 1000 in those two
cases (see lines 6–10).
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Effects of the boundary conditions

To see what the effect of the boundary conditions built into our kernels
may be, we plot the cardinal functions for interpolation by iterated
Brownian bridge kernels and by Gaussians (which are simply
translated across the domain of interest).

We will explain cardinal functions in detail in Chapter 11, but they are
formally the same as the optimal kriging weights, i.e.,

?
w(x) = K−1k(x).
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Figure: Cardinal functions for interpolation at 22 points in (0,1). Top: iterated
Brownian bridge for equally spaced (left), Chebyshev (right) points; bottom:
Gaussians for equally spaced (left), Chebyshev (right) points.
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Remark
The iterated Brownian bridge cardinal functions indicate that
uniformly distributed data is much preferred over Chebyshev data.

This is due to the built-in boundary conditions.
Note that this is “counter-intuitive” to what we know from the
Runge phenomenon.
However, It is known that interpolation with cubic splines also
favors evenly distributed data [LS73, Mar74]. Also, optimal points
for L2 approximation with the Brownian bridge kernel are equally
spaced [Rit00, Section II.3.7].
For Gaussians the preference is not as clear. Chebyshev points
will be favored as ε→ 0 (cf. our later discussion of the “flat”
polynomial limit).
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spaced [Rit00, Section II.3.7].

For Gaussians the preference is not as clear. Chebyshev points
will be favored as ε→ 0 (cf. our later discussion of the “flat”
polynomial limit).
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Convergence Orders

The differential operator L =
(
− d2

dx2 + ε2I
)β

defining our
piecewise polynomial splines falls into the class of operators
defining L-splines [SV67, SV72].
However, we use different boundary conditions.
It is known that L-spline interpolation has an L2 error of O(h2β)for
data sampled from f ∈ H2β([0,1]) and with BCs such that
derivatives of f up to order β are interpolated at {0,1}1.
Here h denotes the meshsize, i.e., h = maxj(xj+1 − xj), xj ∈ [0,1],
j = 1, . . . ,N.
For periodic boundary conditions the same order can be achieved.
We expect similar convergence behavior for interpolation using
iterated Brownian bridge kernels.

1Here H2β([0, 1]) is the usual Sobolev space of functions with 2β derivatives in
L2([0, 1]).
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This means
piecewise linear splines will achieve O(h2) convergence order
provided the spline interpolates at all data points (including at the
boundary),
cubic splines will achieve O(h4) provided the boundary conditions
are matched, but otherwise only O(h2).

We will specify convergence in terms of N.
For evenly spaced data we have h = 1

N−1 . So we should get

O(N−2β) for data with homogeneous boundary conditions,
O(N−β) otherwise.
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Numerical Example

We consider the test function (similar to a function from [HM07])

Gn(x) = (1/2− γ)−2n (x − γ)n
+ (1− γ − x)n

+ , x ∈ [0,1],

such that
all derivatives at x = 0 and x = 1 are 0,
Gn satisfies all BCs,
the parameter γ ∈ (0,1/2) implies Gn ≡ 0 for x /∈ (γ,1− γ), with
discontinuous nth derivatives at x = {γ,1− γ},
manipulating n allows us to either satisfy or violate the required
smoothness conditions of the underlying differential operator.

We fix γ = .0567 so that discontinuities do not coincide with data
points.
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Figure: Sample plots of Gn with n = 1,3,5,7, and γ = .0567. The vertical
dashed lines are at x = γ and x = 1− γ, and indicate the point beyond which
the function is 0.
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We observe the order of convergence of iterated Brownian bridge
kernel interpolation with

a fixed ε = 1
and β = 1, . . . ,5
for G6.

For β ≤ 3, the necessary smoothness conditions are satisfied.
For β > 3, the kernels are smoother than G6.

Note that there is little improvement in convergence for β ≥ 4.
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(a) Convergence order plot

β exponent
1 -1.96
2 -4.01
3 -6.35
4 -6.75
5 -6.66

(b) Convergence order
table

Figure: Errors for iterated Brownian bridge interpolation to samples from G6.
As β increases, the order of convergence increases, until the kernels reach
the smoothness of G6. Beyond that point (which occurs at β = 3) we
encounter saturation, and there is no value in further increasing β. The N
input points were evenly spaced in (0,1) as were the 400 evaluation points.
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Remark
This supports our belief that functions which satisfy the
homogeneous BCs of order 2β and have at least 2β smooth
derivatives can be interpolated using Kβ,ε with O(N−2β)
convergence order.

We will later prove this for ε = 0.
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