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Introduction

In Chapter 4 we saw that (simple) kriging yields the best linear
unbiased predictor

M

Yx based on given data {(x i , yi) : i = 1, . . . ,N}
since it minimizes the mean square error of any linear predictor based
on the data.

In this chapter we will see that within the native Hilbert spaces
associated with strictly positive definite kernels (or, more specifically,
radial functions) the kernel (RBF) interpolant provides the best
approximation to a given data function.

This optimality of interpolants in Hilbert space is the subject of the
theory of optimal recovery described in the late 1950s by Michael
Golomb and Hans Weinberger in [GW59].
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The Connection to Optimal Recovery

In [GW59] the authors studied the following general problem:

Problem
Given the values f1 = λ1(f ), . . . , fN = λN(f ) ∈ R, where {λ1, . . . , λN} is
a linearly independent set of linear functionals (called information
functionals yielding the information about f ), how does one “best”
approximate the value λ(f ) (called a feature of f ) where λ is a given
linear functional and f is unknown?

Remark
This is a very general problem formulation that includes

interpolation of data such as
function values,
values of derivatives of f ,
integrals of f (such as averages or moments),

as well as methods of approximation other than interpolation.
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The Connection to Optimal Recovery

Remark
This kind of problem is known in the literature as an optimal recovery
problem.

Besides the seminal work by Golomb and Weinberger, optimal
recovery was also studied in detail in [MRW76, MR77, MR80, MR85].

fasshauer@iit.edu MATH 590 7

http://math.iit.edu/~fass


The Connection to Optimal Recovery

In a Hilbert space setting the solution to this optimal recovery problem
is shown to be the minimum-norm interpolant.

More precisely, given a Hilbert space H and data
f1 = λ1(f ), . . . , fN = λN(f ) ∈ R with {λ1, . . . , λN} ⊆ H∗ (the dual of H),
the minimum-norm interpolant is that function

?
g ∈ H which satisfies

λj(
?
g) = fj , j = 1, . . . ,N,

and
?
g = argmin

g∈H
λj (g)=fj ,j=1,...,N

‖g‖H.

Remark
The kernel interpolant with kernel K satisfies these criteria if H is taken
as the associated RKHS HK (Ω).
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The Connection to Optimal Recovery

We will present three optimality results:

The kernel interpolant for any strictly positive definite kernel K is
the minimum norm interpolant from HK (Ω).

The kernel interpolant provides the best approximation to f in the
native space norm.

The (cardinal form of the) kernel interpolant is more accurate (as
measured by the pointwise error) than any other linear
combination of the data (very similar to BLUP).

Remark
The proofs of the first two “optimality theorems” require the following
two lemmas.
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Orthogonality in Reproducing Kernel Hilbert Spaces

Lemma

Assume K is a symmetric strictly positive definite kernel on Rd and let
s be the usual kernel interpolant to f ∈ HK (Ω) at the data sites
X = {x1, . . . ,xN} ⊆ Ω, i.e.,

s(x) =
N∑

j=1

cjK (x ,x j),

where the cj are determined by s(x i) = f (x i), i = 1, . . . ,N.
Then

〈s, s − g〉HK (Ω) = 0

for any other interpolant g ∈ HK (Ω), i.e., with g(x i) = f (x i),
i = 1, . . . ,N.

Note that g ∈ HK (Ω), a space that is larger than
span{K (·,x j) : x j ∈ X}.

fasshauer@iit.edu MATH 590 11

http://math.iit.edu/~fass


Orthogonality in Reproducing Kernel Hilbert Spaces

Proof.
The interpolant s is of the form s =

N∑
j=1

cjK (·,x j), where the cj are

determined by s(x i) = f (x i), i = 1, . . . ,N.
Using this, the symmetry of K and its reproducing property we have

〈s, s − g〉HK (Ω) = 〈
N∑

j=1

cjK (·,x j), s − g〉HK (Ω)

=
N∑

j=1

cj〈K (·,x j), s − g〉HK (Ω)

=
N∑

j=1

cj〈s − g,K (·,x j)〉HK (Ω)

=
N∑

j=1

cj(s − g)(x j) = 0

since both s and g interpolate f on X .
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Orthogonality in Reproducing Kernel Hilbert Spaces

For the next result, we define

HK (X ) = span{K (·,x j) : x j ∈ X}

as we did in Chapter 2, Part 3.
HK (X ) is an N-dimensional subspace of the native space HK (Ω).

Lemma

Assume K is a strictly positive definite kernel on Rd and let s ∈ HK (X )
be the interpolant to f ∈ HK (Ω) on X = {x1, . . . ,xN} ⊆ Ω.
Then

〈f − s,h〉HK (Ω) = 0

for all h ∈ HK (X ).

Remark
In other words, the residual f − s is orthogonal to the subspace HK (X )
of HK (Ω). In particular, 〈f − s, s〉HK (Ω) = 0.
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Orthogonality in Reproducing Kernel Hilbert Spaces

Proof.

Any h ∈ HK (X ) can be written in the form h =
N∑

j=1

cjK (·,x j) with

appropriate coefficients cj .
Using this as well as the reproducing property of K we have

〈f − s,h〉HK (Ω) = 〈f − s,
N∑

j=1

cjK (·,x j)〉HK (Ω)

=
N∑

j=1

cj〈f − s,K (·,x j)〉HK (Ω)

=
N∑

j=1

cj(f − s)(x j) = 0

since s interpolates f on X .
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Orthogonality in Reproducing Kernel Hilbert Spaces

The following Pythagorean theorem (or “energy splitting” theorem) is
an immediate consequence of the previous lemma.
It says that the native space “energy” of f can be split into

the “energy” of the interpolant s and
the energy of the residual f − s (which — according to our lemma
— is orthogonal to the interpolant).

Corollary

The orthogonality property of the preceding lemma implies the energy
split

‖f‖2HK (Ω) = ‖f − s‖2HK (Ω) + ‖s‖2HK (Ω).
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Orthogonality in Reproducing Kernel Hilbert Spaces

Proof.
The statement follows from

‖f‖2HK (Ω) = ‖f − s + s‖2HK (Ω)

= 〈(f − s) + s, (f − s) + s〉HK (Ω)

= ‖f − s‖2HK (Ω) + 2〈f − s, s〉HK (Ω) + ‖s‖2HK (Ω)

and the fact that 〈f − s, s〉HK (Ω) = 0 by the lemma since the interpolant
s itself is a special linear combination from HK (X ).

Remark
We will use the energy split in our sampling inequality error estimates
below.
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Optimality Theorems Optimality Theorem I

The following theorem presents the first optimality property formulated
for strictly positive definite kernels. It is taken from [Wen05].

Theorem (Optimality I)

Suppose K ∈ C(Ω× Ω) is a strictly positive definite kernel. If the
values f1, . . . , fN are given, then the interpolant s is the minimum-norm
interpolant to {fj}Nj=1, i.e.,

s = argmin
g∈HK (Ω)

g(x j )=fj ,j=1,...,N

‖g‖HK (Ω).
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Optimality Theorems Optimality Theorem I

Proof.
Let g ∈ HK (Ω) be an arbitrary interpolant to f1, . . . , fN .
Then the first orthogonality lemma tells us

〈s, s − g〉HK (Ω) = 0.

Now

‖s‖2HK (Ω) = 〈s, s − g + g〉HK (Ω)

= 〈s, s − g〉HK (Ω) + 〈s,g〉HK (Ω)

= 〈s,g〉HK (Ω),

where the last step follows from the above orthogonality relation.
The Cauchy-Schwarz inequality yields

‖s‖2HK (Ω) ≤ ‖s‖HK (Ω)‖g‖HK (Ω),

so that the statement follows.
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Optimality Theorems Optimality Theorem I

Example
The native space of (conditionally positive definite) thin plate splines

κ(r) = r2 log r ,

r = ‖x‖2 with x = (x , y) ∈ R2 is given by the Beppo-Levi space
BL2(R2).

The corresponding semi-norm in the Beppo-Levi space BL2(R2) is
(see [Fas07, Chapter 13])

|f |2BL2(R2) =

∫
R2

(∣∣∣∣ ∂2f
∂x2 (x)

∣∣∣∣2 + 2
∣∣∣∣ ∂2f
∂x∂y

(x)

∣∣∣∣2 +

∣∣∣∣ ∂2f
∂y2 (x)

∣∣∣∣2
)

dx ,

which represents the bending energy of a thin plate.

By the optimality theorem the thin plate spline interpolant minimizes
this energy. This explains the name of these functions.
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Optimality Theorems Optimality Theorem II

Another nice property of the kernel interpolant is the fact that it is at the
same time the best Hilbert-space approximation to the given data.
Therefore the interpolant is not just any projection of f but the
orthogonal projection (with respect to the native space inner product).

Theorem (Optimality II)

Let

HK (X ) = {h =
N∑

j=1

cjK (·,x j) : x j ∈ X},

where K ∈ C(Ω× Ω) is a strictly positive definite kernel.
If only the values f1 = f (x1), . . . , fN = f (xN) are given, then the
interpolant s is the best approximation to f from HK (X ) in HK (Ω), i.e.,

‖f − s‖HK (Ω) ≤ ‖f − h‖HK (Ω)

for all h ∈ HK (X ).
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Optimality Theorems Optimality Theorem II

Proof.
The native space HK (Ω) is the completion of HK (Ω) with respect to the
‖ · ‖HK -norm (see Chapter 2) so that

‖f‖HK (Ω) = ‖f‖HK (Ω) for all f ∈ HK (Ω).

Therefore, we can characterize the best approximation
?
g to f from

HK (X ) by
〈f − ?

g,h〉HK (Ω) = 0 for all h ∈ HK (X ).

However, the second orthogonality lemma shows that
?
g = s satisfies

this relation (and s qualifies since X ⊆ Ω).
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Optimality Theorems Optimality Theorem II

Remark
Optimality properties of kernel interpolants play an important role in
applications such as

in the design of support vector machines in statistical learning
theory
or the numerical solution of partial differential equations.
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Optimality Theorems Optimality Theorem II

The optimality results imply that one could also start with some Hilbert
space H with norm ‖ · ‖H and ask to find the minimum norm
interpolant (i.e., Hilbert space best approximation) to some given data.

In this way any given space defines a set of optimal basis functions,
generated by the reproducing kernel of H.

This is how Duchon approached the subject in his papers
[Duc76, Duc77, Duc78, Duc80].

More recently, Kybic, Blu and Unser [KBU02a, KBU02b] take this point
of view and explain from a sampling theory point of view how a thin
plate spline can be interpreted as fundamental solution of the
differential operator defining the semi-norm in the Beppo-Levi space
BL2(R2).

These contributions motivated our work on Green’s kernels (see
Chapter 6).
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Optimality Theorems Optimality Theorem III

The third optimality result is in the context of quasi-interpolation, i.e.,

Theorem (Optimality III)

Suppose K ∈ C(Ω× Ω) is a strictly positive definite kernel and
suppose that x ∈ Ω is fixed.
Let

?
uj(x), j = 1, . . . ,N, be the values at x of the cardinal basis

functions for interpolation with K .
Then ∣∣∣∣∣∣f (x)−

N∑
j=1

f (x j)
?
uj(x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣f (x)−

N∑
j=1

f (x j)uj

∣∣∣∣∣∣
for all choices of u1, . . . ,uN ∈ R.
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Optimality Theorems Optimality Theorem III

Remark
The theorem is proved in [Wen05].

It says that the minimum norm interpolant s is also more accurate
(in the pointwise sense) than any linear combination of the given
data values.

This is very similar to the MSE-optimality of kriging.
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The Basic Power Function Error Estimate Fill Distance and Approximation Orders

Goal: to provide error estimates for scattered data interpolation with
strictly positive definite functions.

We will provide most of the details for the strictly positive definite case,
but extension to conditionally positive definite kernels are possible.

In their final form we will want our estimates to depend on some kind of
measure of the data distribution.

The measure that is usually used in approximation theory is the
so-called fill distance

h = hX ,Ω = sup
x∈Ω

min
x j∈X

‖x − x j‖2

already introduced in Chapter 1.
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The Basic Power Function Error Estimate Fill Distance and Approximation Orders

The fill distance indicates how well the data fill out the domain Ω.
It denotes the radius of the largest empty ball that can be placed
among the data locations.

Convergence
We will be interested in whether the error

‖f − s(h)‖∞

tends to zero as h→ 0, and if so, how fast.

Here {s(h)}h presents a sequence of interpolation (or, more generally,
projection) operators that vary with the fill distance h.

Remark
Most error bounds will focus on this worst-case setting. Some will be
measured in the L2-norm, i.e., for average case errors, or other
Lp-norms.
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The Basic Power Function Error Estimate Fill Distance and Approximation Orders

Example

Let s(h) denote the interpolant to data given
at (2n + 1)d , n = 1,2, . . ., equally spaced points in the unit cube in
Rd

so that h = 1
d
√

(2n+1)d−1
= 2−n.

The definition of the fill distance also covers scattered data such as
sets of Halton points.
In fact, since Halton points are quasi-uniformly distributed we can
assume h ≈ 2−n for a set of (2n + 1)d Halton points in Rd .

Remark
These relations explain the specific sizes of the point sets we used in
earlier examples.
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The Basic Power Function Error Estimate Fill Distance and Approximation Orders

We measure the speed of convergence to zero in terms of
approximation order.

We say that the interpolant s(h) has Lp-approximation order k if

‖f − s(h)‖p = O(hk ) for h→ 0.

Moreover, if we can also show that ‖f − s(h)‖p 6= o(hk ), then s(h) has
exact Lp-approximation order k .

Remark
We will concentrate mostly on the case p =∞ (i.e., pointwise
estimates), but approximation order in other norms can also be
studied.
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The Basic Power Function Error Estimate Fill Distance and Approximation Orders

Remark
Since we want to employ the machinery of reproducing kernel Hilbert
spaces presented in the previous chapter we will concentrate on error
estimates for functions f ∈ HK .

In order to keep the following discussion as transparent as possible we
will restrict ourselves to strictly positive definite kernels.

With (considerably) more technical details the following can also be
formulated for strictly conditionally positive definite kernels (see
[Wen05] for details).
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Lagrange Form of the Interpolant and Cardinal Basis
Functions

The key idea for the following discussion is to express the interpolant
in Lagrange form, i.e., using so-called cardinal basis functions.

For radial basis function approximation this idea is due to [WS93].

In earlier chapters we established that, for any strictly positive definite
kernel K , the linear system

Kc = y

with Kij = K (x i ,x j), i , j = 1, . . . ,N, c = (c1, . . . , cN)T , and
y = (f (x1), . . . , f (xN))T has a unique solution.
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

In order to obtain the cardinal basis functions
?
uj , j = 1, . . . ,N, with the

property
?
uj(x i) = δij , i.e.,

?
uj(x i) =

{
1 if i = j ,
0 if i 6= j ,

we consider the linear system

K
?
u(x) = k(x), (1)

where the matrix K is as above (and therefore invertible),
?
u = (

?
u1, . . . ,

?
uN)T , and k(x) = (K (x ,x1), . . . ,K (x ,xN))T .
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Existence of Cardinal Functions

Theorem

Suppose K is a strictly positive definite kernel on Rd × Rd . Then, for
any distinct points x1, . . . ,xN , there exist functions
?
uj ∈ span{K (·,x j), j = 1, . . . ,N} such that

?
uj(x i) = δij .

They are determined pointwise by solving the linear system (1), i.e.,

K
?
u(x) = k(x).

Therefore — if we know the cardinal functions — we can write the
interpolant s to f at x1, . . . ,xN in the cardinal form

s(x) =
N∑

j=1

f (x j)
?
uj(x), x ∈ Rd .
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Remark
Cardinal functions do not depend on the data values of the
interpolation problem.

They do heavily depend on the data locations (see plots on
following slides).

Once the data sites are fixed and the basic function is chosen with
an appropriate shape parameter (whose optimal value will depend
on the data sites and values), then the cardinal functions are
determined by the linear system (1).

The cardinal functions are formally identical to the optimal kriging
weights of Chapter 4.
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Example
Gaussian Cardinal Functions

Figure: Cardinal functions for Gaussian interpolation (with ε = 5) on 81
uniformly gridded points in [0,1]2. Centered at an edge point (left) and at an
interior point (right).
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Example
More Gaussians

Figure: Cardinal functions for Gaussian interpolation (with ε = 5) on 81
tensor-product Chebyshev points in [0,1]2. Centered at an edge point (left)
and at an interior point (right).
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Example
More Gaussians

Figure: Cardinal functions for Gaussian interpolation (with ε = 5) on 81
Halton points in [0,1]2. Centered at an edge point (left) and at an interior
point (right).
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Example
Multiquadric Cardinal Functions

Figure: Cardinal functions for multiquadric interpolation (with ε = 5) on 81
Halton points in [0,1]2. Centered at an edge point (left) and at an interior
point (right).
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The Basic Power Function Error Estimate Lagrange Form of the Interpolant and Cardinal Basis Functions

Remark
Basic functions that grow with increasing distance from the center
point (such as multiquadrics) are sometimes criticized for being
“counter-intuitive” for scattered data approximation.

The plot above shows that the associated cardinal functions are just as
localized as those for the Gaussian basic functions, and thus the
function space spanned by multiquadrics is a “good” local space.
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The Basic Power Function Error Estimate The Power Function

The Power Function
Another important ingredient needed for our error estimates is the
so-called power function.
For any strictly positive definite kernel K ∈ C(Ω× Ω), Ω ⊆ Rd , any set
of distinct points X = {x1, . . . ,xN} ⊆ Ω, and an arbitrary vector
u ∈ RN , we define the quadratic form

Q(u) = K (x ,x)− 2
N∑

j=1

ujK (x ,x j) +
N∑

i=1

N∑
j=1

uiujK (x i ,x j).

Definition
Suppose Ω ⊆ Rd and K ∈ C(Ω× Ω) is strictly positive definite. For any
distinct points X = {x1, . . . ,xN} ⊆ Ω the power function PK ,X is
defined pointwise by

[PK ,X (x)]2 = Q(
?
u(x)),

where
?
u is the vector of cardinal functions studied above.

fasshauer@iit.edu MATH 590 42

http://math.iit.edu/~fass


The Basic Power Function Error Estimate The Power Function

Using the definition of the native space norm from Chapter 2 we can
rewrite the quadratic form Q(u) as

Q(u) = K (x ,x)− 2
N∑

j=1

ujK (x ,x j) +
N∑

i=1

N∑
j=1

uiujK (x i ,x j)

= 〈K (·,x),K (·,x)〉HK (Ω) − 2
N∑

j=1

uj〈K (·,x),K (·,x j)〉HK (Ω)

+
N∑

i=1

N∑
j=1

uiuj〈K (·,x i),K (·,x j)〉HK (Ω)

= 〈K (·,x)−
N∑

j=1

ujK (·,x j),K (·,x)−
N∑

j=1

ujK (·,x j)〉HK (Ω)

=

∥∥∥∥∥∥K (·,x)−
N∑

j=1

ujK (·,x j)

∥∥∥∥∥∥
2

HK (Ω)

=
∥∥∥K (·,x)− k(·)T u

∥∥∥2

HK (Ω)
.(2)
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The Basic Power Function Error Estimate The Power Function

Remark
The name power function was chosen by [Sch93] based on its
connection to the power function of a statistical decision function
(originally introduced in [NP36]).

In the paper [WS93] the power function was referred to as kriging
function. However, as we saw in Chapter 4, the power function
corresponds to the square root of the kriging variance.
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The Basic Power Function Error Estimate The Power Function

Using the linear system notation employed earlier, i.e., Kij = K (x i ,x j),
i , j = 1, . . . ,N, u = (u1, . . . ,uN)T , and
k(x) = (K (x ,x1), . . . ,K (x ,xN))T , we note that we can also rewrite the
quadratic form Q(u) as

Q(u) = K (x ,x)− 2
N∑

j=1

ujK (x ,x j) +
N∑

i=1

N∑
j=1

uiujK (x i ,x j)

= K (x ,x)− 2k(x)T u + uT Ku. (3)

This suggests two alternative representations of the power function.

Using the matrix-vector notation for Q(u), the power function is given
as

PK ,X (x) =

√
Q(

?
u(x)) =

√
K (x ,x)− 2k(x)T ?

u(x) +
?
u(x)T K

?
u(x).
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The Basic Power Function Error Estimate The Power Function

However, by the definition of the cardinal functions K
?
u(x) = k(x), and

therefore we have the two new variants

PK ,X (x) =

√
K (x ,x)− 2k(x)T ?

u(x) +
?
u(x)T K

?
u(x)

=

√
K (x ,x)− k(x)T ?

u(x)

=

√
K (x ,x)− ?

u(x)T K
?
u(x).

Remark
These formulas can be used for the numerical evaluation of the power
function at x .
To this end one has to first find the value of the cardinal functions

?
u(x)

by solving the system K
?
u(x) = k(x).

This results in

PK ,X (x) =
√

K (x ,x)− k(x)T K−1k(x). (4)
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Example
Gaussian Power Function

Figure: Data sites and power function for Gaussian interpolant with ε = 6
based on N = 81 uniformly gridded points in [0,1]2.
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Example
More Gaussian Power Function

Figure: Data sites and power function for Gaussian interpolant with ε = 6
based on N = 81 tensor-product Chebyshev points in [0,1]2.
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Example
More Gaussian Power Function

Figure: Data sites and power function for Gaussian interpolant with ε = 6
based on N = 81 Halton points in [0,1]2.
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Remark
Dependence of the power function on the data locations is clearly
visible.
This connection was used in [DMSW05] to obtain an optimal set
of data locations that are independent of the data values.
Since K is a positive definite matrix whenever K is a strictly
positive definite kernel we see that the power function satisfies the
bounds

0 ≤ PK ,X (x) =

√
K (x ,x)− ?

u(x)T K
?
u(x) ≤

√
K (x ,x).

At this point — in the deterministic setting — the power function is
mostly a theoretical tool that helps us better understand error
estimates since we can decouple the effects due to the data
function f from those due to the kernel K and the data locations X
(see the following theorem).
However, the kriging variance has a practical use in defining
confidence intervals.
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Now we can give a first generic error estimate.

Theorem

Let Ω ⊆ Rd , K ∈ C(Ω× Ω) be strictly positive definite, and suppose
that the points X = {x1, . . . ,xN} are distinct. Denote the interpolant to
f ∈ HK (Ω) on X by s. Then for every x ∈ Ω

|f (x)− s(x)| ≤ PK ,X (x)‖f‖HK (Ω).
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Proof.
Since f is assumed to lie in the native space of K the reproducing
property of K yields

f (x) = 〈f ,K (·,x)〉HK (Ω).

We express the interpolant in its cardinal form and apply the
reproducing property of K . This gives us

s(x) =
N∑

j=1

f (x j)
?
uj(x)

=
N∑

j=1

?
uj(x)〈f ,K (·,x j)〉HK (Ω)

= 〈f ,
N∑

j=1

?
uj(x)K (·,x j)〉HK (Ω).
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Proof (cont.)
Now all that remains to be done is to combine the two formulas just
derived and apply the Cauchy-Schwarz inequality. Thus,

|f (x)− s(x)| =

∣∣∣∣∣∣〈f ,K (·,x)−
N∑

j=1

?
uj(x)K (·,x j)〉HK (Ω)

∣∣∣∣∣∣
≤ ‖f‖HK (Ω)

∥∥∥∥∥∥K (·,x)−
N∑

j=1

?
uj(x)K (·,x j)

∥∥∥∥∥∥
HK (Ω)

= ‖f‖HK (Ω)PK ,X (x),

where we have used the representation (2) of the quadratic form
Q(

?
u(x)) and the definition of the power function. �
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One of the main benefits of the above theorem is that we are now able
to estimate the interpolation error by considering two independent
phenomena:

the smoothness of the data (measured in terms of the native
space norm of f — which is independent of the data locations, but
does depend on K ),
and the distribution of the data (measured in terms of the power
function — independent of the actual data values).

Remark
This is analogous to the standard error estimate for polynomial
interpolation cited in most numerical analysis texts.
Effects due to the use of any specific kernel K (or basic function in
the translation invariant or radial case) are felt in both terms since
the native space norm of f also varies with K .

In particular, changing a possible shape parameter ε will have an
effect on both terms in the error bound.
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Error Bounds via Sampling Inequalities

We now use so-called sampling inequalities to obtain error bounds.
Sometimes this technique is referred to as a zeros lemma.

The basic idea for sampling inequalities seems to have originated in
the French school with the work of Duchon, Arcangéli and Atteia
[Duc78, Arc74]. Another early paper is [MP85].

The paper [NWW05] started a long string of recent activity such as
[ALdST07, ALdST09, ALdST12, GRZ13, HNW10, HNSW11, Mad06,
NWW06, Rie08, RSZ10, RZ08, RZ14, WR05, ZS13].
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How sampling inequalities lead to error bounds

A sampling inequality formalizes in a rigorous way the following very
general — and also intuitively convincing — idea:

It’s impossible for a smooth function u to become uncontrollably large
on its domain Ω provided

1 samples of u obtained on a sufficiently dense discrete subset X of
Ω are small enough (or zero), and

2 the derivatives of u are bounded on Ω.
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A typical sampling inequality looks like this:

|u|W m
q (Ω) ≤ C

(
h

k−m−d
(

1
p−

1
q

)
+ |u|W k

p (Ω) + h−m‖u‖`∞

)
, (5)

i.e., the weak semi-norm | · |W m
q (Ω) is bounded by

a strong semi-norm | · |W k
p (Ω) (defined in terms of m ≥ 0 and

k > m + d
p ), and

a discrete norm ‖ · ‖`∞ of the values u = (u(x1), . . . ,u(xN))T of u
on the set X = {x1, . . . ,xN} with fill distance h.

Note that
|u|W k

p (Ω) is multiplied by a positive power of h (i.e., its contribution
decreases as h gets small),
while ‖u‖`∞ is multiplied by a non-positive power of h (i.e., its
contribution increases as h gets small).
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In order to get a useful error bound we apply our sampling inequalities
in the case where the function u is interpreted as the residual f − s
between the function f and its approximation s.

Then, for any successful approximation method, the samples of the
residual will be small and will (hopefully) outweigh the h−m factor.

In particular, if s is obtained by interpolation on X , then the residual
vector ‖u‖`∞ = 0, and we get

|f − s|W m
q (Ω) ≤ Ch

k−m−d
(

1
p−

1
q

)
+ |f − s|W k

p (Ω).

Remark
This bound does not quite look like an error bound yet since it involves
the residual f − s also on the right-hand side.
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Therefore, an important assumption needs to be made:
We assume that our approximation satisfies the “energy split”
(Pythagorean) lemma from above, i.e.,

|f |2W k
p (Ω)

= |f − s|2W k
p (Ω)

+ |s|2W k
p (Ω)

,

which implies, in particular, that

|f − s|W k
p (Ω) ≤ |f |W k

p (Ω).

This is certainly true if the native space HK (Ω) is equivalent to the
Sobolev space W k

p (Ω). Then we end up with the error bound

|f − s|W m
q (Ω) ≤ Ch

k−m−d
(

1
p−

1
q

)
+ |f |W k

p (Ω).
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To make this bound look a bit more familiar we consider
Ω = [a,b],
set m = 0 (no simultaneous approximation of derivatives),
let p = q = 2 and
convert the Sobolev (semi-)norm on the right-hand side to an
L2-norm of derivatives.

Then we get for any f , s ∈ Ck ([a,b])

‖f − s‖L2([a,b]) ≤ Chk‖f (k)‖L2([a,b]).

Remark
This is, e.g., the kind of error bound that is typical for piecewise
polynomial spline interpolation.
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Sampling Inequalities for Kernel-based Approximation

We now look at error bounds for kernel-based interpolation methods
obtained via sampling inequalities.

Sampling inequalities in 1D are relatively easy to understand and to
obtain. So we first consider the univariate case in detail. This will
cover, e.g., our iterated Brownian bridge kernels.

Then we outline the important steps for the much more complicated
multivariate case.
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We consider a univariate kernel-based interpolation to data
{xi , f (xi)}Ni=1 at N distinct points X = {x1, . . . , xN} ⊂ Ω = [a,b] with fill
distance h in the domain Ω, i.e.,

h = sup
x∈Ω

min
x j∈X

‖x − x j‖.

As discussed above, we must first obtain a sampling inequality for a
generic function u of the same smoothness class as the kernel of
interest.

Here we assume that u ∈ Ck (Ω) for some non-negative integer k .
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We begin by constructing a local polynomial interpolant of order k (i.e.,
degree k − 1) to the generic function u ∈ Ck (Ω) at the points
Xx = {t1, . . . , tk} ⊂ X .

Remark
For convenience we denote the local points with tj , j = 1, . . . , k, instead
of picking appropriate subsets of indices for the original points in X .

We pick the local interpolation points in dependence on the point of
evaluation x , i.e., Xx consists of the k nearest neighbors of x from the
set of global interpolation points X ; this implies that we need N ≥ k .

This ensure that the local interpolation points are chosen as
“symmetrical” as possible around x .

Furthermore, we define the interval Ix as the smallest closed interval
which contains the points Xx .
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The uniqueness of univariate polynomial interpolation ensures that
there exists a constant C such that for any polynomial p of degree at
most k − 1 we have

sup
x∈Ix
|p(x)| ≤ C sup

tj∈Xx

∣∣p(tj)
∣∣ , (6)

i.e., the polynomial p is determined by its values on the set Xx .

Remark
A consequence of this property is that

p(tj) = 0 for all tj ∈ Xx =⇒ p ≡ 0 on Ix ,

i.e., the points in Xx determine p.
In the univariate setting this is straightforward, but in the
multivariate setting this causes a first difficulty, calling for the
introduction of so-called norming sets.
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A useful exact error formula for polynomial interpolation (known as
Kowalewski’s exact remainder formula, see [Dav63, Eqn. (3.7.10)],
[Mad06]) can be obtained starting from a Taylor expansion of u.

We give the derivation of this formula since it sheds some light on the
procedure recommended for the multivariate setting.

Given u ∈ Ck (Ω) and an arbitrary point tj ∈ Xx , we begin with [Mad06,
Eqn. (2.2.1)]

u(x) = u(tj)−
k−1∑
i=1

u(i)(x)

i!
(tj − x)i +

∫ x

tj

(tj − t)k−1

(k − 1)!
u(k)(t) dt , (7)

which is obtained by swapping the roles of x and tj in the usual version
of Taylor’s theorem with remainder.
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Now we consider the k th order Lagrange polynomials for interpolation
on Xx which satisfy

the cardinality conditions Lj(ti) = δij , i , j = 1, . . . , k and
reproduce polynomials up to order k , i.e.,

k∑
j=1

p(tj)Lj(x) = p(x), x ∈ Ix , (8)

In particular, we have
k∑

j=1

Lj(x) ≡ 1.

This is known as a partition of unity.

fasshauer@iit.edu MATH 590 67

http://math.iit.edu/~fass


Sampling Inequalities Sampling Inequalities for Kernel-based Approximation

Using this partition of unity property we can obtain a weighted average
of the Taylor formula (7) for j = 1, . . . , k , i.e., we multiply both sides of
(7) by Lj(x) and then sum over j from 1 to k resulting in

u(x) =
k∑

j=1

Lj(x)u(tj)−
k∑

j=1

Lj(x)
k−1∑
i=1

u(i)(x)

i!
(tj − x)i

+
k∑

j=1

Lj(x)

∫ x

tj

(tj − t)k−1

(k − 1)!
u(k)(t) dt . (9)

The first sum is nothing but pk (x), the unique k th order polynomial
interpolating u on Xx , since u(tj) = pk (tj), j = 1, . . . , k , and pk is
defined by its Lagrange form pk (x) =

∑k
j=1 Lj(x)pk (tj).

The reproduction of polynomials up to degree k − 1 (8) implies
that the double sum vanishes since

∑k
j=1 Lj(x)(tj − x)i = 0,

i = 1, . . . , k − 1.
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The result is Kowalewski’s exact remainder formula as stated in
[Mad06]:

u(x) = pk (x) +
k∑

j=1

Lj(x)

∫ x

tj

(tj − t)k−1

(k − 1)!
u(k)(t) dt . (10)

By replacing pk by its Lagrange form as in (9), and then applying the
triangle inequality to (10) and bounding the values of u in the first sum
by their maximum we get

|u(x)| ≤ Λk max
tj∈Xx

|u(tj)|+
k∑

j=1

|Lj(x)|

∣∣∣∣∣
∫ x

tj

(tj − t)k−1

(k − 1)!
u(k)(t) dt

∣∣∣∣∣ , (11)

where we have introduced the abbreviation

Λk = max
x∈Ix

k∑
j=1

|Lj(x)|

to denote the Lebesgue constant for polynomial interpolation at the
points t1, . . . , tk .

fasshauer@iit.edu MATH 590 69

http://math.iit.edu/~fass


Sampling Inequalities Sampling Inequalities for Kernel-based Approximation

Remark
The Lebesgue constant depends on the distribution of interpolation
points.

It grows logarithmically in k for Chebyshev points (which is the
minimal rate of growth, but not with optimal constant),
while it grows exponentially in k for equally spaced points.

Note, however, that this growth is not important for us since k is fixed
here.
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In order to remove the Lagrange polynomials from the second term in
(11) we make use of (6) so that

|Lj(x)| ≤ Cj max
ti∈Xx

|Lj(ti)| ≤ Cj ,

by the cardinality of the Lagrange polynomials.
This leaves us with

|u(x)| ≤ Λk max
tj∈Xx

|u(tj)|+ C
k∑

j=1

∣∣∣∣∣
∫ x

tj

(tj − t)k−1

(k − 1)!
u(k)(t) dt

∣∣∣∣∣ ,
where C = maxj=1,...,k Cj .
Now we bound the integral using the Cauchy–Schwarz inequality, i.e.,∣∣∣∣∣
∫ x

tj

(tj − t)k−1

(k − 1)!
u(k)(t) dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ x

tj

(tj − t)2k−2

((k − 1)!)2 dt

∣∣∣∣∣
1/2 ∣∣∣∣∣

∫ x

tj

(
u(k)(t)

)2
dt

∣∣∣∣∣
1/2

=
|tj − x |k−1/2

√
2k − 1(k − 1)!

∣∣∣∣∣
∫ x

tj

(
u(k)(t)

)2
dt

∣∣∣∣∣
1/2

.
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This results in

|u(x)| ≤ Λk max
tj∈Xx

|u(tj)|+C
k∑

j=1

 |tj − x |k−1/2
√

2k − 1(k − 1)!

∣∣∣∣∣
∫ x

tj

(
u(k)(t)

)2
dt

∣∣∣∣∣
1/2
 .

We will now aim for a sampling inequality in the L2-norm.
Therefore we next square both sides of this inequality and apply the
Cauchy–Schwarz estimates

(A + B)2 ≤ 2A2 + 2B2 and
(∑k

j=1 Aj

)2
≤ k

∑k
j=1(Aj)

2

to the right-hand side.
This yields

|u(x)|2 ≤2Λ2
k

(
max
tj∈Xx

|u(tj)|
)2

(12)

+
2kC2

(2k − 1) ((k − 1)!)2

k∑
j=1

|tj − x |2k−1

∣∣∣∣∣
∫ x

tj

(
u(k)(t)

)2
dt

∣∣∣∣∣ .
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To obtain an L2-norm estimate on the local interval Ix we will have to
integrate both sides over Ix = [α, β] with appropriately chosen
endpoints α and β.

We observe what happens if we integrate one of the summands on the
right-hand side of (12) considering that tj ∈ [α, β]:∫ β

α

|tj − x |2k−1

∣∣∣∣∣
∫ x

tj

(
u(k)(t)

)2
dt

∣∣∣∣∣dx

=

∫ tj

α

(
u(k)(t)

)2
∫ α

t
|tj − x |2k−1 dx dt +

∫ β

tj

(
u(k)(t)

)2
∫ β

t
|tj − x |2k−1 dx dt

≤
|tj − α|2k

2k

∫ tj

α

(
u(k)(t)

)2
dt +

|tj − β|2k

2k

∫ β

tj

(
u(k)(t)

)2
dt .
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Since both |tj − α| and |tj − β| are at most kh (because of the definition
of fill distance) we get∫ β

α
|tj − x |2k−1

∣∣∣∣∣
∫ x

tj

(
u(k)(t)

)2
dt

∣∣∣∣∣dx ≤ (kh)2k

2k

∫ β

α

(
u(k)(t)

)2
dt .

We now plug this into the integrated version of (12) and use∫ β
α

(
u(k)(t)

)2
dt = ‖u(k)‖2L2(Ix ) to obtain

‖u‖2
L2(Ix ) ≤ 2khΛ2

k

(
max
tj∈Xx

|u(tj )|
)2

+
2kC2

(2k − 1) ((k − 1)!)2

k∑
j=1

(kh)2k

2k
‖u(k)‖2

L2(Ix )

= 2khΛ2
k

(
max
tj∈Xx

|u(tj )|
)2

+
kC2(kh)2k

(2k − 1) ((k − 1)!)2 ‖u
(k)‖2

L2(Ix ).
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Note that we can rewrite

‖u‖2L2(Ix ) ≤ 2khΛ2
k

(
max
tj∈Xx

|u(tj)|
)2

+
kC2(kh)2k

(2k − 1) ((k − 1)!)2 ‖u
(k)‖2L2(Ix ).

as

‖u‖2L2(Ix ) ≤ C2
1h
(

max
tj∈Xx

|u(tj)|
)2

+ C2
2h2k‖u(k)‖2L2(Ix )

provided the constants C1 and C2 (which depend on k and on the
points in Xx , but not on h or u) are defined accordingly.

Applying the inequality
√

A2 + B2 ≤ A + B (for A,B > 0) we have the
final form of the local sampling inequality

‖u‖L2(Ix ) ≤ C1
√

h max
tj∈Xx

|u(tj)|+ C2hk‖u(k)‖L2(Ix ).
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To finally obtain a global sampling inequality we use a technique
introduced in [Duc78].
For this covering argument to apply we note that we can cover the
interval Ω = [a,b] with a family of subintervals Ix as discussed above.
In fact,

each of these subintervals has length at most kh and
each point x ∈ Ω is covered by at most k ≤ N subintervals.

This allows us to sum up all the local estimates to arrive at

‖u‖L2(Ω) ≤ C3
√

b − a max
xj∈X
|u(xj)|+ C4hk‖u(k)‖L2(Ω), (13)

where the constants C3 and C4 depend on k ,N, and the distribution of
the points in X , but not on h and u.
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Note that

‖u‖L2(Ω) ≤ C3
√

b − a max
xj∈X
|u(xj)|+ C4hk‖u(k)‖L2(Ω),

looks like our typical sampling inequality (5) with
Ω = [a,b],
C = max{C3

√
b − a,C4},

m = 0, and
p = q = 2.
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The sampling inequality (13) says that the continuous L2-norm of u is
bounded by

the k th power of the fill distance times the stronger Hk -norm of u
and
a discrete maximum-norm of the values of u on X .

This estimate holds for any function u ∈ Ck (Ω).

In particular, it provides an error bound for any method that generates
an interpolant s ∈ Ck (Ω) to a function f ∈ Ck (Ω) at the points in X . In
this case we have

‖f − s‖L2(Ω) ≤ Chk‖(f − s)(k)‖L2(Ω)

as outlined above.
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In order to get the upper bound to depend only on the input data, i.e., f
and X (or its fill distance h) we use the triangle inequality so that

‖f − s‖L2(Ω) ≤ Chk
(
‖f (k)‖L2(Ω) + ‖s(k)‖L2(Ω)

)
.

If we are working in a setting in which the interpolant is also a
minimum norm interpolant (such as in a reproducing kernel Hilbert
space HK (Ω)) then

‖s(k)‖L2(Ω) ≤ ‖f (k)‖L2(Ω),

provided HK (Ω) is equivalent to the Sobolev space Hk (Ω), and we
obtain the error bound

‖f − s‖L2(Ω) ≤ 2Chk‖f‖Hk (Ω).

fasshauer@iit.edu MATH 590 79

http://math.iit.edu/~fass


Sampling Inequalities Sampling Inequalities for Kernel-based Approximation

Remark
These orders in h, however, are only “half” of what is known as the
optimal bounds in the literature.
In order to “double” the orders one needs to take into account
additional properties of the native Hilbert space.
In particular, incorporating the boundary behavior of f and s is
important to achieve those higher orders. We already saw this
experimentally in Chapter 6.

fasshauer@iit.edu MATH 590 80

http://math.iit.edu/~fass


Sampling Inequalities Sampling Inequalities for Kernel-based Approximation

Remark
Estimates in other norms can be obtained similarly using Hölder’s
inequality instead of Cauchy–Schwarz.
This approach can also be extended to other settings, such as
(least squares) approximation or PDE error estimates — both in
strong form and weak form.
Details on more advanced versions of error bounds based on
sampling inequalities are available in the original literature listed
above.

fasshauer@iit.edu MATH 590 81

http://math.iit.edu/~fass


Sampling Inequalities Sampling inequalities in higher dimensions

Sampling inequalities in higher dimensions

The main problem in higher dimensions is the misbehavior of
polynomial interpolation:

depending on the points in X , the interpolating polynomial may
not be unique, or it may not even exist (see, e.g., [GS00]).

Therefore, one usually resorts to
oversampling and
an approximation in terms of local (moving) least squares
polynomials.

This approach then also calls for so-called norming sets as defined in
[JSW99] (or as determining sets in [Mad06]).
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A norming set Λ of a normed linear space F is a finite set of linear
functionals (such as point evaluation functionals
λi(f ) = f (x i), i = 1, . . . ,N) defined on the dual of F .

It provides a bound of the continuous F-norm of f by only discrete
samples, i.e.,

‖f‖F ≤ C sup
λi∈Λ,‖λi‖=1

|λi(f )| for all f ∈ F (14)

with some positive constant C that depends on F and Λ.

We saw an example for the case of univariate polynomials and point
evaluation functionals earlier:

sup
x∈Ix
|p(x)| ≤ C sup

tj∈Xx

∣∣p(tj)
∣∣ .
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Following [RSZ10], we now sketch a standard way to prove a typical
sampling inequality of the form

‖Dαu‖Lq(Ω) ≤ C

(
h

k−|α|−d
(

1
p−

1
q

)
+ |u|W k

p (Ω) + h−|α|‖SXu‖`∞

)
.

Here SX is a sampling operator on X and α is a multi-index so that Dα

denotes a standard multivariate derivative operator of order |α|.
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For some domain D, star-shaped with respect to a ball1, let
{a(α)

j , j = 1, . . . ,N} be a local polynomial reproduction of degree k with
respect to a discrete set X = {x1, . . . ,xN} ⊂ D, i.e.,

Dαq(x) =
N∑

j=1

a(α)
j (x)q(x j)

holds for every multi-index α with |α| ≤ k , all x ∈ D and all q ∈ Πd
k (D),

where Πk
d denotes the space of all d-variate polynomials of degree at

most k .

1D is called star-shaped with respect to a ball B if, for all x ∈ D, the closed convex
hull of {x} ∪ B is a subset of D (see, e.g., [BS94, (4.2.2) Definition]).
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Then we have

|Dαu(x)| ≤ ‖Dα(u−p)‖L∞(D)+
N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣ (‖u − p‖L∞(D) + ‖SXu‖`∞
)

for arbitrary u ∈W k
p (D) and any polynomial p ∈ Πk

d (D).

Using a polynomial reproduction argument based on norming sets, the
Lebesgue constant can be bounded by

∑N
j=1

∣∣∣a(α)
j (x)

∣∣∣ ≤ 2, if some
moderate oversampling is allowed.

Remark
As a local polynomial approximation one usually chooses the averaged
Taylor polynomials of degree k (see [BS94, Section 4.1].
In contrast to the averaging process we used in the one-dimensional
setting, the multivariate average needs to be constructed with an
appropriately defined measure which reproduces polynomials.
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Doing all of this leads to a local sampling inequality of the form

‖Dαu‖L∞(D) ≤
C

(k − |α|)!
δ

k−d/p
D

(
δ
−|α|
D + h−|α|

)
|u|W k

p (D)+2h−|α|‖SXu‖`∞ ,

where δD denotes the diameter of D.

To derive sampling inequalities on a global Lipschitz domain Ω
satisfying an interior cone condition, we cover Ω by domains D which
are star-shaped with respect to a ball, satisfying δD ≈ h (see [Duc78]
for details on such coverings).

Global estimates are obtained by summation or maximization over the
local estimates (see, e.g., [Wen05, Theorem 11.32]) similar to what
was done in the one-dimensional setting.
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