
Chapter 5

Error Bounds and the

Variational Approach

In order to estimate the approximation properties of the functions studied thus far we
will introduce the variational approach to scattered data interpolation. This approach
was used first for radial basis function interpolation by Madych and Nelson [417], and
later adopted by many others (see, e.g., [393, 394], [518], [545], [628, 629], [658]). We
will see that for every strictly positive definite radial function there is an associated
Hilbert space in which the radial basis function interpolant provides the best approx-
imation to a given function. This optimality of interpolants in Hilbert space is the
subject of the theory of optimal recovery described in the late 1950s by Golomb and
Weinberger in their paper [264]. The following discussion follows mostly the presenta-
tion in Wendland’s book [634].

5.1 Reproducing Kernel Hilbert Spaces

We begin with

Definition 5.1.1 Let H be a real Hilbert space of functions f : Ω → IR. A function
K : Ω × Ω → IR is called reproducing kernel for H if

1. K(x, ·) ∈ H for all x ∈ Ω,

2. f(x) = 〈f, K(·, x)〉H for all f ∈ H and all x ∈ Ω.

It is known that the reproducing kernel of a Hilbert space is unique, and that
existence of a reproducing kernel is equivalent to the fact that the point evaluation
functionals δx are bounded linear functionals, i.e., there exists a positive constant
M = Mx such that

|δxf | = |f(x)| ≤ M‖f‖H

for all f ∈ H. This latter fact is due to the Riesz Representation Theorem.
Other properties of reproducing kernels are

Theorem 5.1.2 Suppose H is a Hilbert space of functions f : Ω → IR with reproducing
kernel K and H∗ its dual space, i.e., the space of linear functionals on H. Then we
have
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1. K(x, y) = 〈K(x, ·), K(·, y)〉H for x, y ∈ Ω.

2. K(x, y) = K(y, x) for x, y ∈ Ω.

3. Convergence in Hilbert space norm implies pointwise convergence.

Proof: Since by (1) of Definition 5.1.1 K(x, ·) ∈ H for every x ∈ Ω, the reproducing
property (2) of the definition gives us

K(x, y) = 〈K(x, ·), K(·, y)〉H

for all x, y ∈ Ω. (2) follows from (1) by the symmetry of the Hilbert space inner
product. For (3) we use the reproducing property of K along with the Cauchy-Schwarz
inequality:

|f(x) − fn(x)| = |〈f − fn, K(·, x)〉H| ≤ ‖f − fn‖H‖K(·, x)‖H.

�

Moreover, the reproducing kernel K is known to be positive definite. In the following
we use a slight generalization of the notion of a positive definite function to a positive
definite kernel. Essentially, we replace Φ(xj − xk) in Definition 1.2.5 by K(xj , xk).

Theorem 5.1.3 Suppose H is a reproducing kernel Hilbert function space with repro-
ducing kernel K : Ω × Ω → IR. Then K is positive definite. Moreover, K is strictly
positive definite if and only if the point evaluation functionals are linearly independent
in H∗.

Proof: Since the kernel is real-valued we can restrict ourselves to a quadratic form
with real coefficients. For distinct points x1, . . . , xN and nonzero c ∈ IRN we have

N∑

j=1

N∑

k=1

cjckK(xj , xk) =
N∑

j=1

N∑

k=1

cjck〈K(xj , ·), K(·, xk)〉H

= 〈
N∑

j=1

cjK(xj , ·),
n∑

k=1

ckK(·, xk)〉H

= ‖
N∑

j=1

cjK(xj , ·)‖
2
H ≥ 0.

To establish the second claim we assume K is not strictly positive definite and show
that the point evaluation functionals must be linearly dependent. If K is not strictly
positive definite then there exist distinct points x1, . . . , xN and nonzero coefficients
such that

N∑

j=1

N∑

k=1

cjckK(xj , xk) = 0.

The first part of the proof therefore implies

N∑

j=1

cjK(xj , ·) =
N∑

j=1

cjK(·, xj) = 0.
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Taking the Hilbert space inner product with an arbitrary f ∈ H and using the repro-
ducing property of K we get that

0 = 〈f,
N∑

j=1

cjK(·, xj)〉H

=
N∑

j=1

cj〈f, K(·, xj)〉H

=
N∑

j=1

cjf(xj)

=

N∑

j=1

cjδxj
(f).

This, however, shows the linear dependence of the point evaluation functionals δx(f) =
f(x). An analogous argument can be used to show the converse. �

This theorem provides a connection between strictly positive definite functions and
reproducing kernels. Our interest, however, lies in the other direction. Since we are
starting with strictly positive definite functions, we need to show how to construct an
associated reproducing kernel Hilbert space.

5.2 Native Spaces for Strictly Positive Definite Functions

First, we note that Definition 5.1.1 tells us that H contains all functions of the form

f =
N∑

j=1

cjK(xj , ·)

provided xj ∈ Ω. In Theorem 5.1.2 we showed that

‖f‖2
H = 〈f, f〉H = 〈

N∑

j=1

cjK(xj , ·),
N∑

k=1

ckK(·, xk)〉H

=
N∑

j=1

N∑

k=1

cjck〈K(xj , ·), K(·, xk)〉H

=
N∑

j=1

N∑

k=1

cjckK(xj , xk).

Therefore, we define the space

HK(Ω) = span{K(·, y) : y ∈ Ω}

with an associated bilinear form

〈
N∑

j=1

cjK(·, xj),
N∑

k=1

dkK(·, yk)〉K =
N∑

j=1

N∑

k=1

cjdkK(xj , yk).
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Theorem 5.2.1 If K : Ω × Ω → IR is a symmetric strictly positive definite kernel,
then the bilinear form 〈·, ·〉K defines an inner product on HK(Ω). Furthermore, HK(Ω)
is a pre-Hilbert space with reproducing kernel K.

Proof: 〈·, ·〉K is obviously bilinear and symmetric. We just need to show that 〈f, f〉K >
0 for nonzero f ∈ HK(Ω). Any such f can be written in the form

f =
N∑

j=1

cjK(·, xj), xj ∈ Ω.

Then

〈f, f〉K =
N∑

j=1

N∑

k=1

cjckK(xj , xk) > 0

since K is strictly positive definite. The reproducing property follows from

〈f, K(·, x)〉K =
N∑

j=1

cjK(xj , x) = f(x).

�

The native space NK(Ω) of K is now defined to be the completion of HK(Ω) with
respect to the K-norm ‖ · ‖K so that ‖f‖K = ‖f‖NK(Ω) for all f ∈ HK(Ω). The
technical details concerned with this construction are discussed in [634].

In the special case when we are dealing with strictly positive definite (translation
invariant) functions Φ(x − y) = K(x, y) and when Ω = IRs we get a characterization
of native spaces in terms of Fourier transforms.

Theorem 5.2.2 Suppose Φ ∈ C(IRs)∩L1(IR
s) is a real-valued strictly positive definite

function. Define

G = {f ∈ L2(IR
s) ∩ C(IRs) :

f̂
√

Φ̂
∈ L2(IR

s)}

and equip this space with the bilinear form

〈f, g〉G =
1

√

(2π)s
〈

f̂
√

Φ̂
,

ĝ
√

Φ̂
〉L2(IRs) =

1
√

(2π)s

∫

IRs

f̂(ω)ĝ(ω)

Φ̂(ω)
dω.

Then G is a real Hilbert space with inner product 〈·, ·〉G and reproducing kernel Φ(·− ·).
Hence, G is the native space of Φ on IRs, i.e., G = NΦ(IRs) and both inner product
coincide. In particular, every f ∈ NΦ(IRs) can be recovered from its Fourier transform
f̂ ∈ L1(IR

s) ∩ L2(IR
s).

Remarks:

1. This theorem shows that the native spaces can be viewed as a generalization of
the standard Sobolev spaces. Indeed, for m > s/2 the Sobolev space W m

2 can be
defined as

Wm
2 (IRs) = {f ∈ L2(IR

s) ∩ C(IRs) : f̂(·)(1 + ‖ · ‖2
2)

m/2 ∈ L2(IR
s)}.
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Therefore, any strictly positive definite function Φ whose Fourier transform decays
only algebraically has a Sobolev space as its native space. In particular, the
compactly supported Wendland functions Φs,k = ϕs,k(‖ · ‖2) of Chapter 4 can be

shown to have native spaces NΦs,k
(IRs) = W

s/2+k+1/2
2 (IRs) (where the restriction

s ≥ 3 is required for the special case k = 0).

2. Native spaces for strictly conditionally positive definite functions can also be
constructed. However, since this is more technical, we limit the discussion here
to strictly positive definite functions, and refer the interested reader to the book
by Wendland [634] or the papers [554, 555] by Schaback.

3. The native spaces of the powers and thin plate (or surface) splines of Examples 2
and 3 of Sections 3.3 and 3.4 can be shown to be the so-called Beppo-Levi spaces
of order k

BLk(IR
s) = {f ∈ C(IRs) : Dαf ∈ L2(IR

s) for all |α| = k, α ∈ INs},

where Dα denotes a generalized derivative of order α (defined in the same spirit
as the generalized Fourier transform). In fact, the intersection of all Beppo-Levi
spaces BLk(IR

s) of order k ≤ m yields the Sobolev space W m
2 (IRs). For more

details see [634]. These spaces were already studied in the early papers by Duchon
[168, 169, 170, 171].

4. The native spaces for Gaussians and (inverse) multiquadrics are rather small.
For example, according to Theorem 5.2.2, for Gaussians the Fourier transform of
f ∈ NΦ(Ω) must decay faster than the Fourier transform of the Gaussian (which
is itself a Gaussian). It is known that, however, even though the native space
of Gaussians is small, it does contain the so-called band-limited functions, i.e.,
functions whose Fourier transform is compactly supported. These functions play
an important role in sampling theory where Shannon’s famous Sampling Theorem
[575] states that any band-limited function can be completely recovered from its
discrete samples provided the function is sampled at a sampling rate at least twice
its bandwidth. The content of this theorem was already known to Whitaker [640]
in 1915.

Theorem 5.2.3 Suppose f ∈ C(IRs) ∩ L1(IR
s) such that its Fourier

transform vanishes outside the cube Q =
[
−1

2 , 1
2

]s
. Then f can be

uniquely reconstructed from its values on ZZs, i.e.,

f(x) =
∑

ξ∈ZZs

f(ξ)sinc(x − ξ), x ∈ IRs .

Here the sinc function is defined for any x = (x1, . . . , xs) ∈ IRs as sinc x =
∏s

i=1
sin(πxi)

πxi
. For more details on Shannon’s Sampling Theorem see, e.g., Chap-

ter 29 in the book [132] by Cheney and Light or the paper [610] by Unser.
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5.3 The Power Function and Error Estimates for Func-

tions in NΦ(Ω)

Our goal in this section is to provide error estimates for scattered data interpolation
with strictly (conditionally) positive definite functions. In their final form these esti-
mates will need to involve some kind of measure of the data distribution. The measure
that is usually used is the so-called fill distance

h = hX ,Ω = sup
x∈Ω

min
xj∈X

‖x − xj‖2

which indicates how well the data fill out the domain Ω. The fill distance denotes the
radius of the largest possible empty ball that can be placed among the data locations.
We will be interested in whether the error

‖f − Phf‖∞

tends to zero as h → 0, and if so, how fast. Here {Ph}h presents a sequence of
interpolation (or, more generally, projection) operators that vary with the fill distance
h. For example, Ph could denote interpolation to data given at (2n + 1)s, n = 1, 2, . . .,
equally spaced points in the unit cube in IRs (with h = 2−n). Of course, the definition
of the fill distance allows for scattered data as well.

Since we want to use the machinery of reproducing kernel Hilbert spaces we will
concentrate on error estimates for functions f ∈ NΦ. In the next section we will also
mention some more general estimates.

The term that is often used to measure the speed of convergence to zero is approxi-
mation order. We say that the approximation operator Ph has Lp-approximation order
k if

‖f − Phf‖p = O(hk) for h → 0.

Moreover, if we can also show that ‖f − Phf‖p 6= o(hk), then Ph has exact Lp-
approximation order k. We will concentrate mostly on the case p = ∞, but approxi-
mation order in other norms can also be studied.

In order to keep the following discussion as transparent as possible we will restrict
ourselves to strictly positive definite functions. With (considerably) more technical
details the following can also be formulated for strictly conditionally positive definite
functions (see [634] for details).

The key idea for the following discussion is to express the interpolant in Lagrange
form, i.e., using cardinal basis functions. This idea is due to Schaback and Wu [658].
In the previous chapters we have established that, for any strictly positive definite
function Φ, the linear system

Ac = y

with Aij = Φ(xi − xj), i, j = 1, . . . , N , c = [c1, . . . , cN ]T , and y = [f(x1), . . . , f(xN )]T

has a unique solution. In the following we will consider the more general situation where
Φ is a strictly positive definite kernel, i.e., the entries of A are given by Aij = Φ(xi, xj).

In order to obtain the cardinal basis functions u∗
j , j = 1, . . . , N , with the property

u∗
j (xi) = δij we consider the linear system

Au∗(x) = b(x),

48



where the matrix A is as above (and therefore invertible), u∗ = [u∗
1, . . . , u

∗
N ]T , and

b = [Φ(·, x1), . . . , Φ(·, xN )]T . Thus,

Theorem 5.3.1 Suppose Φ is a strictly positive definite kernel on IRs. Then, for any
distinct points x1, . . . , xN , there exist functions u∗

j ∈ span{Φ(·, xj), j = 1, . . . , N} such
that u∗

j (xi) = δij.

Therefore, we can write Pf in the cardinal form

Pf(x) =
N∑

j=1

f(xj)u
∗
j (x), x ∈ IRs .

Another important ingredient in our estimates is the so-called power function. To
this end, we consider a domain Ω ⊆ IRs. Then for any strictly positive definite kernel
Φ ∈ C(Ω × Ω), any set of distinct points X = {x1, . . . , xN} ⊆ Ω, and any vector
u ∈ IRN , we define the quadratic form

Q(u) = Φ(x, x) − 2
N∑

j=1

ujΦ(x, xj) +
N∑

i=1

N∑

j=1

uiujΦ(xi, xj)

= 〈Φ(·, x), Φ(·, x)〉NΦ(Ω) − 2

N∑

j=1

uj〈Φ(·, x), Φ(·, xj)〉NΦ(Ω)

+
N∑

i=1

N∑

j=1

uiuj〈Φ(·, xi), Φ(·, xj)〉NΦ(Ω)

= 〈Φ(·, x) −
N∑

j=1

ujΦ(·, xj), Φ(·, x) −
N∑

j=1

ujΦ(·, xj)〉NΦ(Ω)

=

∥
∥
∥
∥
∥
∥

Φ(·, x) −
N∑

j=1

ujΦ(·, xj)

∥
∥
∥
∥
∥
∥

2

NΦ(Ω)

. (5.1)

Here we have used the definition of the native space norm from the previous section.
Then

Definition 5.3.2 Suppose Ω ⊆ IRs and Φ ∈ C(Ω × Ω) is strictly positive definite on
IRs. For any distinct points X = {x1, . . . , xN} ⊆ Ω the power function is defined by

[PΦ,X (x)]2 = Q(u∗(x)),

where u∗ is the vector of cardinal functions from Theorem 5.3.1.

Remarks:

1. The name power function was chosen by Schaback based on its connection to the
power function of a statistical decision function [622].
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2. In the paper [658] by Wu and Schaback the power function was referred to as
kriging function. This terminology comes from geostatistics (see, e.g., [474]).

Now we can give a first generic error estimate.

Theorem 5.3.3 Let Ω ⊆ IRs, Φ ∈ C(Ω × Ω) be strictly positive definite on IRs, and
suppose that the points X = {x1, . . . , xN} are distinct. Denote the interpolant to
f ∈ NΦ(Ω) on X by Pf . Then for every x ∈ Ω

|f(x) − Pf(x)| ≤ PΦ,X (x)‖f‖NΦ(Ω).

Proof: We express the interpolant in its cardinal form and apply the reproducing
property of Φ. This gives us

Pf(x) =

N∑

j=1

f(xj)u
∗
j (x)

=
N∑

j=1

u∗
j (x)〈f, Φ(·, xj)〉NΦ(Ω)

= 〈f,
N∑

j=1

u∗
j (x)Φ(·, xj)〉NΦ(Ω).

For f the reproducing property of Φ yields

f(x) = 〈f, Φ(·, x)〉NΦ(Ω).

Now we combine these two formulas and apply the Cauchy-Schwarz inequality

|f(x) − Pf(x)| =

∣
∣
∣
∣
∣
∣

〈f, Φ(·, x) −
N∑

j=1

u∗
j (x)Φ(·, xj)〉NΦ(Ω)

∣
∣
∣
∣
∣
∣

≤ ‖f‖NΦ(Ω)

∥
∥
∥
∥
∥
∥

Φ(·, x) −
N∑

j=1

u∗
j (x)Φ(·, xj)

∥
∥
∥
∥
∥
∥
NΦ(Ω)

= ‖f‖NΦ(Ω)PΦ,X (x),

where we have applied (5.1) and the definition of the power function. �

Remark: One of the main benefits of Theorem 5.3.3 is that we are now able to estimate
the interpolation error by considering two independent phenomena:

• the smoothness of the data (measured in terms of the native space norm of f –
which is independent of the data locations),

• and the contribution due to the use of the basic function Φ and the distribution
of the data (measured in terms of the power function – independent of the actual
data values).
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This is analogous to the standard error estimate for polynomial interpolation cited in
most numerical analysis texts.

The next step is to refine this error bound by expressing the influence of the data
locations in terms of the fill distance. And then, of course, the bound needs to be
specialized to various choices of basic functions Φ.

The strategy to obtaining most error bounds in numerical analysis is to take ad-
vantage of the polynomial precision of a method (at least locally), and then to apply a
Taylor expansion. With this in mind we observe

Theorem 5.3.4 Let Ω ⊆ IRs, and suppose Φ ∈ C(Ω×Ω) is strictly positive definite on
IRs. Let X = {x1, . . . , xN} be a set of distinct points in Ω, and define the quadratic form
Q as in (5.1). The minimum of Q is given by the vector u∗(x) from Theorem 5.3.1,
i.e.,

Q(u∗(x)) ≤ Q(u) for all u ∈ IRN .

Proof: Using the linear system notation employed earlier, we note that

Q(u) = Φ(x, x) − 2uT b(x) + uT Au.

The minimum of this quadratic form is given by the solution of the linear system

Au = b(x).

This, however, yields the cardinal functions u = u∗(x). �

Remark: The arguments used in the previous proof suggest two alternative represen-
tations of the power function. Using the matrix-vector notation, the power function is
given as

PΦ,X (x) =
√

Q(u∗(x)) =
√

Φ(x, x) − 2(u∗(x))T b(x) + (u∗(x))T Au∗(x).

However, by the definition of the cardinal functions Au∗(x) = b(x), and therefore we
have the two new variants

PΦ,X (x) =
√

Φ(x, x) − (u∗(x))T b(x)

=
√

Φ(x, x) − (u∗(x))T Au∗(x).

In the proof below we will use a special coefficient vector ũ which provides the
polynomial precision desired for the proof of the refined error estimate. Its existence
is guaranteed by the following theorem on local polynomial reproduction proved by
Wendland in [634]. This theorem requires the notion of a domain which satisfies an
interior cone condition.

Definition 5.3.5 A region Ω ⊆ IRs satisfies an interior cone condition if there exists
an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω there exists a unit
vector ξ(x) such that the cone

C = {x + λy : y ∈ IRs, ‖y‖2 = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, r]}

is contained in Ω.
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Remark: A consequence of the interior cone condition is the fact that a domain that
satisfies this condition contains balls of a controllable radius. In particular, this will
be important when bounding the remainder of the Taylor expansions below. For more
details see [634].

Existence of an approximation scheme with local polynomial precision is guaranteed
by

Theorem 5.3.6 Suppose Ω ⊆ IRs is bounded and satisfies an interior cone condition,
and let ` be a non-negative integer. Then there exist positive constants h0, sc1, and c2

such that for all X = {x1, . . . , xN} ⊆ Ω with hX ,Ω ≤ h0 and every x ∈ Ω there exist
numbers ũ1(x), . . . ũN (x) with

1.

N∑

j=1

ũj(x)p(xj) = p(x) for all p ∈ Πs
`,

2.

N∑

j=1

|ũj(x)| ≤ c1,

3. ũj(x) = 0 if ‖x − xj‖2 ≥ c2hX ,Ω.

Remark: Property (1) yields the polynomial precision, and property (3) shows that
the scheme is local. The bound in property (2) is essential for controlling the growth of
error estimates and the quantity on the left-hand side of (2) is known as the Lebesgue
constant at x.

The error estimate can now be formulated in terms of the fill distance.

Theorem 5.3.7 Suppose Ω ⊆ IRs is bounded and satisfies an interior cone condition.
Suppose Φ ∈ C2k(Ω × Ω) is symmetric and strictly positive definite. Denote the inter-
polant to f ∈ NΦ(Ω) on the set X by Pf . Then there exist positive constant h0 and C
(independent of x, f and Φ) such that

|f(x) − Pf(x)| ≤ CCΦ(x)1/2hk
X ,Ω‖f‖NΦ(Ω),

provided hX ,Ω ≤ h0. Here

CΦ(x) = max
w,z∈Ω∩B(x,c2hX ,Ω)

|Φ(w, z)|.

Proof: By Theorem 5.3.3 we know

|f(x) − Pf(x)| ≤ PΦ,X (x)‖f‖NΦ(Ω).

Therefore, we now bound the power function in terms of the fill distance. We know
that the power function is defined by

[PΦ,X (x)]2 = Q(u∗(x)).
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Moreover, we know by Theorem 5.3.4 that the quadratic form Q(u) is minimized by
u = u∗(x). Therefore, any other coefficient vector u will yield an upper bound on the
power function. We take u = ũ(x) from Theorem 5.3.6 with polynomial precision of
degree ` ≥ 2k − 1.

We will make repeated use of the multivariate Taylor expansion

Φ(w, z) =
∑

|β|<2k

Dβ
2 Φ(w, w)

β!
(z − w)β + R(w, z)

with remainder

R(w, z) =
∑

|β|=2k

Dβ
2 Φ(w, ξw,z)

β!
(z − w)β,

where ξw,z lies somewhere on the line segment connecting w and z.
Following the argumentation above we have

[PΦ,X (x)]2 ≤ Q(u) = Φ(x, x) − 2
∑

j

ujΦ(x, xj) +
∑

i

∑

j

uiujΦ(xi, xj),

where the sums are over those indices j with uj 6= 0. Now we apply the Taylor expansion
to both Φ(x, xj) and Φ(xi, xj). This yields

Q(u) = Φ(x, x) − 2
∑

j

uj




∑

|β|<2k

Dβ
2 Φ(x, x)

β!
(xj − x)β + R(x, xj)





+
∑

i

∑

j

uiuj




∑

|β|<2k

Dβ
2 Φ(xi, xi)

β!
(xj − xi)

β + R(xi, xj)



 .

Next, the polynomial precision property of the coefficient vector u simplifies this ex-
pression to

Q(u) = Φ(x, x) − 2Φ(x, x) − 2
∑

j

ujR(x, xj)

+
∑

i

ui

∑

|β|<2k

Dβ
2 Φ(xi, xi)

β!
(x − xi)

β

︸ ︷︷ ︸

=Φ(xi,x)−R(xi,x)

+
∑

i

∑

j

uiujR(xi, xj).

Rearranging the terms and another application of the Taylor expansion results in

Q(u) = −Φ(x, x) −
∑

j

uj

[

2R(x, xj) −
∑

i

uiR(xi, xj)

]

+
∑

i

ui [Φ(xi, x) − R(xi, x)] .

Theorem 5.3.6 allows us to bound
∑

j |uj | ≤ c1. Moreover, since ‖x − xj‖2 ≤ c2hX ,Ω

and ‖xi − xj‖2 ≤ 2c2hX ,Ω the remainder terms can be bounded as stated. �
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Remarks:

1. For infinitely smooth strictly positive definite functions such as the Gaussians
and the inverse multiquadrics we see that the approximation order k is arbitrarily
high.

2. For strictly positive definite functions with limited smoothness such as the Wend-
land functions ϕs,k the approximation order is limited by the smoothness of the
basic function.

3. The estimate in Theorem 5.3.7 is still generic, since it does not account for the
particular basic function Φ being used for the interpolation.

4. We point out that the factor CΦ may still depend on hX ,Ω. For most basic
functions it will be possible to use CΦ to “squeeze out” additional powers of h.
This is the reason for splitting the constant in front of the h-power into a generic
C and a CΦ.

The statement of Theorem 5.3.7 can be generalized for strictly conditionally positive
definite functions and also to cover the error for approximating the derivatives of f by
derivatives of Pf . We state this general theorem without comment.

Theorem 5.3.8 Suppose Ω ⊆ IRs is open and bounded and satisfies an interior cone
condition. Suppose Φ ∈ C2k(Ω × Ω) is symmetric and strictly conditionally positive
definite of order m on IRs. Denote the interpolant to f ∈ NΦ(Ω) on the (m − 1)-
unisolvent set X by Pf . Fix α ∈ INs

0 with |α| ≤ k. Then there exist positive constant
h0 and C (independent of x, f and Φ) such that

|Dαf(x) − DαPf(x)| ≤ CCΦ(x)1/2h
k−|α|
X ,Ω |f |NΦ(Ω),

provided hX ,Ω ≤ h0. Here

CΦ(x) = max
β,γ∈INs

0
|β|+|γ|=2k

max
w,z∈Ω∩B(x,c2hX ,Ω)

|Dβ
1 Dγ

2 Φ(w, z)|.

5.4 More on Error Estimates

The additional refinement of the error estimate of Theorem 5.3.8 for specific functions
Φ is rather technical (for details see, e.g., the book by Wendland [634]). We only list
the final bounds for various functions Φ.

Application of Theorem 5.3.8 to infinitely smooth functions such as Gaussians or
(inverse) multiquadrics immediately yields arbitrarily high algebraic convergence rates,
i.e., for every ` ∈ IN and |α| ≤ ` we have

|Dαf(x) − DαPf(x)| ≤ C`h
`−|α||f |NΦ(Ω).

whenever f ∈ NΦ(Ω). Considerable amount of work has gone into investigating the
dependence of the constant C` on `. Using different proof techniques it is possible to

54



show that for Gaussians Φ(x) = e−α‖x‖2
, α > 0, we get for some positive constant c

that

‖f − Pf‖L∞(Ω) ≤ e
−c| log hX ,Ω|

hX ,Ω ‖f‖NΦ(Ω) (5.2)

provided hX ,Ω is sufficiently small and f ∈ NΦ(Ω). The corresponding result for (in-
verse) multiquadrics Φ(x) = (‖x‖2 + α2)β , α > 0, β < 0, or β > 0 and β /∈ IN,
is

‖f − Pf‖L∞(Ω) ≤ e
−c

hX ,Ω |f |NΦ(Ω) (5.3)

For functions with finite smoothness (such as powers, thin plate splines, and Wend-
land’s compactly supported functions) it is possible to bound the constant CΦ(x) and
thereby to improve the order predicted by Theorem 5.3.8 by some additional powers
of h. This results in the following error estimates.

For the powers Φ(x) = (−1)dβ/2e‖x‖β , β > 0, β /∈ 2 IN, we get

|Dαf(x) − DαPf(x)| ≤ Ch
β

2
−|α||f |NΦ(Ω). (5.4)

provided |α| ≤ dβe−1
2 and f ∈ NΦ(Ω).

For thin plate splines Φ(x) = (−1)k+1‖x‖2k log ‖x‖, we get

|Dαf(x) − DαPf(x)| ≤ Chk−|α||f |NΦ(Ω). (5.5)

provided |α| ≤ k − 1 and f ∈ NΦ(Ω).
For Wendland’s compactly supported functions Φs,k(x) = ϕs,k(‖x‖) this first re-

finement leads to

|Dαf(x) − DαPf(x)| ≤ Chk+ 1
2
−|α|‖f‖NΦ(Ω). (5.6)

provided |α| ≤ k and f ∈ NΦ(Ω).

Remark: The convergence result for the compactly supported functions assumes that
the support radius is kept fixed, and that only the domain Ω is filled out by adding
more points to X , and thus decreasing the fill distance hX ,Ω. However, this means
that for small fill distances (with fixed support radius) the system matrices of the
interpolation problem become more and more dense – and thus the advantage of the
compact support is lost. This point of view is referred to in the literature as the
non-stationary approach. We are guaranteed convergence, but at the cost of increased
computational complexity. Another possibility is presented by the stationary approach,
for which we scale the support radius proportional to the fill distance. In this case the
sparsity of the interpolation matrix remains fixed, however, convergence is lost. We
will revisit this phenomenon later.

The powers and thin plate splines can be interpreted as a generalization of univariate
natural splines. Therefore, one can see that the approximation order estimates obtained
via the native space approach are not optimal. For example, for interpolation with thin
plate splines Φ(x) = ‖x‖2 log ‖x‖ one would expect order O(h2), but the above estimate
yields only O(h).

One can improve the estimates for functions with finite smoothness (i.e., powers,
thin plate splines, Wendland’s functions) by either (or both) of the following two ideas:
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• by requiring the data function f to be even smoother than what the native space
prescribes, i.e., by building certain boundary conditions into the native space;

• by using weaker norms to measure the error.

The idea to localize the data by adding boundary conditions was introduced in a
paper by Light and Wayne [394]. This “trick” allows us to double the approximation
order. The second idea can already be found in the early work by Duchon [170]. After
applying both improvements the final approximation order estimate for interpolation
with the compactly supported functions Φs,k is (see [629])

‖f − Pf‖L2(Ω) ≤ Ch2k+1+s‖f‖W 2k+1+s
2 (IRs), (5.7)

where f is assumed to lie in the subspace W 2k+1+s
2 (IRs) of NΦ(IRs). For powers and

thin plate splines one obtains L2-error estimates of order O(hβ+s) and O(h2k+s), re-
spectively. These estimates are optimal, i.e., exact approximation orders, as shown by
Bejancu [48].

Work on improved error bounds is also due to others such as Bejancu, Johnson,
Powell, Ron, Schaback, and Yoon. In particular, recent work by Yoon provides Lp

error estimates for so-called shifted surface splines for functions f is standard Sobolev
spaces. These functions include all of the (inverse) multiquadrics, powers and thin
plate splines. They are of the form

Φ(x) =

{
(−1)dβ−s/2e(‖x‖2 + α2)β−s/2, s odd,

(−1)β−s/2+1(‖x‖2 + α2)β−s/2 log(‖x‖2 + α2)1/2, s even,

where β ∈ IN, β > s/2.
Yoon [668] has the following theorem that is formulated in the stationary setting.

Theorem 5.4.1 Let Φ be a shifted surface spline with parameter α proportional to the
fill distance hX ,Ω. Then there exists a positive constant C (independent of X ) such that
for every f ∈ W m

2 (Ω) ∩ Wm
∞(Ω) we have

‖f − Pf‖Lp(Ω) ≤ Chγp |f |W m
2 (IRs), 1 ≤ p ≤ ∞,

with
γp = min{m, m − s/2 + s/p}.

Furthermore, if f ∈ W k
2 (Ω) ∩ W k

∞(Ω) with max{0, s/2 − s/p} < k < m, then

‖f − Pf‖Lp(Ω) = o(hγp−m+k).

Remarks:

1. Using the localization idea mentioned above Yoon’s estimates can be “doubled”
to O(hm+γp).
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2. Yoon’s estimates address the question of how well the infinitely smooth (inverse)
multiquadrics approximate functions that are less smooth than those in their
native space. For example, Theorem 5.4.1 states that approximation to functions
in W 2

2 (Ω), Ω ⊆ IR3, by multiquadrics Φ(x) =
√

‖x‖2 + α2 is of the order O(h2).
However, it needs to be emphasized that this refers to stationary approximation,
i.e., α is scaled proportional to the fill distance, whereas the spectral order given
in (5.3) corresponds to the non-stationary case with fixed α. Similar numerical
evidence was also provided much earlier by Schaback [545].

3. Moreover, the second part of Yoon’s result is a step toward exact approximation
orders.

4. In order to obtain the estimates for the infinitely smooth functions, Yoon localizes
the data function f by preconditioning it via convolution with a Hörmander
smoothing kernel.

5.5 The Connection to Optimal Recovery

In the paper [264] by Michael Golomb and Hans Weinberger the following general prob-
lem is studied: Given the values f1 = λ1(f), . . . , fN = λN (f) ∈ IR, where {λ1, . . . , λN}
is a linearly independent set of linear functionals (called information functionals yield-
ing the information about f), how does one “best” approximate the value λ(f) where
λ is a given linear functional and f is unknown? The value λ(f) is also referred to as
a feature of f . Moreover, what is the total range of values for λ(f)?

Remarks:

1. This is a very general problem formulation that allows not only for interpolation
of function values, but also for other types of data (such as values of derivatives,
integrals of f , moments of f , etc.), as well as other types of approximation.

2. Optimal recovery was also studied in detail by Micchelli, Rivlin and Winograd
[457, 458, 459, 460].

In a Hilbert space setting the solution to this “optimal recovery problem” is shown
to be the minimum-norm interpolant. More precisely, given f1 = λ1(f), . . . , fN =
λN (f) ∈ IR with {λ1, . . . , λN} ⊆ H∗, the minimum-norm interpolant is that function
s∗ ∈ H that satisfies

λj(s
∗) = fj , j = 1, . . . , N,

and for which
‖s∗‖H = min

s∈H
λj(s)=fj ,j=1,...,N

‖s‖H.

It turns out that the radial basis function interpolant satisfies these criteria if H is taken
as the associated native space NΦ(Ω). The proofs of the two “optimality theorems”
below require the following two lemmas.
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Lemma 5.5.1 Assume Φ is a symmetric strictly positive definite kernel on IRs and let
Pf be the interpolant to f ∈ NΦ(Ω) on X = {x1, . . . , xN} ⊆ Ω. Then

〈Pf,Pf − s〉NΦ(Ω) = 0

for all interpolants s ∈ NΦ(X ), i.e., with s(xj) = f(xj), j = 1, . . . , N .

Proof: The interpolant Pf is of the form

Pf =
N∑

j=1

cjΦ(·, xj).

Using this representation, the symmetry of the kernel Φ and its reproducing property
we have

〈Pf,Pf − s〉NΦ(Ω) = 〈
N∑

j=1

cjΦ(·, xj),Pf − s〉NΦ(Ω)

=

N∑

j=1

cj〈Φ(·, xj),Pf − s〉NΦ(Ω)

=
N∑

j=1

cj〈Pf − s, Φ(·, xj)〉NΦ(Ω)

=
N∑

j=1

cj(Pf − s)(xj)

= 0

since both Pf and s interpolate f on X . �

For the next result, remember the definition of the space HΦ(X ) as the linear span

HΦ(X ) = {s =

N∑

j=1

cjΦ(·, xj), xj ∈ X}

given at the beginning of this chapter.

Lemma 5.5.2 Assume Φ is a strictly positive definite kernel on IRs and let Pf be the
interpolant to f ∈ NΦ(Ω) on X = {x1, . . . , xN} ⊆ Ω. Then

〈f − Pf, s〉NΦ(Ω) = 0

for all s ∈ HΦ(X ).

Proof: Any s ∈ HΦ(X ) can be written in the form

s =
N∑

j=1

cjΦ(·, xj).
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Using this representation of s as well as the reproducing property of Φ we have

〈f − Pf, s〉NΦ(Ω) = 〈f − Pf,
N∑

j=1

cjΦ(·, xj)〉NΦ(Ω)

=
N∑

j=1

cj〈f − Pf, Φ(·, xj)〉NΦ(Ω)

=
N∑

j=1

cj(f − Pf)(xj).

This last expression, however, is zero since Pf interpolates f on X , i.e., (f−Pf)(xj) =
0, j = 1, . . . , N . �

The following “energy splitting” theorem is an immediate consequence of Lemma 5.5.2.
It says that the native space energy of f can be split into the energy of the interpolant
Pf and that of the residual f − Pf .

Corollary 5.5.3 The orthogonality property of Lemma 5.5.2 implies the energy split

‖f‖2
NΦ(Ω) = ‖f − Pf‖2

NΦ(Ω) + ‖Pf‖2
NΦ(Ω).

Proof: The statement follows from

‖f‖2
NΦ(Ω) = ‖f − Pf + Pf‖2

NΦ(Ω)

= 〈(f − Pf) + Pf, (f − Pf) + Pf〉NΦ(Ω)

= ‖f − Pf‖2
NΦ(Ω) + 2〈f − Pf,Pf〉NΦ(Ω) + ‖Pf‖2

NΦ(Ω)

and the fact that 〈f − Pf,Pf〉NΦ(Ω) = 0 by Lemma 5.5.2. �

Remark: The above energy split is the fundamental idea behind a number of Krylov-
type iterative algorithms for approximately solving the interpolation problem when
very large data sets are involved (see, e.g., the papers [212] and [213] by Faul and
Powell or [562] by Schaback and Wendland).

The following theorem shows the first optimality property of strictly conditionally
positive definite kernels. It is taken from [634].

Theorem 5.5.4 Suppose Φ ∈ C(Ω×Ω) is a strictly conditionally positive definite ker-
nel with respect to the finite-dimensional space P ⊆ C(Ω) and that X is P -unisolvent.
If the values f1, . . . , fN are given, then the interpolant Pf is the minimum-norm inter-
polant to {fj}

N
j=1, i.e.,

|Pf |NΦ(Ω) = min
s∈NΦ(Ω)

s(xj)=fj ,j=1,...,N

|s|NΦ(Ω).

Proof: We consider only the strictly positive definite case. Consider an arbitrary
interpolant s ∈ NΦ(Ω) to f1, . . . , fN . Since Pf ∈ NΦ(Ω) we can apply Lemma 5.5.1
and get

〈Pf,Pf − s〉NΦ(Ω) = 0.
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Now

|Pf |2NΦ(Ω) = 〈Pf,Pf − s + s〉NΦ(Ω)

= 〈Pf,Pf − s〉NΦ(Ω) + 〈Pf, s〉NΦ(Ω)

= 〈Pf, s〉NΦ(Ω)

≤ |Pf |NΦ(Ω)|s|NΦ(Ω)

so that the statement follows. �

Remarks:

1. The space P mentioned in Theorem 5.5.4 is usually taken as a space of multi-
variate polynomials.

2. For thin plate splines φ(r) = r2 log r, r = ‖x‖2 with x = (x, y) ∈ IR2, the
corresponding semi-norm in the Beppo-Levi space BL2(IR

2) is

|f |2
BL2(IR2)

=

∫

IR2

∣
∣
∣
∣

∂2f

∂x2
(x)

∣
∣
∣
∣

2

+ 2

∣
∣
∣
∣

∂2f

∂x∂y
(x)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂2f

∂y2
(x)

∣
∣
∣
∣

2

dx,

which is the bending energy of a thin plate, and thus explains the name of these
functions.

Another nice property of the radial basis function interpolant is that it is at the
same time the best Hilbert-space approximation to the given data, and thus not just
any projection of f but the orthogonal projection. More precisely,

Theorem 5.5.5 Let

HΦ(X ) = {s =
N∑

j=1

cjΦ(·, xj)+p | p ∈ P and
N∑

j=1

cjq(xj) = 0 for all q ∈ P and xj ∈ X},

where Φ ∈ C(Ω × Ω) is a strictly conditionally positive definite kernel with respect to
the finite-dimensional space P ⊆ C(Ω) and X is P -unisolvent. If only the values f1 =
f(x1), . . . , fN = f(xN ) are given, then the interpolant Pf is the best approximation to
f from HΦ(X ) in NΦ(Ω), i.e.,

|f − Pf |NΦ(Ω) ≤ |f − s|NΦ(Ω)

for all s ∈ HΦ(X ).

Proof: We consider only the strictly positive definite case. As explained in Section 5.2,
the native space NΦ(Ω) is the completion of HΦ(Ω) with respect to the ‖ · ‖Φ-norm so
that ‖f‖Φ = ‖f‖NΦ(Ω) for all f ∈ HΦ(Ω). Also, X ⊆ Ω. Therefore, we can express best
approximation from HΦ(X ) by

〈f − s∗, s〉NΦ(Ω) = 0 for all s ∈ HΦ(X ).

However, Lemma 5.5.2 shows that s∗ = Pf satisfies this relation. �
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Remarks:

1. The connection between radial basis function interpolation and the optimal re-
covery theory by Golomb and Weinberger was pointed out by various people (e.g.,
Schaback [545, 551], or Light and Wayne [394]).

2. These optimality properties of radial basis function interpolants play an impor-
tant role in applications such as in the design of support vector machines in
artificial intelligence or the numerical solutions of partial differential equations.

3. The optimality results above imply that one could also start with some Hilbert
space H with norm ‖ · ‖H and ask to find the minimum norm interpolant (i.e.,
Hilbert space best approximation) to some given data. In this way any given space
defines a set of optimal basis functions, generated by the reproducing kernel of
H. This is how Duchon approached the subject in his papers [168, 169, 170, 171].
More recently, Kybic, Blu and Unser [356, 357] take this point of view and explain
very nicely from a sampling theory point of view how the thin plate splines can
be interpreted a fundamental solutions of the differential operator defining the
semi-norm in the Beppo-Levi space BL2(IR

2), and thus radial basis functions can
be viewed as Green’s functions.

A third optimality result is in the context of quasi-interpolation, i.e.,

Theorem 5.5.6 Suppose Φ ∈ C(Ω×Ω) is a strictly conditionally positive definite ker-
nel with respect to the finite-dimensional space P ⊆ C(Ω). Suppose X is P -unisolvent
and x ∈ Ω is fixed. Let u∗

j (x), j = 1, . . . , N , be the cardinal basis functions for inter-
polation with Φ. Then

∣
∣
∣
∣
∣
∣

f(x) −
N∑

j=1

f(xj)u
∗
j (x)

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

f(x) −
N∑

j=1

f(xj)uj

∣
∣
∣
∣
∣
∣

for all choices of u1, . . . , uN ∈ IR with
∑N

j=1 ujp(xj) = p(x) for any p ∈ P .

Theorem 5.5.6 is proved in [634]. It says in particular that the minimum norm in-
terpolant Pf is also more accurate (in the pointwise sense) than any linear combination
of the given data values.
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