
Chapter 7

Moving Least Squares

Approximation

An alternative to radial basis function interpolation and approximation is the so-called
moving least squares method. As we will see below, in this method the approximation
Pf to f is obtained by solving many (small) linear systems, instead of via solution of
a single – but large – linear system as we did in the previous chapters.

To make a connection with the previous chapters we start with the Backus-Gilbert
formulation of the moving least squares method since this corresponds to a linearly
constrained quadratic minimization problem.

7.1 Moving Least Squares Approximation: The Backus-

Gilbert Approach

The connection between the standard moving least squares formulation (to be ex-
plained in the next section) and Backus-Gilbert theory was pointed out by Bos and
Šalkauskas in [67]. Mathematically, in the Backus-Gilbert approach one considers a
quasi-interpolant of the form

Pf(x) =
N

∑

i=1

f(xi)Ψi(x), (7.1)

where f = [f(x1), . . . , f(xN )]T represents the given data. From Theorem 5.5.6 we
know that the quasi-interpolant that minimizes the point-wise error is given if the
generating functions Ψi are cardinal functions, i.e., Ψi(xj) = δij , i, j = 1, . . . , N .

In the moving least squares method one does not attempt to minimize the pointwise
error, but instead seeks to find the values of the generating functions Ψi(x) = Ψ(x, xi)
by minimizing

1

2

N
∑

i=1

Ψ2
i (x)

1

W (x, xi)
(7.2)

subject to the polynomial reproduction constraints

N
∑

i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d, (7.3)
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where Πs
d is the space of s-variate polynomials of total degree at most d which has

dimension m =
(

s+d
d

)

.

Remarks:

1. In the above formulation there is no explicit emphasis on nearness of fit as this is
implicitly obtained by the quasi-interpolation “ansatz” and the closeness of the
generating functions to the pointwise optimal delta functions. This is achieved by
the above problem formulation if the W (·, xi) are weight functions that decrease
with distance from the origin. Many of the radial functions used earlier are
candidates for the weight functions. However, strict positive definiteness is not
required, so that, e.g., (radial or tensor product) B-splines can also be used. The
polynomial reproduction constraint is added so that the quasi-interpolant will
achieve a desired approximation order. This will become clear in Section 7.6
below.

2. The smoothness functional (7.2) used here is also motivated by practical appli-
cations. In the Backus-Gilbert theory which was developed in the context of
geophysics (see [17]) it is desired that the generating functions Ψi are as close
as possible to the ideal cardinal functions (i.e., delta functions). Therefore, one
needs to minimize their “spread”. The polynomial reproduction constraints cor-
respond to discrete moment conditions for the function Ψ = Ψ(x, ·).

If we think of x as a fixed (evaluation) point, then we have another constrained
quadratic minimization problem of the form discussed in previous chapters. The un-
knowns are collected in the “coefficient vector” Ψ(x) = [Ψ(x, x1), . . . , Ψ(x, xN )]T . The
smoothness functional (7.2)

1

2
Ψ(x)T Q(x)Ψ(x)

is given via the diagonal matrix

Q(x) = diag

(

1

W (x, x1)
, . . . ,

1

W (x, xN )

)

, (7.4)

where W (·, xi) are positive weight functions (and thus for any x the matrix Q(x) is
positive definite).

The linear polynomial reproduction constraint (7.3) can be written in matrix form
as

AΨ(x) = p(x),

where A is the m × N matrix with entries Aji = pj(xi), i = 1, . . . , N , j = 1, . . . , m,
and p = [p1, . . . , pm]T is a vector that contains a basis for the space Πs

d of polynomials
of degree d.

According to our earlier work we use Lagrange multipliers and then know that (cf.
(6.4) and (6.5))

λ(x) =
(

AQ−1(x)AT
)−1

p(x) (7.5)

Ψ(x) = Q−1(x)AT λ(x). (7.6)
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Equation (7.5) implies that the Lagrange multipliers are obtained as the solution of a
Gram system

G(x)λ(x) = p(x),

where the entries of G are the weighted `2 inner products

Gjk(x) = 〈pj , pk〉W (x) =
N

∑

i=1

pj(xi)pk(xi)W (x, xi), j, k = 1, . . . , m. (7.7)

The special feature here is that the weight varies with the evaluation point x.
Two short comments are called for. First, the Gram matrix is symmetric and

positive definite since the polynomial basis is linearly independent and the weights are
positive. Second, in practice, the polynomials will be represented in shifted form, i.e.,
centered at the point of evaluation x, so that only p1(x) ≡ 1 6= 0.

Equation (7.6) can be written componentwise, i.e., the generating functions in (7.1)
are given by

Ψi(x) = W (x, xi)
m

∑

j=1

λj(x)pj(xi), i = 1, . . . , N.

Therefore, once the values of the Lagrange multipliers λj(x), j = 1, . . . , N , have been
determined we have explicit formulas for the values of the generating functions. In
general, however, finding the Lagrange multipliers involves solving a (small) linear
system that changes as soon as x changes.

7.2 Standard Interpretation of MLS Approximation

We now consider the following approximation problem. Assume we are given data
values f(xi), i = 1, . . . , N , on some set X = {x1, . . . , xN} ⊂ IRs of distinct data
sites, where f is some (smooth) function, as well as an approximation space U =
span{u1, . . . , um} (with m < N), along with the same weighted `2 inner product

〈f, g〉W (x) =
N

∑

i=1

f(xi)g(xi)Wi(x), x ∈ IRs fixed, (7.8)

as introduced above in (7.7). Again, the positive weights Wi, i = 1, . . . , N , depend on
the evaluation point x. We will interpret the weight functions in a way similar to radial
basis functions, i.e., Wi(x) = W (x, xi), with the points xi coming from the set X .

We now wish to find the best approximation from U to f at the point x with respect
to the norm induced by (7.8). This means we will obtain the approximation (at the
point x) as

Pf(x) =
m

∑

j=1

cj(x)uj(x), (7.9)

where the coefficients cj(x) are such that

N
∑

i=1

[Pf(xi) − f(xi)]
2 Wi(x) (7.10)
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is minimized. Due to the definition of the inner product (7.8) whose weight function
“moves” with the evaluation point x, the coefficients cj in (7.9) depend also on x. As
a consequence one has to solve the normal equations

m
∑

j=1

cj(x)〈uj , uk〉W (x) = 〈f, uk〉W (x), k = 1, . . . , m, (7.11)

anew each time the evaluation point x is changed. In matrix notation (7.11) becomes

G(x)c(x) = fu(x), (7.12)

with the positive definite Gram matrix G(x) =
(

〈uj , uk〉W (x)

)m

j,k=1
, coefficient vector

c(x) and right-hand side vector fu(x) as in (7.11) all depending on x.
In the moving least squares method one usually takes U to be a space of (multi-

variate) polynomials, i.e.,

Pf(x) =
m

∑

j=1

cj(x)pj(x), x ∈ IRs, (7.13)

where the {p1, . . . , pm} is a basis for the space Πs
d of s-variate polynomials of degree d.

The Gram system (7.12) now becomes

G(x)c(x) = fp(x), (7.14)

where the matrix G(x) has entries

Gjk(x) = 〈pj , pk〉W (x) =
N

∑

i=1

pj(xi)pk(xi)W (x, xi), j, k = 1, . . . , m, (7.15)

and the right-hand side vector consists of the projections of the data f onto the basis
functions, i.e.,

fp(x) =
[

〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T
.

Remarks:

1. The fact that the coefficients depend on the evaluation point x, and thus for every
evaluation of Pf a Gram system (with different matrix G(x)) needs to be solved,
initially scared people away from the moving least squares approach. However,
one can either choose compactly supported weight functions so that only a few
terms are “active” in the sum in (7.15), or even completely avoid the solution of
linear systems (see, e.g., [202]).

2. We point out that since we are working with a polynomial basis, the matrix G

can also be interpreted as a moment matrix for the weight W . This interpretation
is used in the engineering literature (see, e.g., [381]), and also plays an essential
role when connecting moving least squares approximation to the more efficient
concept of approximate approximation [434]. For a discussion of approximate
moving least squares approximation see [203, 204, 205, 206].
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The connection to the constrained quadratic minimization problems discussed ear-
lier can be seen as follows. We are now minimizing (for fixed x)

1

2
cT (x)G(x)c(x) − µT (x)

[

G(x)c(x) − AQ−1(x)f
]

, (7.16)

where G(x) is the Gram matrix (7.7), Q(x) the diagonal matrix of weight functions
(7.4) and A the matrix of polynomials used earlier. The term AQ−1(x)f corresponds
to the right-hand side vector f p(x) of (7.14). The solution of the linear system resulting
from the minimization problem (7.16) gives us

µ(x) =
(

G(x)G−1(x)GT (x)
)−1

AQ−1(x)f = G−T (x)AQ−1(x)f

c(x) = G−1(x)GT (x)µ(x) = µ(x)

so that – as in the case of radial basis function interpolation – by solving only the Gram
system G(x)c(x) = fp(x) we automatically minimize the functional

cT (x)G(x)c(x) =
m

∑

j=1

m
∑

k=1

cj(x)ck(x)Gjk(x)

=
m

∑

j=1

m
∑

k=1

cj(x)ck(x)〈pj , pk〉W (x)

which should be interpreted as the native space norm of the approximant Pf(x) =
m

∑

j=1

cj(x)pj(x).

7.3 A Dual Representation for the Standard Approach

We now know that on the one hand (from the Backus-Gilbert formulation)

G(x)λ(x) = p(x) ⇐⇒ λ(x) = G−1(x)p(x). (7.17)

By taking multiple right-hand sides p(x) with x ∈ X we get

Λ = G−1(x)A, (7.18)

where the m × N matrix Λ has entries Λji = λj(xi).
The standard formulation, on the other hand, gives us

G(x)c(x) = fp(x) ⇐⇒ c(x) = G−1(x)fp(x) = G−1(x)AQ−1(x)f (7.19)

with
fp(x) =

[

〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T
= AQ−1(x)f

as above. By combining (7.18) with (7.19) we get

c(x) = G−1(x)AQ−1(x)f = ΛQ−1(x)f = fλ(x),
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where fλ(x) is defined analogously to f p(x). Componentwise this gives us

cj(x) = 〈f, λj〉W (x), j = 1, . . . , m,

and therefore,

Pf(x) =

m
∑

j=1

〈f, λj〉W (x)pj(x). (7.20)

It is also possible to formulate the moving least squares method by using the La-
grange multipliers of the Backus-Gilbert approach as basis functions for the approxi-
mation space U . Then, using the same argumentation as above, we end up with

Pf(x) =
m

∑

j=1

dj(x)λj(x) (7.21)

with
dj(x) = 〈f, pj〉W (x), j = 1, . . . , m.

Remarks:

1. The Lagrange multipliers form a basis that is dual to the polynomials. In partic-
ular one can show that for any x ∈ X

〈λj , pk〉W (x) = δjk, j, k = 1, . . . , m.

This shows that we have two sets of basis functions that are bi-orthogonal on the
set X .

2. Note that the expansions (7.20) and (7.21) are generalizations of (finite) eigen-
function or Fourier series expansions.

7.4 Equivalence of Our Approaches to Moving Least Squares

Approximation

We now show that the two main approaches to the moving least squares method de-
scribed above are equivalent, i.e., we show that Pf(x) computed via (7.1) and (7.13)
are the same. The approximant (7.1) in the Backus-Gilbert “ansatz” is of the form

Pf(x) =
N

∑

i=1

f(xi)Ψi(x) = ΨT (x)f ,

where as before Ψ(x) = [Ψ(x, x1), . . . , Ψ(x, xN )]T and f = [f(x1), . . . , f(xN )]T . The
standard moving least squares formulation (7.13), on the other hand, establishes Pf(x)
in the form

Pf(x) =
m

∑

j=1

cj(x)pj(x) = pT (x)c(x),
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where p = [p1, . . . , pm]T and c(x) = [c1(x), . . . , cm(x)]T .
In (7.16) we wrote the normal equations for the standard approach as

G(x)c(x) = AQ−1(x)f

which implies
c(x) = G−1(x)AQ−1(x)f .

Thus, using the standard approach, we get

Pf(x) = pT (x)c(x) = pT (x)G−1(x)AQ−1(x)f . (7.22)

For the Backus-Gilbert approach we derived (see (7.5) and (7.6))

λ(x) = G−1(x)p(x)
Ψ(x) = Q−1(x)AT λ(x),

where G(x) = AQ−1(x)AT (see (7.7) or (7.15)). Therefore, we now obtain

Pf(x) = ΨT (x)f =
[

Q−1(x)AT G−1(x)p(x)
]T

f

which, by the symmetry of Q(x) and G(x), is the same as (7.22).

Remarks:

1. The equivalence of the two approaches shows that the moving least squares ap-
proximant has all of the following properties:

• It reproduces any polynomial of degree at most d in s variables exactly.

• It produces the best locally weighted least squares fit.

• Viewed as a quasi-interpolant, the generating functions Ψi are as close as
possible to the optimal cardinal basis functions in the sense that (7.2) is
minimized.

• Since polynomials are infinitely smooth, either of the representations of Pf

shows that its smoothness is determined by the smoothness of the weight
function(s) Wi(x) = W (x, xi).

2. In particular, the standard moving least squares method will reproduce the poly-
nomial basis functions p1, . . . , pm even though this is not explicitly enforced by
the minimization (solution of the normal equations). Moreover, the more general
“ansatz” with approximation space U allows us to build moving least squares
approximations that also reproduce any other function that is included in U .
This can be very beneficial for the solution of partial differential equations with
known singularities (see, e.g., the papers [16] by Babuška and Melenk, and [49]
by Belytschko and co-authors).

By also considering the dual expansion (7.21) we have three alternative representa-
tions for the moving least squares quasi-interpolant. This is summarized in the following
theorem.
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Theorem 7.4.1 Let f : Ω → IR be some function whose values on the set of points
X = {xi}N

i=1 ⊂ IRs are given as data. Let p1, . . . , pm be a basis for Πs
d, let {W (·, xi)}N

i=1

be a set of positive weight functions centered at the points of X , and let λj, j = 1, . . . , m,
be the Lagrange multipliers defined by (7.5). Furthermore, consider the generating
functions

Ψi(x) = W (x, xi)
m

∑

j=1

λj(x)pj(xi), i = 1, . . . , N.

The best local least squares approximation to f on X in the sense of (7.10) is given by

Pf(x) =
m

∑

j=1

〈f, λj〉W (x)pj(x)

=
m

∑

j=1

〈f, pj〉W (x)λj(x)

=
N

∑

i=1

f(xi)Ψi(x).

7.5 Examples

7.5.1 Shepard’s Method

The moving least squares method in the case m = 1 with p1(x) ≡ 1 is known to yield
Shepard’s method [578]. In the statistics literature Shepard’s method is known as a
kernel method (see, e.g., the papers from the 1950s and 60s [534, 501, 476, 623]). Using
our notation we have

Pf(x) = c1(x).

The Gram “matrix” consists of only one element

G(x) = 〈p1, p1〉W (x) =

N
∑

i=1

W (x, xi)

so that
G(x)c(x) = fp(x)

implies

c1(x) =

N
∑

i=1

f(xi)W (x, xi)

N
∑

i=1

W (x, xi)

.

The dual basis is defined by
G(x)λ(x) = p(x)
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so that

λ1(x) =
1

N
∑

i=1

W (x, xi)

,

and
Pf(x) = d1(x)λ1(x) (7.23)

with

d1(x) = 〈f, p1〉W (x) =
N

∑

i=1

f(xi)W (x, xi).

The generating functions are defined as

Ψi(x) = W (x, xi)λ1(x)p1(xi) =
W (x, xi)

N
∑

i=1

W (x, xi)

.

This gives rise to the well-known quasi-interpolation formula for Shepard’s method

Pf(x) =
N

∑

i=1

f(xi)Ψi(x)

=
N

∑

i=1

f(xi)
W (x, xi)

N
∑

k=1

W (x, xk)

.

Of course this is the same as the basis expansion c1(x) and the dual expansion (7.23).
We should now have bi-orthogonality of the basis and dual basis, i.e.,

〈λ1, p1〉W (x) = 1.

Indeed

〈λ1, p1〉W (x) =
m

∑

i=1

λ1(xi)W (x, xi)

=
N

∑

i=1

W (x, xi)
N

∑

k=1

W (xi, xk)

,

and this equals 1 if we restrict x to be an element of the set X .

7.5.2 Plots of Basis-Dual Basis Pairs

We also illustrate the moving least squares basis functions, dual basis functions and
generating functions for a one-dimensional example with X being the set of 13 equally
spaced points in [−5, 5]. We take m = 2, i.e., we consider the case that ensures
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Figure 7.1: Plot of Gaussian weight function centered at x7 = 0.

reproduction of quadratic polynomials. The weight function is taken to be a standard
Gaussian as depicted in Figure 7.1.

The three basis polynomials p1(x) = 1, p2(x) = x, and p3(x) = x2 are shown in
Figure 7.2, whereas the dual basis functions λ1, λ2, and λ3 are displayed in Figure 7.3.
The figure shows that, except for the boundary effects caused by the finite interval,
these functions resemble a quadratic, linear and constant polynomial.
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Figure 7.2: Plot of three polynomial basis functions for moving least squares approxi-
mation.

In Figure 7.4 we plot one of the generating functions (centered at x7 = 0) along
with an approximate moving least squares generating function of the form

Ψ(x, y) =
1√
σπ

(

3

2
− ‖x − y‖2

σ

)

e−
‖x−y‖2

σ

with scale parameter σ as derived in [205].
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Figure 7.3: Plot of three dual basis functions for moving least squares approximation.
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Figure 7.4: Plot of moving least squares generating function (left) and approximate
generating function (right) centered at x7 = 0.

7.6 Approximation Order of Moving Least Squares

Since the moving least squares approximants can be written as quasi-interpolants, we
can use standard techniques to derive their point-wise error estimates. The standard
argument proceeds as follows. Let f be a given (smooth) function that generates the
data, i.e., f1 = f(x1), . . . , fN = f(xN ), and let p be an arbitrary polynomial. Moreover,
assume that the moving least squares approximant is given in the form

Pf(x) =
N

∑

i=1

f(xi)Ψi(x)

with the generating functions Ψi satisfying the polynomial reproduction property

N
∑

i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d,
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as described at the beginning of this chapter. Then, due to the polynomial reproduction
property of the generating functions,

|f(x) − Pf(x)| ≤ |f(x) − p(x)| + |p(x) −
N

∑

i=1

f(xi)Ψi(x)|

= |f(x) − p(x)| + |
N

∑

i=1

p(xi)Ψi(x) −
N

∑

i=1

f(xi)Ψi(x)|

≤ |f(x) − p(x)| +
N

∑

i=1

|p(xi) − f(xi)||Ψi(x)|

≤ ‖f − p‖∞
[

1 +
N

∑

i=1

|Ψi(x)|
]

. (7.24)

We see that in order to refine the error estimate we now have to answer two questions:

• How well do polynomials approximate f? This will be done with standard Taylor
expansions.

• Are the generating functions bounded? The expression
N

∑

i=1

|Ψi(x)| is known as

the Lebesgue function, and finding a bound for the Lebesgue function is the main
task that remains.

By taking the polynomial p above to be the Taylor polynomial for f at x of total
degree d, the remainder term immediately yields an estimate of the form

‖f − p‖∞ ≤ C1h
d+1 max

x∈Ω
|Dαf(x)|, |α| = d + 1,

= C1h
d+1|f |d+1, (7.25)

where we have used the abbreviation

|f |d+1 = max
x∈Ω

|Dαf(x)|, |α| = d + 1.

Thus, if we can establish a uniform bound for the Lebesgue function, then (7.24)
and (7.25) will result in

|f(x) − Pf(x)| ≤ Chd+1|f |d+1

which shows that moving least squares approximation with polynomial reproduction
of degree d has approximation order O(hd+1).

For Shepard’s method, i.e., moving least squares approximation with constant re-
production (i.e., m = 1 or d = 0), we saw above that the generating functions are of
the form

Ψi(x) =
W (x, xi)

N
∑

j=1

W (x, xj)
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and therefore the Lebesgue function admits the uniform bound

N
∑

i=1

|Ψi(x)| = 1,

This shows that Shepard’s method has approximation order O(h).
Bounding the Lebesgue function in the general case is more involved and is the

subject of the papers [378] by Levin and [632] by Wendland. This results in approxi-
mation order O(hd+1) for a moving least squares method that reproduces polynomials
of degree d. In both papers the authors assumed that the weight function is compactly
supported, and that the support size is scaled proportional to the fill distance. How-
ever, similar estimates should be possible if the weight function only decays fast enough
(see, e.g., the survey by de Boor [60]).

Aside from this consideration, the choice of weight function W does not play a role
in determining the approximation order of the moving least squares method. As noted
earlier, it only determines the smoothness of Pf . For example, in the paper [146] from
the statistics literature on local regression the authors state that often “the choice [of
weight function] is not too critical”, and the use of the so-called tri-cube

W (x, xi) = (1 − ‖x − xi‖3)3+, x ∈ IRs,

is suggested. Of course, many other weight functions such as (radial) B-splines or any
of the (bell-shaped) radial basis functions studied earlier can also be used. If the weight
function is compactly supported, then the generating functions Ψi will be so, too. This
leads to computationally efficient methods since the Gram matrix G(x) will be sparse.

An interesting question is also the size of the support of the different local weight
functions. Obviously, a fixed support size for all weight functions is possible. How-
ever, this will cause serious problems as soon as the data are not uniformly distributed.
Therefore, in the arguments in [378] and [632] the assumption is made that the data
are at least quasi-uniformly distributed. Another choice for the support size of the in-
dividual weight functions is based on the number of nearest neighbors, i.e., the support
size is chosen so that each of the local weight functions contains the same number of
centers in its support. A third possibility is suggested by Schaback [556]. He proposes
to use another moving least squares approximation based on (equally spaced) auxiliary
points to determine a smooth function δ so that at each evaluation point x the radius
of the support of the weight function is given by δ(x). However, convergence estimates
for these latter two choices do not exist.

Sobolev error estimates are provided for moving least squares approximation with
compactly supported weight functions in [7]. The rates obtained in that paper are not
in terms of the fill distance but instead in terms of the support size R of the weight
function. Moreover, it is assumed that for general s and m =

(

s+d
d

)

the local Lagrange
functions are bounded. As mentioned above, this is the hard part, and such bounds
are only provided in the case s = 2 with d = 1 and d = 2 in [7]. However, if combined
with the general bounds for the Lebesgue function provided by Wendland the paper
[7] yields the following estimates:

|f(x) − Pf(x)| ≤ CRd+1|f |d+1
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but also
|∇(f − Pf)(x)| ≤ CRd|f |d+1.

In the weaker L2-norm we have

‖f − Pf‖L2(Bj∩Ω) ≤ CRd+1|f |
W d+1

2
(Bj∩Ω)

and
‖∇(f − Pf)‖L2(Bj∩Ω) ≤ CRd|f |

W d+1

2
(Bj∩Ω),

where the balls Bj provide a finite cover of the domain Ω, i.e., Ω ⊆
⋃

j Bj , and the
number of overlapping balls is bounded.

Remarks:

1. In the statistics literature the moving least squares idea is known as local (poly-
nomial) regression. There is a book by Fan and Gijbels [186] and a review article
by Cleveland and Loader [146] according to which the basic ideas of local regres-
sion can be traced back at least to work of Gram [267], Woolhouse [648], and De
Forest [148, 149] from the 1870s and 1880s.

2. In particular, in the statistics literature one learns that the use of least squares
approximation is justified when the data f1, . . . , fN are normally distributed,
whereas, if the noise in the data is not Gaussian, then other criteria should be
used. See, e.g., the survey article [146] for more details.

3. The general moving least squares method first appeared in the approximation
theory literature in a paper by Lancaster and Šalkauskas [358] who also pointed
out the connection to earlier (more specialized) work by Shepard [578] and McLain
[436].

4. Early error estimates for some special cases were provided by Farwig in [188, 189].
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