
Chapter 9

Applications

9.1 Solving Partial Differential Equations via Collocation

In this section we discuss the numerical solution of elliptic partial differential equations
using a collocation approach based on radial basis functions. To make the discus-
sion transparent we will focus on the case of a time independent linear elliptic partial
differential equation in IR2.

9.1.1 Kansa’s Approach

In [340] Kansa suggested a now very popular non-symmetric method for the solution
of elliptic PDEs with radial basis functions. In order to be able to clearly point out
the differences between Kansa’s method and a symmetric approach proposed in [194]
we recall some of the basics of scattered data interpolation with radial basis functions
in IRs.

In this context we are given data {xi, fi}, i = 1, . . . , N , xi ∈ IRs, where we can
think of the values fi being sampled from a function f : IRs → IR. The goal is to find
an interpolant of the form

Pf(x) =
N

∑

j=1

cjϕ(‖x− xj‖), x ∈ IRs, (9.1)

such that
Pf(xi) = fi, i = 1, . . . , N.

The solution of this problem leads to a linear system Ac = f with the entries of A
given by

Aij = ϕ(‖xi − xj‖), i, j = 1, . . . , N. (9.2)

As discussed earlier, the matrix A is non-singular for a large class of radial functions
including (inverse) multiquadrics, Gaussians, and the strictly positive definite com-
pactly supported functions of Wendland, Wu, or Buhmann. In the case of strictly
conditionally positive definite functions such as thin plate splines the problem needs to
be augmented by polynomials.
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We now switch to the collocation solution of partial differential equations. Assume
we are given a domain Ω ⊂ IRs, and a linear elliptic partial differential equation of the
form

L[u](x) = f(x), x in Ω, (9.3)

with (for simplicity of description) Dirichlet boundary conditions

u(x) = g(x), x on ∂Ω. (9.4)

For Kansa’s collocation method we then choose to represent u by a radial basis function
expansion analogous to that used for scattered data interpolation, i.e.,

u(x) =
N

∑

j=1

cjϕ(‖x− ξj‖), (9.5)

where we now introduce the points ξ1, . . . , ξN as centers for the radial basis func-
tions. They will usually be selected to coincide with the collocation points X =
{x1, . . . , xN} ⊂ Ω. However, the discussion below is clearer if we formally distin-
guish between centers ξj and collocation points xi. We assume the simplest possible
setting here, i.e., no polynomial terms are added to the expansion (9.5). The collocation
matrix which arises when matching the differential equation (9.3) and the boundary
conditions (9.4) at the collocation points X will be of the form

A =

[

Φ
L[Φ]

]

, (9.6)

where the two blocks are generated as follows:

Φij = ϕ(‖xi − ξj‖), xi ∈ B, ξj ∈ X ,
L[Φ]ij = L[ϕ](‖xi − ξj‖), xi ∈ I, ξj ∈ X .

Here we have identified (as we will do throughout this section) the set of centers with
the set of collocation points. The set X is split into a set I of interior points, and B
of boundary points. The problem is well-posed if the linear system Ac = y, with y

a vector consisting of entries g(xi), xi ∈ B, followed by f(xi), xi ∈ I, has a unique
solution.

We note that a change in the boundary conditions (9.4) is as simple as changing a
few rows in the matrix A in (9.6) as well as on the right-hand side y. We also point out
that Kansa only proposed to use multiquadrics in (9.5), and for that method suggested
the use of varying parameters αj , j = 1, . . . , N , which improves the accuracy of the
method when compared to using only one constant value of α (see [340]).

A problem with Kansa’s method is that – for a constant multiquadric shape pa-
rameter α – the matrix A may for certain configurations of the centers ξj be singular.
Originally, Kansa assumed that the non-singularity results for interpolation matrices
would carry over to the PDE case. However, as the numerical experiments of Hon and
Schaback [304] show, this is not so. This is to be expected since the matrix for the
collocation problem is composed of rows which are built from different functions (which
– depending on the differential operator L – might not even be radial). The results for
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the non-singularity of interpolation matrices, however, are based on the fact that A is
generated by a single function ϕ.

An indication of the success of Kansa’s method (which has not yet been shown to be
well-posed) are the early papers [165, 166, 262, 341, 467] and many more since. In his
paper [340] Kansa describes three sets of experiments using his method and comments
on the superior performance of multiquadrics in terms of computational complexity
and accuracy when compared to finite difference methods. Therefore, it remains an
interesting open question whether the well-posedness of Kansa’s method can be estab-
lished at least for certain configurations of centers. Moreover, Kansa’s suggestion to use
variable shape parameters αj in order to improve accuracy and stability of the problem
has very little theoretical support. Except for one paper by Bozzini, Lenarduzzi and
Schaback [68] (which addresses only the interpolation setting) this problem has not
been addressed in the literature.

Before we describe an alternate approach which does ensure well-posedness of the
resulting collocation matrix and which is based on basis functions suitable for scattered
Hermite interpolation we would like to point out that in [467] the authors suggest how
Kansa’s method can be applied to other types of partial differential equation prob-
lems such as non-linear elliptic PDEs, systems of elliptic PDEs, and time-dependent
parabolic or hyperbolic PDEs.

9.1.2 An Hermite-based Approach

The following symmetric approach is based on scattered Hermite interpolation (see,
e.g., [315, 484, 598, 651]), which we now also quickly review. In this context we are
given data {xi, Lif}, i = 1, . . . , N , xi ∈ IRs where L = {L1, . . . , LN} is a linearly
independent set of continuous linear functionals. We try to find an interpolant of the
form

Pf(x) =
N

∑

j=1

cjL
ξ
j ϕ(‖x− ξ‖), x ∈ IRs, (9.7)

satisfying
LiPf = Lif, i = 1, . . . , N.

We have used Lξ to indicate that the functional L acts on ϕ viewed as a function of the
second argument ξ. The linear system Ac = Lf which arises in this case has matrix
entries

Aij = LiL
ξ
j ϕ, i, j = 1, . . . , N. (9.8)

In the references mentioned at the beginning of this subsection it is shown that A is
non-singular for the same classes of ϕ as given for scattered data interpolation in our
earlier chapters.

Remark: It should be pointed out that this formulation of Hermite interpolation is
very general and goes considerably beyond the standard notion of Hermite interpolation
(which refers to interpolation of successive derivative values). Here any kind of linear
functional are allowed as long as the set L is linearly independent.

We illustrate this approach with a simple example using derivative functionals.
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Example: Let data {xi, f(xi)}
n
i=1 and {xi,

∂f
∂x (xi)}

N
i=n+1 with x = (x, y) ∈ IR2 be

given. Then

Pf(x) =
n

∑

j=1

cjϕ(‖x− xj‖)−
N

∑

j=n+1

cj
∂ϕ

∂x
(‖x− xj‖),

and

A =

[

Φ −Φx

Φx −Φxx

]

,

with

Φij = ϕ(‖xi − xj‖), i, j = 1, . . . , n,

−Φx,ij = −
∂ϕ

∂x
(‖xi − xj‖), i = 1, . . . , n, j = n + 1, . . . , N,

Φx,ij =
∂ϕ

∂x
(‖xi − xj‖), i = n + 1, . . . , N, j = 1, . . . , n,

Φxx,ij =
∂2ϕ

∂x2
(‖xi − xj‖), i, j = n + 1, . . . , N.

Now we describe an alternative collocation method based on the generalized interpo-
lation theory just reviewed. Assume we are given the same PDE (9.3) with boundary
conditions (9.4) as in the section on Kansa’s method. In order to be able to apply
the results from scattered Hermite interpolation to ensure the non-singularity of the
collocation matrix we propose the following expansion for the unknown function u:

u(x) =

#B
∑

j=1

cjϕ(‖x− ξj‖) +
N

∑

j=#B+1

cjL
ξ[ϕ](‖x− ξj‖), (9.9)

where #B denotes the number of nodes on the boundary of Ω, and Lξ is the differential
operator used in (9.3), but acting on ϕ viewed as a function of the second argument,
i.e., L[ϕ] is equal to Lξ[ϕ] up to a possible difference in sign. Note the difference in
notation. In (9.7) L is a linear functional, and in (9.9) a differential operator.

This expansion for u leads to a collocation matrix A which is of the form

A =

[

Φ Lξ[Φ]
L[Φ] L[Lξ[Φ]]

]

, (9.10)

where the four blocks are generated as follows:

Φij = ϕ(‖xi − ξj‖), xi, ξj ∈ B,
Lξ[Φ]ij = Lξ[ϕ](‖xi − ξj‖), xi,∈ B, ξj ∈ I,
L[Φ]ij = L[ϕ](‖xi − ξj‖), xi ∈ I, ξj ∈ B,

L[Lξ[Φ]]ij = L[Lξ[ϕ]](‖xi − ξj‖), xi, ξj ∈ I.

The matrix (9.10) is of the same type as the scattered Hermite interpolation matri-
ces (9.8), and therefore non-singular as long as ϕ is chosen appropriately. Thus, viewed
using the new expansion (9.9) for u, the collocation approach is certainly well-posed.
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α ρK ρH condK(A) condH(A)

5× 3 1.0 5.248447e-02 2.004420e-01 2.599606e+03 1.627432e+03
8× 4 1.0 1.126843e-02 1.124710e-02 2.325758e+05 8.167527e+04
10× 6 1.0 5.809472e-03 6.481697e-03 4.321740e+07 1.808001e+07
16× 8 1.0 1.347863e-03 1.720007e-03 8.685785e+10 1.496772e+10
20× 12 1.0 5.053090e-04 5.973294e-04 5.161540e+15 1.234633e+15

Table 9.1: Error progression for increasingly denser data sets (Ex.1, fixed α).

Another point in favor of the Hermite based approach is that the matrix (9.10) is (anti)-
symmetric as opposed to the completely unstructured matrix (9.6) of the same size.
This property should be of value when trying to devise an efficient implementation of
the collocation method. Also note that although A consists of four blocks now, it still
is of the same size, namely N ×N , as the collocation matrix (9.6) obtained for Kansa’s
approach.

Remark: One attempt to obtain an efficient implementation of the Hermite based
collocation method is a version of the greedy algorithm described in Section 8.5.1 by
Hon, Schaback and Zhou [305].

9.1.3 Numerical Examples

The following test examples are taken from [194]. We restrict ourselves to two-dimensional
Poisson problems whose analytic solution is readily available and therefore can easily
be verified. We will refer to a point in IR2 as (x, y). In all of the following tests we
used multiquadrics in the expansions (9.5) and (9.9) of the unknown function u.

Example 1: Consider the Poisson equation

∆u(x, y) = y(1− y) sin3 x, x ∈ (0, π), y ∈ (0, 1),

with Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(0, y) = u(π, y) = 0.

For this test problem we selected various uniform grids as listed in Tables 9.1 and
9.2 on [0, π]× [0, 1]. Tables 9.1 and 9.2 show the values of the multiquadric parameter
α, the relative maximum errors ρ computed on a fine grid of 60 × 60 points, and
the approximate condition numbers of A. The range of u on the evaluation grid is
approximately [−0.021023, 0.0]. The “optimal” value for α was determined by trial
and error. The subscripts K and H refer to Kansa’s and the Hermite based method,
respectively.

Figure 9.1 shows the distribution of the errors |u(x)− s(x)| on the evaluation grid
for the two methods on the 8×4 grid used in Table 9.2. The scale used for the shading
is displayed on the right.
Example 2: Consider the Poisson equation

∆u(x, y) = sin x− sin3 x, x ∈ (0,
π

2
), y ∈ (0, 2),
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αK αH ρK ρH condK(A) condH(A)

5× 3 1.18 1.39 1.627193e-02 4.180428e-02 5.592238e+03 5.231279e+03
8× 4 1.04 1.11 1.103747e-02 1.062891e-02 3.175078e+05 1.735482e+05
10× 6 4.80 3.84 2.739293e-03 3.451799e-03 1.193586e+18 1.414927e+15
16× 8 3.12 3.12 2.707006e-04 2.082886e-04 1.209487e+19 6.609375e+18
20× 12 2.00 2.30 3.894511e-05 1.273363e-05 3.739554e+19 6.750955e+18

Table 9.2: Error progression for increasingly denser data sets (Ex.1, “optimal” α).

0.0

2.328866e-04

Figure 9.1: Error for Kansa’s (top), Hermite (bottom) solution for Ex. 1 on 8× 4 grid.

with mixed Dirichlet and Neumann boundary conditions

u(0, y) = ux(
π

2
, y) = uy(x, 0) = uy(x, 2) = 0.

For this example we selected uniform grids on [0, π/2]× [0, 2] as listed in Table 9.3.
This time we only list the results for the “optimal” choice of α. The values listed are
analogous to those in Ex. 1.

All in all the Hermite method seems to perform slightly better than Kansa’s method.
Especially for the cases in which we used relatively many interior points (which is where
the methods differ). Also, the matrices for the Hermite method generally have smaller
condition numbers. An advantage of the Hermite approach over Kansa’s method is

αK αH ρK ρH condK(A) condH(A)

3× 3 109.0 2.19 9.628085e-01 1.141043e-01 1.592286e+16 5.560886e+02
5× 5 1.80 1.73 2.181029e-02 4.327029e-02 2.395293e+06 1.271196e+05
7× 7 1.58 3.56 6.910084e-03 1.871798e-04 5.762316e+08 1.854850e+12

10× 10 2.80 3.29 9.265197e-05 5.126676e-05 2.842111e+18 7.070804e+17
14× 14 2.28 2.62 1.138751e-05 1.725526e-06 6.573143e+19 5.891454e+18
20× 20 1.53 1.91 5.501057e-06 6.217559e-07 5.889491e+19 7.576112e+19

Table 9.3: Error progression for increasingly denser data sets (Ex.2, “optimal” α).
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that for the differential operator L used here, the collocation matrices resulting from
the Hermite approach are symmetric. Therefore the amount of computation can be
reduced considerably, which is important for larger problems. Kansa’s method has the
advantage of being simpler to implement (since less derivatives of the basis functions
are required).

Remarks:

1. Both of the methods described in this section have been implemented for many
different applications. A thorough comparison of the two methods was reported
in [520].

2. Since the methods described above were both originally used with globally sup-
ported basis functions, the same concerns as for interpolation problems about
stability and numerical efficiency apply. Two recent papers by Ling and Kansa
[395, 396] address these issues. In particular, they develop a preconditioner in the
spirit of the one described in Section 8.3.3, and describe their experience with a
domain decomposition algorithm.

3. A convergence analysis for the symmetric method was established by Franke and
Schaback [229, 230]. The error estimates established in [229, 230] require the solu-
tion of the PDE to be very smooth. Therefore, one should be able to use meshfree
radial basis function collocation techniques especially well for (high-dimensional)
PDE problems with smooth solutions on possibly irregular domains. Due to
the known counterexamples [304] for the non-symmetric method, a convergence
analysis is still lacking for that method.

4. Recently, Miranda [462] has shown that Kansa’s method will be well-posed if it
is combined with so-called R-functions. This idea was also used by Höllig and
his co-workers in their development of WEB-splines (see, e.g., [299]).

5. Kansa’s method has the advantage of being easily adapted for nonlinear elliptic
PDEs (see, e.g., [201, 467]).

Some numerical evidence for convergence rates of the symmetric collocation method
is given by the examples above, and in the papers [336, 520]. The example above
shows very high convergence rates (as predicted by the estimate in [230]) when using
multiquadrics on a problem which has a smooth solution. In [336] thin plate splines
as well as Wendland’s C4 compactly supported RBF ϕ3,2 were tested. The results
for thin plate splines are in good agreement with the theory. However, the numerical
experiments using the Wendland function show O(h3) convergence instead of O(h) as
predicted by the lower bounds of [230] combined with the error bound for Wendland
functions. This could suggest that a sharper error estimate may be possible when using
compactly supported RBFs.

Other recent papers investigating various aspects of radial basis function collocation
are, e.g., [135] by Cheng, Golberg, Kansa and Zammito, [215] by Fedoseyev, Friedman
and Kansa, [345] by Kansa and Hon, [360] by Larsson and Fornberg, [365] by Leitão,
and [424] by Mai-Duy and Tran-Cong.

For example, in the paper [215] it is suggested that the collocation points on the
boundary are also used to satisfy the PDE. However, this adds a set of extra equations
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to the problem, and therefore one should also use some additional basis functions in
the expansion (9.5). It is suggested in [215] that these centers lie outside the domain Ω.
The motivation for this modification is the well-known fact that both for interpolation
and collocation with radial basis functions the error is largest near the boundary. In
various numerical experiments this strategy is shown to improve the accuracy of Kansa’s
basic non-symmetric method. It should be noted that there is once more no theoretical
foundation for this method.

Larsson and Fornberg [360] compare Kansa’s basic collocation method, the modi-
fication just described, and the Hermite-based symmetric approach mentioned earlier.
Using multiquadric basis functions in a standard implementation they conclude that
the symmetric method is the most accurate, followed by the non-symmetric method
with boundary collocation. The reason for this is the better conditioning of the system
for the symmetric method. Larsson and Fornberg also discuss an implementation of
the three methods using the complex Contour-Padé integration method mentioned in
Section 8.1. With this technique stability problems are overcome, and it turns out that
both the symmetric and the non-symmetric method perform with comparable accu-
racy. Boundary collocation of the PDE yields an improvement only if these conditions
are used as additional equations, i.e., by increasing the problem size. It should also
be noted that often the most accurate results were achieved with values of the multi-
quadric shape parameter α which would lead to severe ill-conditioning using a standard
implementation, and therefore these results could be achieved only using the complex
integration method. Moreover, in [360] radial basis function collocation is deemed to
be far superior in accuracy than standard second-order finite differences or a standard
Fourier-Chebyshev pseudospectral method.

Leitão [365] applies the symmetric collocation method to a fourth-order Kirchhoff
plate bending problem, and emphasizes the simplicity of the implementation of the ra-
dial basis function collocation method. And, finally, Mai-Duy and Tran-Cong [424] sug-
gest a collocation method for which the basis functions are taken to be anti-derivatives
of the usual radial basis functions.

All of the experiments just mentioned were conducted without using a multilevel
approach. In particular, in order to achieve convergence with the Wendland functions
the support had to be chosen so large that only problems with a very modest number of
centers could be handled (see [336]). So, as for scattered data interpolation, a multilevel
approach is needed to obtain computational efficiency.

We would like to end the discussion of the collocation approach by looking at a
multilevel implementation with compactly supported functions.

The most significant difference between the use of compactly supported RBFs for
scattered data interpolation and for the numerical solution of PDEs by collocation
appears when we turn to the multilevel approach. Recall that the use of the multilevel
method is motivated by our desire to obtain a convergent scheme while at the same
time keeping the bandwidth fixed, and thus the computational complexity at O(N).

Here is an adaptation of the basic multilevel algorithm of Section 8.2 to the case of
a collocation solution of the problem Lu = f :
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mesh `2-error rate

5 3.637579e-04
9 1.892007e-05 4.26
17 3.055339e-06 2.63
33 2.111403e-06 0.53
65 2.062621e-06 0.03
129 2.066411e-06 0.00
257 2.070168e-06 0.00
513 2.072171e-06 0.00
1025 2.073182e-06 0.00
2049 2.073688e-06 0.00

Table 9.4: Multilevel collocation algorithm for symmetric collocation with constant
bandwidth.

Algorithm (Multilevel Collocation)

u0 = 0.

For k from 1 to K do

Find uk ∈ SXk
such that Luk = (f − Luk−1) on grid Xk.

Update uk ← uk−1 + uk.

end

Here SXk
is the space of functions used for expansion (9.5) or (9.9) on grid Xk.

Whereas we noted above that there is strong numerical (and limited theoretical) ev-
idence that the basic multilevel interpolation algorithm converges (at least linearly),
the following example shows that we cannot in general expect the multilevel collocation

algorithm to converge at all.

Example: Consider the boundary-value problem

−u′′(x) + π2u(x) = 2π2 sin πx, x ∈ (0, 1),
u(0) = u(1) = 0,

with solution u(x) = sin πx. As computational grids Xk we take 2k+1 + 1 uniformly
spaced points on [0, 1] as indicated in Table 9.4. We use the C6 compactly supported
Wendland function ϕ3,3 and the conjugate gradient method with Jacobi preconditioning
is used to solve the resulting linear systems. We take the support size on the first grid
to be so large that the resulting matrix is a dense matrix. During subsequent iterations
the support size is halved (as is the meshsize) in order to maintain a constant bandwidth
of 17 (i.e., work in the stationary setting). Even though the first three iterations seem
to indicate significant rates of convergence, the convergence behavior quickly changes,
and by the fifth iteration there is virtually no improvement of the error (the fact that
the errors actually increase is due to the fact that they are computed on increasingly
finer grids).
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We note that the same behavior can be observed if the non-symmetric approach
is used instead. However, then the convergence ceases at a slightly later stage. We
also note that the same phenomenon was observed by Wendland in the context of a
multilevel Galerkin algorithm for compactly supported RBFs (see [631] as well as our
discussion in the next section).

Remarks:

1. It has been suggested that the convergence behavior of the multilevel colloca-
tion algorithm may be linked to the phenomenon of approximate approximation.
However, so far no connection has been established.

2. As was shown in [198] a possible remedy for the non-convergence problem is
smoothing. One might also expect that a slightly different scaling of the support
sizes of the basis functions (such that the bandwidth of the matrix is allowed to
increase slowly from one iteration to the next, i.e., moving to the non-stationary
setting) will lead to better results. In [198] it was shown that this is in fact true.
However, smoothing further improved the convergence. A discussion of the idea
of post-conditioning via smoothing is beyond the scope of this text. We refer the
reader to the paper [209].

9.2 Galerkin Methods

A variational approach to the solution of PDEs with RBFs has so far only been consid-
ered by Wendland [630, 631]. In [631] he studies the Helmholtz equation with natural
boundary conditions, i.e.,

−∆u + u = f in Ω,
∂

∂ν
u = 0 on ∂Ω,

where ν denotes the outer unit normal vector. The classical Galerkin formulation then
leads to the problem of finding a function u ∈ H1(Ω) such that

a(u, v) = (f, v)L2(Ω) for all v ∈ H1(Ω),

where (f, v)L2(Ω) is the usual L2 inner product, and for the Helmholtz equation the
bilinear form a is given by

a(u, v) =

∫

Ω
(∇u · ∇v + uv)dx.

In order to obtain a numerical scheme the infinite-dimensional space H1(Ω) is replaced
by some finite-dimensional subspace SX ⊆ H1(Ω), where X is some computational grid
to be used for the solution. In the context of RBFs SX is taken as

SX = span{φ(‖ · −xj‖2), xj ∈ X}.
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This results in a square system of linear equations for the coefficients of uX ∈ SX
determined by

a(uX , v) = (f, v)L2(Ω) for all v ∈ SX .

For more on the Galerkin method (in the context of finite elements) see, e.g., [69, 70].
It was shown in [630] that for those RBFs (globally as well as locally supported) whose
Fourier transform decays like (1 + ‖ · ‖2)

−2β the following convergence estimate holds:

‖u− uX ‖H1(Ω) ≤ Chσ−1‖u‖Hσ(Ω), (9.11)

where h is the meshsize of X , the solution satisfies the regularity requirements u ∈
Hσ(Ω), and where the convergence rate is determined by β ≥ σ > s/2 + 1. For
Wendland’s compactly supported RBFs this implies that functions which are in C2κ

and strictly positive definite on IRs satisfying κ ≥ σ − s+1
2 will have O(hκ+(s−1)/2)

convergence order, i.e., the C0 function ϕ3,0 = (1−r)2+ yields O(h) and the C2 function
ϕ3,1 = (1 − r)4+(4r + 1) delivers O(h2) convergence in IR3. As with the convergence
estimate for symmetric collocation there is a link between the regularity requirements
on the solution and the space dimension s. Also, so far, the theory is only established
for PDEs with natural boundary conditions.

The convergence estimate (9.11) holds for the non-stationary setting, i.e., if we
are using compactly supported basis functions, for fixed support radii. By the same
argumentation as used in Section 8, one will want to switch to the stationary setting
and employ a multilevel algorithm in which the solution at each step is updated by
a fit to the most recent residual. This should ensure both convergence and numerical
efficiency.

Here is the variant of the stationary multilevel collocation algorithm listed above
for the weak formulation (see [631]):

Algorithm (Multilevel Galerkin)

u0 = 0.

For k from 1 to K do

Find uk ∈ SXk
such that a(uk, v) = (f, v)− a(uk−1, v) for all v ∈ SXk

.

Update uk ← uk−1 + uk.

end

This algorithm does not converge in general (see Tab. 1 in [631]).
Since the weak formulation can be interpreted as a Hilbert space projection method,

Wendland was able to show that a modified version of the multilevel Galerkin algorithm,
namely

Algorithm (Nested Multilevel Galerkin)

Fix K and M ∈ IN, and set v0 = 0.

For j from 0 while resiudal > tolerance to M do

Set u0 = vj .
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Apply the k-loop of the previous algorithm and denote the result with û(vj).

Set vj+1 = û(vj).

end

does converge. In fact, using this algorithm Wendland proves, and also observes
numerically, convergence which is at least linear (see Theorem 3 and Tab. 2 in [631]).
The important difference between the two multilevel Galerkin algorithms is the added
outer iteration in the nested version which is a well-known idea from linear algebra
introduced in 1937 by Kaczmarz [337]. A proof of the linear convergence for general
Hilbert space projection methods coupled with Kaczmarz iteration can be found in
[585]. This alternate projection idea is also the fundamental ingredient in the conver-
gence proof of the domain decomposition method of Beatson, Light and Billings [42]
described in the previous chapter. We mention here that in the multigrid literature
Kaczmarz’ method is frequently used as a smoother (see e.g. [435]).

Remarks:

1. Aside from difficulties with Dirichlet (or sometimes called essential) boundary
conditions, Wendland reports that the numerical evaluation of the weak-form in-
tegrals presents a major problem for the radial basis function Galerkin approach.
Both of these difficulties are also well-known in many other flavors of meshfree
weak-form methods. An especially promising solution to the issue of Dirichlet
boundary conditions seems to be the use of R-functions as proposed by Höllig
and Reif in the context of WEB-splines (see, e.g., [299] or our earlier discussion
in the context of collocation methods).

2. In a recent paper by Schaback [559] the author presents a framework for the
radial basis function solution of problems both in the strong (collocation) and
weak (Galerkin) form.

Many other meshfree methods for the solution of partial differential equations in
the weak form appear in the (mostly engineering) literature. These methods come
under such names as smoothed particle hydrodynamics (SPH) (e.g., [463]), reproducing
kernel particle method (RKPM) (see, e.g., [380, 399]), point interpolation method
(PIM) (see, [397]), element free Galerkin method (EFG) (see, e.g., [49]), meshless local
Petrov-Galerkin method (MLPG) [14], h-p-cloud method [164], partition of unity finite
element method (PUFEM) [16, 443], or generalized finite element method (GFEM)
[15]. Most of these methods are based on the moving least squares approximation
method discussed in Chapter 7.

There are two recent books by Atluri [12] and Liu [397] summarizing many of
these methods. However, these books focus mostly on a survey of the various meth-
ods and related computational and implementation issues with little emphasis on the
mathematical foundation of these methods. The recent survey paper [15] by Babuška,
Banerjee and Osborn, fills a large part of this void.
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