
Chapter 4

Compactly Supported Radial

Basis Functions

As we saw earlier, compactly supported functions Φ that are truly strictly condition-
ally positive definite of order m > 0 do not exist. The compact support automatically
ensures that Φ is strictly positive definite. Another observation was that compactly
supported radial functions can be strictly positive definite on IRs only for a fixed max-
imal s-value. It is not possible for a function to be strictly positive definite and radial
on IRs for all s and also have a compact support. Therefore we focus our attention
on the characterization and construction of functions that are compactly supported,
strictly positive definite and radial on IRs for some fixed s.

According to our earlier work (Bochner’s Theorem and generalizations thereof), a
function is strictly positive definite and radial on IRs if its s-variate Fourier transform
is non-negative. Theorem 2.1.2 gives the Fourier transform of Φ = ϕ(‖ · ‖) as

Φ̂(x) = Fsϕ(r) = r−(s−2)/2

∫ ∞

0
ϕ(t)ts/2J(s−2)/2(rt)dt.

4.1 Operators for Radial Functions and Dimension Walks

Schaback and Wu [564] defined an integral operator and its inverse differential operator,
and discussed an entire calculus for how these operators act on radial functions. These
operators will facilitate the construction of compactly supported radial functions.

Definition 4.1.1 1. Let ϕ be such that t 7→ tϕ(t) ∈ L1[0,∞), then we define

(Iϕ)(r) =

∫ ∞

r
tϕ(t)dt, r ≥ 0.

2. For even ϕ ∈ C2(IR) we define

(Dϕ)(r) = −1

r
ϕ′(r), r ≥ 0.

In both cases the resulting functions are to be interpreted as even functions using

even extension.
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Remark: Note that the operator I differs from the operator I introduced earlier by
a factor t in the integrand. However, the two operators are related. In fact, we have
Iϕ(·2/2) = Iϕ(·), i.e.,

∫ ∞

r
tϕ(t2/2)dt =

∫ ∞

r2/2
ϕ(t)dt.

The most important properties of these operators are (see, e.g., [564] or [627]):

Theorem 4.1.2 1. Both D and I preserve compact support, i.e., if ϕ has compact

support, then so do Dϕ and Iϕ.

2. If ϕ ∈ C( IR) and t 7→ tφ(t) ∈ L1[0,∞), then DIϕ = ϕ.

3. If ϕ ∈ C2(IR) is even and ϕ′ ∈ L1[0,∞), then IDϕ = ϕ.

4. If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(ϕ) = Fs−2(Iϕ).

5. If ϕ ∈ C2(IR) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then Fs(ϕ) = Fs+2(Dϕ).

The operators I and D allow us to express s-variate Fourier transforms as (s− 2)-
or (s+ 2)-variate Fourier transforms, respectively. In particular, a direct consequence
of the above properties and the characterization of strictly positive definite radial func-
tions (Theorem 2.4.1) is

Theorem 4.1.3 1. Suppose ϕ ∈ C(IR). If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then

ϕ is strictly positive definite and radial on IRs if and only if Iϕ is strictly positive

definite and radial on IRs−2.

2. If ϕ ∈ C2(IR) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then ϕ is strictly positive

definite and radial on IRs if and only if Dϕ is strictly positive definite and radial

on IRs+2.

This allows us to construct new strictly positive definite radial functions from given
ones by a “dimension-walk” technique that steps through multivariate Euclidean space
in even increments.

4.2 Wendland’s Compactly Supported Functions

In [627] Wendland constructed a popular family of compactly supported radial functions
by starting with the truncated power function (which we know to be strictly positive
definite and radial on IRs for s ≤ 2` − 1), and then walking through dimensions by
repeatedly applying the operator I.

Definition 4.2.1 With ϕ`(r) = (1 − r)`
+ we define

ϕs,k = Ikϕbs/2c+k+1.

It turns out that the functions ϕs,k are all supported on [0, 1] and have a polynomial
representation there. More precisely,
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Theorem 4.2.2 The functions ϕs,k are strictly positive definite and radial on IRs and

are of the form

ϕs,k(r) =

{

ps,k(r), r ∈ [0, 1],
0, r > 1,

with a univariate polynomial ps,k of degree bs/2c+3k+1. Moreover, ϕs,k ∈ C2k(IR) are

unique up to a constant factor, and the polynomial degree is minimal for given space

dimension s and smoothness 2k.

Wendland gave recursive formulas for the functions ϕs,k for all s, k. We instead list
the explicit formulas of [195]

Theorem 4.2.3 The functions ϕs,k, k = 0, 1, 2, 3, have the form

ϕs,0(r) = (1 − r)`
+,

ϕs,1(r)
.
= (1 − r)`+1

+ [(`+ 1)r + 1] ,

ϕs,2(r)
.
= (1 − r)`+2

+

[

(`2 + 4`+ 3)r2 + (3`+ 6)r + 3
]

,

ϕs,3(r)
.
= (1 − r)`+3

+

[

(`3 + 9`2 + 23`+ 15)r3 + (6`2 + 36`+ 45)r2 + (15`+ 45)r + 15
]

,

where ` = bs/2c + k + 1, and the symbol
.
= denotes equality up to a multiplicative

positive constant.

Proof: The case k = 0 follows directly from the definition. Application of the definition
for the case k = 1 yields

ϕs,1(r) = (Iϕ`)(r) =

∫ ∞

r
tϕ`(t)dt

=

∫ ∞

r
t(1 − t)`

+dt

=

∫ 1

r
t(1 − t)`dt

=
1

(`+ 1)(`+ 2)
(1 − r)`+1 [(`+ 1)r + 1] ,

where the compact support of ϕ` reduces the improper integral to a definite integral
which can be evaluated using integration by parts. The other two cases are obtained
similarly by repeated application of I. �

Examples: For s = 3 we get some of the most commonly used functions as

ϕ3,0(r) = (1 − r)2+, ∈ C0 ∩ SPD(IR3)
ϕ3,1(r)

.
= (1 − r)4+ (4r + 1) , ∈ C2 ∩ SPD(IR3)

ϕ3,2(r)
.
= (1 − r)6+

(

35r2 + 18r + 3
)

, ∈ C4 ∩ SPD(IR3)
ϕ3,3(r)

.
= (1 − r)8+

(

32r3 + 25r2 + 8r + 1
)

, ∈ C6 ∩ SPD(IR3).
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4.3 Wu’s Compactly Supported Functions

In [656] Wu presents another way to construct strictly positive definite radial functions
with compact support. He starts with the function

ψ(r) = (1 − r2)`
+, ` ∈ IN,

which is strictly positive definite and radial since we know that the truncated power
function ψ(

√·) is multiply monotone. Wu then constructs another function that is
strictly positive definite and radial on IR by convolution, i.e.,

ψ`(r) = (ψ ∗ ψ)(2r)

=

∫ ∞

−∞
(1 − t2)`

+(1 − (2r − t)2)`
+dt

=

∫ 1

−1
(1 − t2)`(1 − (2r − t)2)`dt.

This function is strictly positive definite since its Fourier transform is essentially the
square of the Fourier transform of ψ. Just like the Wendland functions, this function
is a polynomial on its support. In fact, the degree of the polynomial is 4` + 1, and
ψ` ∈ C2`(IR).

Now, a family of strictly positive definite radial functions is constructed by a di-
mension walk using the D operator, i.e.,

ψk,` = Dkψ`.

The functions ψk,` are strictly positive definite and radial in IRs for s ≤ 2k + 1, are
polynomials of degree 4`− 2k+ 1 on their support and in C2(`−k) in the interior of the
support. On the boundary the smoothness increases to C2`−k.

Example: For ` = 3 we can compute the three functions

ψk,3(r) = Dkψ3(r) = Dk((1 − ·2)3+ ∗ (1 − ·2)3+)(2r), k = 0, 1, 2, 3.

This results in

ψ0,3(r)
.
=

(

5 − 39r2 + 143r4 − 429r6 + 429r7 − 143r9 + 39r11 − 5r13
)

+.
= (1 − r)7+(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6) ∈ C6 ∩ SPD(IR)

ψ1,3(r)
.
=

(

6 − 44r2 + 198r4 − 231r5 + 99r7 − 33r9 + 5r11
)

+.
= (1 − r)6+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5) ∈ C4 ∩ SPD(IR3)

ψ2,3(r)
.
=

(

8 − 72r2 + 105r3 − 63r5 + 27r7 − 5r9
)

+.
= (1 − r)5+(8 + 40r + 48r2 + 25r3 + 5r4) ∈ C2 ∩ SPD(IR5)

ψ3,3(r)
.
=

(

16 − 35r + 35r3 − 21r5 + 5r7
)

+.
= (1 − r)4+(16 + 29r + 20r2 + 5r3) ∈ C0 ∩ SPD(IR7).

Remarks:

1. For a prescribed smoothness the polynomial degree of Wendland’s functions is
lower than that of Wu’s functions. For example, both Wendland’s function ϕ3,2

and Wu’s function ψ1,3 are C4 smooth and strictly positive definite and radial in
IR3. However, the polynomial degree of Wendland’s function is 8, whereas that
of Wu’s function is 11.
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Figure 4.1: Plot of Wendland’s functions (left), Wu’s functions (center), and Buhmann’s
function (right) listed as examples.

2. While both families of strictly positive definite compactly supported functions are
constructed via dimension walk, Wendland uses integration (and thus obtains
a family of increasingly smoother functions), whereas Wu needs to start with
a function of sufficient smoothness, and then obtains successively less smooth
functions (via differentiation).

4.4 Buhmann’s Compactly Supported Functions

A third family of compactly supported strictly positive definite radial functions that
has appeared in the literature is due to Buhmann (see [84]). Buhmann’s functions
contain a logarithmic term in addition to a polynomial. His functions have the general
form

φ(r) =

∫ ∞

0
(1 − r2/t)λ

+t
α(1 − tδ)ρ

+dt.

Here 0 < δ ≤ 1
2 , ρ ≥ 1, and in order to obtain functions that are strictly positive

definite and radial on IRs for s ≤ 3 the constraints for the remaining parameters are
λ ≥ 0, and −1 < α ≤ λ−1

2 .

Example: An example with α = δ = 1
2 , ρ = 1 and λ = 2 is listed in [85]:

φ(r)
.
= 12r4 log r − 21r4 + 32r3 − 12r2 + 1, 0 ≤ r ≤ 1, ∈ C2 ∩ SPD(IR3).

Remarks:

1. While Buhmann [85] claims that his construction encompasses both Wendland’s
and Wu’s functions, Wendland [634] gives an even more general theorem that
shows that integration of a positive function f ∈ L1[0,∞) against a strictly posi-
tive definite (compactly supported) kernel K results in a (compactly supported)
strictly positive definite function, i.e.,

ϕ(r) =

∫ ∞

0
K(t, r)f(t)dt
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is strictly positive definite. Buhmann’s construction then corresponds to choosing
f(t) = tα(1 − tδ)ρ

+ and K(t, r) = (1 − r2/t)λ
+.

2. Multiply monotone functions are covered by this general theorem by taking
K(t, r) = (1 − rt)k−1

+ and f an arbitrary positive function in L1 so that dµ(t) =
f(t)dt in Williamson’s characterization Theorem 2.6.2. Also, functions that are
strictly positive definite and radial in IRs for all s (or equivalently completely
monotone functions) are covered by choosing K(t, r) = e−rt.
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