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Introduction

A “flat” limit seems to exist for interpolation with C2 Wendland
kernels on [0,1] based on N uniformly spaced points with ε
varying from 10−3 to 100.

Does this happen for other kernels?
Does it happen for all kernels?
What is this limit?
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Introduction

About 10 years ago an interesting connection was discovered between
interpolants based on infinitely smooth RBFs such as Gaussians,
generalized (inverse) multiquadrics and the oscillatory kernels1

K (x , z) =
Jβ/2−1(ε‖x − z‖)
ε‖x − z‖dβ/2−1 , β ≥ d

In many cases the limiting (“flat”) RBF interpolants were identical
to polynomial interpolants — especially in 1D experiments.

(see, e.g., [DF02, FF05, FW04, LF03, LF05])

1For fixed z these are fundamental solutions, bounded at the origin, of the
d-dimensional Helmholtz operator in spherical coordinates (see [FLW06], where they
are called Bessel kernels, see also [Fas07, Ch.4], where they are referred to as
Poisson functions).
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Infinitely Smooth RBFs

In [DF02] univariate (d = 1) interpolation with ε-scaled infinitely
smooth radial kernels was studied.

Driscoll and Fornberg show that the RBF interpolant

sε(x) =
N∑

j=1

cjκ(‖ε(x − xj)‖), x ∈ [a,b] ⊂ R,

to function values at N distinct data sites tends to the Lagrange
interpolating polynomial of f as ε→ 0.

Run FlatGaussian.cdf

Remark
In order to fully exploit this relationship it will be necessary to develop
stable evaluation algorithms for “flat” kernels.
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Infinitely Smooth RBFs

The “flat” polynomial limit for Gaussian interpolation, stably computed
with the algorithm from [FM12].
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Infinitely Smooth RBFs

The multivariate case is more complicated.

Remark
Note that most of the following results are limited to radial kernels, i.e.,
radial basis functions (RBFs).

The limiting RBF interpolant is given by a low-degree multivariate
polynomial (see [Boo06, LF05, LYY07, Sch05, Sch08]).

For example, if the data sites are located such that they guarantee
a unique polynomial interpolant, then the limiting RBF interpolant is
given by this polynomial.
If polynomial interpolation is not unique, then the RBF limit is still a
polynomial whose form depends on the choice of basic function.

Lee and Micchelli [LM13] recently showed that in the multivariate
setting, when the interpolation points that are unisolvent for
d-variate polynomials of total degree `, there is also a unique
polynomial limiting interpolant for a given (not necessarily radial)
kernel, provided it is analytic.
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Infinitely Smooth RBFs

Theorem (Driscoll, Fornberg, Larsson, Schaback, Yoon [2002-08])

Assume the strictly positive definite radial kernel κ has an expansion

κ(r) =
∞∑

j=0

aj r2j

into even powers of r (i.e., κ is infinitely smooth), and that the data X
are unisolvent with respect to any set of N linearly independent
polynomials of degree at most m. Then

lim
ε→0

sε(x) = pm(x), x ∈ Rs,

where pm is determined as follows:
If interpolation with polynomials of degree at most m is unique,
then pm is that unique polynomial interpolant.
If interpolation with polynomials of degree at most m is not unique,
then pm is a polynomial interpolant whose form depends on the
choice of RBF.
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Infinitely Smooth RBFs

Some Examples

Inverse quadratic

κ(εr) =
1

1 + ε2r2 = 1− (εr)2 + (εr)4 − (εr)6 + (εr)8 + · · ·

Gaussian

κ(εr) = e−ε
2r2

= 1− (εr)2 +
(εr)4

2
− (εr)6

6
+

(εr)8

24
+ · · ·

Inverse MQ

κ(εr) =
1√

1 + ε2r2
= 1− (εr)2

2
+

3(εr)4

8
− 5(εr)6

16
+

35(εr)8

128
+ · · ·

Poisson, β = d = 2

κ(εr) = J0(εr) = 1− (εr)2

4
+

(εr)4

64
− (εr)6

2304
+

(εr)8

147456
+ · · ·
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Infinitely Smooth RBFs

Remark
The statements in the theorem require the RBFs to satisfy a
condition on certain coefficient matrices Ap,J . This condition was
left unproven in [LF05] and verified in [LYY07].

For the special case of Gaussians [Sch05] shows that as ε→ 0
the RBF interpolant converges to the de Boor and Ron least
polynomial interpolant (see [Boo92, BR90, BR92] and also
[Boo06]).
In [LF05] the authors use Taylor expansions to also provide an
explanation for the error behavior for small values of the shape
parameter, and for the existence of an optimal (positive) value of ε
giving rise to a global minimum of the error function.
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Infinitely Smooth RBFs

Remark
The work by Narayan and Xiu [NX12] suggests that a connection
may be found between other unique multivariate polynomial
interpolants (determined by different families of orthogonal
polynomials) and corresponding RBF interpolants.

In [NX12] it is shown that their orthogonal polynomial interpolant
with Hermite polynomials corresponds to the de Boor and Ron least
polynomial interpolant.
In [FM12] it was shown that the flat limit of Gaussians is given by
Hermite polynomials.
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Infinitely Smooth RBFs

Remark
In [FW04] the authors describe a so-called Contour-Padé
algorithm that makes it possible (for data sets of relatively modest
size) to compute the RBF interpolant for all values of the shape
parameter ε including the limiting case ε→ 0.

Some numerical result obtained with Grady Wright’s MATLAB

toolbox are included in [Fas07, Ch. 17].

Other recent work obtaining RBF interpolants close to the
polynomial limit, i.e., for small ε, is [FM12, FLF11].

We will discuss the Hilbert–Schmidt stable evaluation algorithm of
[FM12] soon.
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Infinitely Smooth RBFs

Big Deal: “Flat” Limits, So What?

One of the most intriguing aspects associated with the polynomial
limit of RBF interpolants is the fact that RBF interpolants seem to
be most accurate (for a fixed number N of given samples) for a
positive value of the shape parameter ε.

The following figure clearly exhibits a minimum in the interpolation
error distinctly away from zero.

Figure: f (x) = sin(x/2)− 2 cos(x) + 4 sin(πx), x ∈ [−4,4]
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Infinitely Smooth RBFs

The observations of this section imply that RBF interpolants are
(more flexible) generalizations of polynomial interpolants, and
therefore must be at least as accurate as (and often quite a bit
more than) polynomial interpolants.

However, polynomials are the basis of traditional algorithms
(usually referred to a spectral methods) for the numerical solution
of equations whose solution is known to be smooth.

Message from this section:

RBFs, using stable evaluation algorithms and good pre-
dictors of optimal shape parameters, should be able to do
better than polynomials.
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RBFs with Finite Smoothness

The flat limit of RBFs with finite smoothness was not studied until
the recent paper [SRFH12] in which interpolation on Rd was
investigated.

The thesis [BS10] contains similar investigations done
simultaneously and independently.

Before we explain the results obtained in [SRFH12], we recall a
few finitely smooth radial kernels and their interpretation as full
space Green’s functions.

fasshauer@iit.edu MATH 590 18

http://math.iit.edu/~fass


RBFs with Finite Smoothness

Example (Radial kernels with finite smoothness)

The univariate C0 Matérn kernel K (x , z)
.

= e−ε|x−z| is the
full-space Green’s function for the differential operator

L = − d2

dx2 + ε2I.

On the other hand, it is well-known that univariate C0 piecewise
linear splines may be expressed in terms of kernels of the form
K (x , z)

.
= |x − z|. The corresponding differential operator is

L = − d2

dx2 .

Note that the differential operator for the Matérn kernel
“converges” to that of the piecewise linear splines as ε→ 0.
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RBFs with Finite Smoothness

Example (cont.)

The univariate C2 tension spline kernel [Sch66, Ren87]
K (x , z)

.
= e−ε|x−z| + ε|x − z| is the Green’s kernel of

L = − d4

dx4 + ε2 d2

dx2 ,

while the univariate C2 cubic spline kernel K (x , z)
.

= |x − z|3
corresponds to

L = − d4

dx4 .

Again, the differential operator for the tension spline “converges”
to that of the cubic spline as ε→ 0.
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RBFs with Finite Smoothness

Example (cont.)
In [BTA04] we find a so-called univariate Sobolev kernel of the
form K (x , z)

.
= e−ε|x−z| sin

(
ε|x − z|+ π

4

)
which is associated with

L = − d4

dx4 − ε
2I.

The operator for this kernel also “converges” to that of the cubic
spline kernel, but the effect of the scale parameter is different than
for the tension spline.

Remark
Note that this Sobolev kernel is different from the Sobolev splines
(Matérn functions) discussed earlier — terminology . . .
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RBFs with Finite Smoothness

Example (cont.)
The general multivariate Matérn kernels are of the form

K (x , z)
.

= Kβ−d/2 (ε‖x − z‖) (ε‖x − z‖)β−d/2 , β >
d
2
,

and can be obtained as Green’s kernels of (see [FY11])

L =
(
ε2I −∆

)β
, β >

d
2
.

We contrast this with the polyharmonic spline kernels

K (x , z)
.

=

{
‖x − z‖2β−d , d odd,
‖x − z‖2β−d log ‖x − z‖, d even,

and
L = (−1)β∆β, β >

d
2
.
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RBFs with Finite Smoothness
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RBFs with Finite Smoothness

All examples above show that the differential operators associated
with finitely smooth RBF kernels “converge” to those of a
piecewise polynomial or polyharmonic spline kernel as ε→ 0.

We therefore ask if RBF interpolants based on finitely smooth
kernels converge to (polyharmonic) spline interpolants for ε→ 0
as is the case for infinitely smooth radial kernels and polynomials.

As mentioned above, infinitely smooth radial kernels can be
expanded into an infinite series of even powers of r .

Finitely smooth radial kernels can also be expanded into an
infinite series of powers of r .

In this case there always exists some minimal odd power of r with
nonzero coefficient indicating the smoothness of the kernel.
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RBFs with Finite Smoothness

Example

For univariate C0, C2 and C4 Matérn kernels, respectively, we have

κ(εr)
.

= e−εr

= 1− εr +
1
2

(εr)2 − 1
6

(εr)3 + · · · ,

κ(εr)
.

= (1 + εr)e−εr

= 1− 1
2

(εr)2 +
1
3

(εr)3 − 1
8

(εr)4 + · · · ,

κ(εr)
.

=
(

3 + 3εr + (εr)2
)

e−εr

= 3− 1
2

(εr)2 +
1
8

(εr)4 − 1
15

(εr)5 +
1

48
(εr)6 + · · · .
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RBFs with Finite Smoothness

Theorem ([SRFH12])

Suppose κ is radial and conditionally positive definite of order m ≤ n
with an expansion of the form

κ(r) = a0 + a2r2 + . . .+ a2nr2n + a2n+1r2n+1 + a2n+2r2n+2 + . . . ,

where 2n + 1 denotes the smallest odd power of r present in the
expansion (i.e., κ is finitely smooth). Also assume that the data X
contain a unisolvent set with respect to the space Πd

2n of d-variate
polynomials of degree less than 2n. Then

lim
ε→0

sε(x) =
N∑

j=1

cj‖x − x j‖2n+1 +
M∑

k=1

dkpk (x), x ∈ Rd ,

where {pk : k = 1, . . . ,M} denotes a basis of Πd
n .
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RBFs with Finite Smoothness

Remark
The previous theorem does not cover Matérn kernels with odd-order
smoothness. However, all other examples listed above are covered.
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Figure: Convergence of C0 (left) and C2 (right) Matérn interpolants to
piecewise linear (left) and cubic (right) spline interpolants.
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RBFs with Finite Smoothness

On bounded intervals, interpolants with iterated Brownian bridge
kernels (or tension splines) converge to piecewise polynomial spline
interpolants as discussed earlier.
For β = 1 this means

K1,ε(x , z) =

{sinh(εx) sinh(ε(1−z))
ε sinh(ε) , 0 ≤ x ≤ z ≤ 1,

sinh(εz) sinh(ε(1−x))
ε sinh(ε) , 0 ≤ z ≤ x ≤ 1.

ε→0−→ K1(x , z) = min(x , z)− xz.

Figure: Brownian bridge (left) and tension spline (right) kernels for 15 equally
spaced values of z in [0,1].
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RBFs with Finite Smoothness

The following “relaxation spline” kernel also converges to the Brownian
bridge kernel:

Krelax(x , z) =

{ sin(εx) sin(ε(1−z))
ε sin(ε) , 0 ≤ x ≤ z ≤ 1,

sin(εz) sin(ε(1−x))
ε sin(ε) , 0 ≤ z ≤ x ≤ 1.

−→ K1(x , z) = min(x , z)− xz.

Figure: Brownian bridge (left) and relaxation spline (right) kernels for 15
equally spaced values of z in [0,1].
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RBFs with Finite Smoothness

Remark
Lee and Micchelli [LM13] show that in the univariate setting not only
“flat” smooth RBF interpolants converge to polynomial interpolants, but
that the same holds for interpolants based on “flat” smooth translation
invariant kernels, and even for general smooth kernels.
In the multivariate setting the authors consider interpolation points that
are unisolvent for d-variate polynomials of total degree `. In this case
they also obtain a unique polynomial limiting interpolant for a given
(not necessarily radial) kernel, provided it is analytic.
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