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Abstract. In this paper we focus on two methods for multivariate
approximation problems with non-uniformly distributed noisy data.
The new approach proposed here is an iterated approximate moving
least-squares method. We compare our method to ridge regression
which filters out noise by using a smoothing parameter. Our goal
is to find an optimal number of iterations for the iterative method
and an optimal smoothing parameter for ridge regression so that the
corresponding approximants do not exactly interpolate the given data
but are reasonably close. For both approaches we implement variants
of leave-one-out cross-validation in order to find these optimal values.
The shape parameter for the basis functions is also optimized in our
algorithms.

§1. Introduction

In multivariate data fitting problems we are usually given data (xj , fj),
j = 1, . . . , N with distinct xj ∈ Rs and fj ∈ R, and we want to find a
(continuous) function Pf : Rs → R such that

Pf (xj) = fj , j = 1, . . . , N. (1)

For classical interpolation methods we assume Pf to be a linear com-
bination of a set of basis functions φj , i.e.,

Pf (x) =
N∑

j=1

cjφj(x). (2)

The coefficients cj are determined by satisfying the constraint (1). To
guarantee existence of a unique set of cj for arbitrary distinct xj , it is
known that, when s > 1 and N > 1, φj must be xj-dependent. In the
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literature, the φj are frequently chosen to be basis functions generated by
shifts of a single strictly positive definite basic function φ, i.e.,

φj(x) = φ(x− xj). (3)

Correspondingly, (2) is now rewritten as

Pf (x) =
N∑

j=1

cjφ(x− xj). (4)

To express the problem in matrix-vector form we let

c = [c1, . . . , cN ]T , f = [f1, . . . , fN ]T , Φij = φ(xi − xj).

Then, enforcing the interpolation constraint (1) with a Pf in the form of
(4) leads to

Φc = f . (5)

The fact that φ is assumed to be strictly positive definite guarantees
that the interpolation matrix Φ is invertible. Therefore, c = Φ−1f .

Note that, in this classical setup, there is no restriction on the distri-
bution of the data sites xj except for being pair-wise distinct. However,
distribution of the xj is an important issue in the so-called approximate
moving least squares (AMLS) approximation method. More details will
be given later.

The definition of the basic function φ often involves a multiplicative
parameter ε, e.g., the Gaussian φ(x) = e−ε2x2

. This shape parameter
can be used to control the flatness of φ, and finding a good value for ε
is a major issue of data approximation (see e.g., the recent paper [3]).
Throughout the rest of this paper, we frequently omit ε in our notation,
but the reader should be aware that some quantities, e.g., φ, Φ and c may
be ε-dependent.

The function Pf based on (5) exactly interpolates the given data.
When N is large, solving this (often dense and ill-conditioned) linear sys-
tem can be rather time-consuming. In many practical applications the
data values fj will contain a certain amount of inaccuracy such as exper-
imental noise or computational error (e.g., if the data come from some
other previous computation). This fact demonstrates that we may not
want to invest too much effort into obtaining a solution that exactly in-
terpolates the data. Usually one attempts to overcome these difficulties
by giving up some of the exactness of the solution function. For more
details on scattered data approximation by positive definite functions we
refer the reader to either [1] or [7].
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§2. Interpolation By Iterated AMLS Approximation

In the standard approach to moving least squares (MLS) approximation
one takes a local (usually polynomial) approximation space, and deter-
mines the point-wise approximation as the solution of a locally weighted
norm minimization problem. This and many more details of MLS and
AMLS approximation are described in [1]. The dimension of this polyno-
mial space is usually far smaller than the data size. This polynomial ap-
proach can be equivalently interpreted as a quasi-interpolation approach,
namely Backus-Gilbert’s method. Similarly to the local polynomial ap-
proach, Backus-Gilbert’s method avoids solving a full size linear system.
However, its generating functions are point-wise determined, that is, unless
a polynomial space of low order is used, evaluation of the Backus-Gilbert
solution at each point still requires the solution of a linear system whose
size is based on the dimension of the polynomial space. The advantage
of the Backus-Gilbert formulation is that it suggests an extension to a
continuous approximant whose evaluation no longer requires solution of
any linear systems.

2.1. From the Backus-Gilbert Method to AMLS Approximation
Assume a quasi-interpolant Qf : Rs → R of the form

Qf (x) =
N∑

j=1

fjφ(x− xj). (6)

It is known that if φ is a cardinal function, then Qf interpolates the
given data and minimizes the point-wise error. In the Backus-Gilbert
formulation of MLS approximation we do not intend to use a cardinal φ,
but instead we determine the φ(x−xj) at a fixed x via the following setup.

Assume

φ(x− xj) = w(x− xj)q(x− xj), q ∈ Πs
d, (7)

with a positive weight function w : Rs → R and polynomial q of degree at
most d in s variables which satisfies the point-wise conditions

N∑

j=1

(x− xj)αφ(x− xj) = δα,0, 0 ≤ |α| ≤ d. (8)

It will become apparent later why we use the same notation φ for the
MLS generating function as we used to define the interpolant Pf in (4).
However, at this point the Backus-Gilbert method itself does not require
φ to be strictly positive definite.

Condition (8) presents a set of discrete moment conditions. These mo-
ment conditions and the form (7) of the generating function can be derived
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from the Gram matrix associated with the standard MLS approximation.
For d > 1, it is quite complicated to obtain an explicit analytic formulation
for φ. However, if xj are (coordinate-wise) uniformly distributed, then (8)
may be approximately converted to an integral form via construction of a
Riemann sum, i.e.,

∫

Rs

x̃αφ(x̃)dx̃ = δα0, 0 ≤ |α| ≤ d. (9)

In analogy to (8), condition (9) now represents a set of continuous
moment conditions. These conditions are the key ingredient of AMLS
approximation — a method closely related to the general approximate ap-
proximation paradigm first suggested by Maz’ya in the early 1990s (see,
e.g., [5] and references therein). The advantage of the continuous formu-
lation (9) is that we can now explicitly construct the basic function φ. In
fact, it is clear that any appropriately normalized φ will satisfy (9) for
d = 0.

Condition (9) also implies a polynomial reproduction via function con-
volution, i.e.,

∫

Rs

x̃αφ(x− x̃)dx̃ =
∫

Rs

(x− x̃)αφ(x̃)dx̃ = xα, 0 ≤ |α| ≤ d. (10)

Consequently,

p(x) =
∫

Rs

p(x̃)φ(x− x̃)dx̃, p ∈ Πs
d. (11)

This reproduction of degree-d polynomials is what ensures good approx-
imation properties of the scheme. Again, in the case of a uniform center
distribution, the polynomial reproduction (11) can be approximately con-
verted to a discrete form, i.e.,

p(x) ≈
N∑

j=1

p(xj)φ(x− xj) p ∈ Πs
d. (12)

This interpretation leads us to believe that the (discrete) AMLS approxi-
mation method should also contain properties of function convolution. In
particular, convolution is known to be a smoothing operation when it does
not exactly reconstruct the convoluted function. Consequently, we expect
Qf to carry some high level smoothing effects.

2.2. Iterated AMLS Approximation

We now choose a φ that not only meets the continuous moment conditions
but also is strictly positive definite. With such a φ, the quasi-interpolant
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Qf may in fact be pushed as close to the interpolant Pf as possible via an
iterative process initialized withQf . Details of this approach are presented
in [2]. A basic algorithm is summarized below:

Q(0)
f (x) =

N∑

j=1

fjφ(x− xj), (13)

Q(n+1)
f (x) = Q(n)

f (x) +
N∑

j=1

[
fj −Q(n)

f (xj)
]
φ(x− xj), (14)

with residual functions

R(n)
f (x) = Q(n+1)

f (x)−Q(n)
f (x)

=
N∑

j=1

[
fj −Q(n)

f (xj)
]
φ(x− xj). (15)

According to the results presented in [2], if the matrix with entries
Φij = φ(xi − xj) satisfies ‖Φ‖2 < 1, then Q(n)

f → Pf , i.e., R(n)
f (x) → 0 as

n →∞.
This iterative process will eventually reach the exact interpolant sim-

ply by reducing the residuals at the data points during each iteration.
Note that the residuals themselves are also quasi-interpolants of the same
construction as the initial Q(0)

f is.
We now remind the reader of the data site distribution issue. AMLS

approximation in general is best formulated for a uniform data distribu-
tion. However, since the iterative Q(n)

f is guaranteed to arrive at the
interpolant Pf it is not necessary to ask for evenly spaced data in the
construction of Q(0)

f or the residual function R(n)
f in each iteration.

The initial AMLS approximant will usually be smooth but rather far
away from the exact true function. As the iteration proceeds, the resid-
uals decrease, but noise is also being picked up (if there is any). Thus,
one might expect that during the iteration there is a moment when the
approximant is relatively ideal meaning it is smooth and also close to the
true function. This optimal moment is known to be problem dependent
and also φ-dependent. We will come back to this discussion in detail later.
To end this section, let us make sure that there are some basic functions
φ available for this iterative AMLS method. For example,
• any normalized strictly positive definite function (for d = 0) will do,

e.g.,
– inverse multiquadrics φ(x) = (1 + x2)−β , β > 0 for all s,
– Wendland’s compactly supported functions for specific s,

• normalized Laguerre-Gaussians for arbitrary d and s (see [2]), e.g.,
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– φ(x) = e−x2
for d = 0 and all s,

– φ(x) = ( 3
2 − x2)e−x2

for d = 1 and s = 1.

§3. Ridge Regression for Noise Filtering

A well known approach to dealing with noisy data is ridge regression
or smoothing spline approximation (see, e.g., the seminal paper [4] by
Kimeldorf and Wahba). The basic idea is to give up some accuracy and
then obtain a solution via a minimization process that balances a tradeoff
between smoothness and closeness to the data. If we again assume the
solution Pf to be of the form (4) (but not subject to constraint (1)), then
using a smoothing parameter γ > 0, the coefficient vector c is determined
by

min



cT Φc + γ

N∑

j=1

(Pf (xj)− fj)
2



 . (16)

Here the quadratic form cT Φc is an indicator of the smoothness of Pf and
clearly,

∑N
j=1 (Pf (xj)− fj)

2 measures the closeness to the data.
It can be shown that solving (16) leads to the linear system

(
Φ +

1
γ
I
)

c = f . (17)

Note that this is just a regularized version of the interpolation system
(5). It is clear that (17) will have a unique solution provided φ is strictly
positive definite, since then the matrix

(
Φ + 1

γ I
)

is also positive definite
for γ > 0. The function Pf found by solving (17) will no longer exactly fit
the given data simply because of the use of γ. The parameter γ balances
the tradeoff between closeness of fit and smoothness. Obviously, a large γ

makes Pf fit the data more closely. In the limiting case,
(
Φ + 1

γ I
)
→ Φ

as γ →∞. This recovers the standard interpolation formulation as given
by (5). We will use cross-validation to get a good value of the smoothing
parameter. A different approach was suggested in the recent paper [8].

§4. Leave-One-Out Cross-Validation

As mentioned earlier, the optimal number of iterations for iterated AMLS
approximation and the optimal smoothing parameter γ for ridge regres-
sion are φ-dependent. For a given problem, in addition to the optimal
smoothing parameter γ used in ridge regression and the optimal number
of iterations for iterated AMLS approximation, we seek to find an opti-
mal shape parameter ε for the basic function φ in both methods. Indeed,
an optimal ε is also required for standard interpolation. In order to find
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these optimal values we use a variation of the so-called leave-one-out cross-
validation (LOOCV) algorithm. We now describe LOOCV along with its
implementation.

4.1. LOOCV for Ridge Regression

For k = 1, . . . , N , denote x[k] = [x1, . . . , xk−1, xk+1, . . . , xN ]T , f [k] =
[f1, . . . , fk−1, fk+1, . . . , fN ]T , and correspondingly, Φ[k]

ij = φ(ε(x[k]
i −x[k]

j )),

c[k] = [c[k]
1 , . . . , c

[k]
N−1]

T . We do this to indicate that in forming the approx-
imation we do not take the whole data set into consideration, but “leave
out” the kth element. Hence, all involved quantities are now of size (N−1)
instead of N . We implement the ridge regression method to find c[k]. That
is,

c[k] =
(

Φ[k] +
1
γ
I
)−1

f [k]. (18)

Correspondingly, the ridge regression approximation for leaving out the
kth data value becomes

P [k]
f (x) =

N−1∑

j=1

c
[k]
j φ(ε(x− x[k]

j )). (19)

In order to obtain a cost function for the optimization of γ (and ε) we
compute the residual on the left-out data point xk, i.e.,

ek =
∣∣∣fk −P [k]

f (xk)
∣∣∣ , (20)

and denote e = [e1, . . . , eN ]T .
Judging from the formulation presented thus far, this optimization

demands a large amount of computation — especially when the set of γ
candidates and the set of ε candidates are large. We adapt a formula given
by Rippa for standard RBF interpolation that will significantly reduce the
computation (see [6]). We denote, Φ̃ = Φ+ 1

γ I, where Φ is the interpolation
matrix based on the whole data set. Following Rippa’s analysis in [6] one
can show that ek given by (20) can actually be computed by

ek =

(
Φ̃−1f

)
k

Φ̃−1
kk

. (21)

For each pair of γ and ε, (20) requires computation of a matrix inverse
and function evaluation for every different k, whereas with (21) we need
to compute and store the inverse of the full size matrix only once for all
k = 1, . . . , N .
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4.2. LOOCV for Iterated AMLS Approximation
As mentioned earlier, the iterated AMLS approximant carries a strong
smoothing property which we will use for noise filtering purposes. Again,
we employ a variant of LOOCV to find an optimal shape parameter ε
and an optimal number of iterations. An interpretation of the iterated
AMLS method is that the iterative approximant Q(n)

f approximates the
interpolant Pf by representing the inverse of the interpolation matrix Φ
by a truncated Neumann series (see [2]), i.e.,

Φ−1 ≈
n∑

i=0

(I− Φ)i
. (22)

To optimize Q(n)
f with respect to n and ε using LOOCV, we again define a

cost function based on Rippa’s formula (21) which was originally derived
for the interpolation process. This leads to the following procedure.
• For a fixed ε formulate a cost function:

– During each iteration, apply an approximate version of Rippa’s
formula based on (22), i.e.,

e
(n)
k =

(∑n
i=0 (I− Φ)i f

)
k(∑n

i=0 (I− Φ)i
)

kk

. (23)

and denote e(n) = [e(n)
1 , . . . , e

(n)
N ]T .

– If ‖e(n)‖−‖e(n−1)‖ falls below a specified tolerance or the maximal
iteration number is reached, stop the iteration and store e(ε) =
e(n).

• An optimal ε is obtained by minimizing ‖e(ε)‖ with respect to ε.
Since the matrix I − Φ is non-singular (see [2]) we can perform an

eigen decomposition, i.e., I−Φ = XΛX−1, so that for n ¿ N the cost of
updating (23) during iterations can be reduced to O(N2) from O(N3) as
would be required by usual direct matrix multiplication.

§5. Discussion of Numerical Results

In our numerical experiments we use Gaussian basic functions. All com-
putations are performed on the unit square [0, 1]2. The scaling of the
basic functions is achieved by using two parameters: the shape parameter
ε defines the general shape, and a second parameter h that reflects the
data spacing is used to mimic stationary approximation. Thus, we end up
using expansions such as

Pf (x) =
N∑

j=1

cje
− ε2

h2 ‖x−xj‖2 or Qf (x) =
N∑

j=1

fje
− ε2

h2 ‖x−xj‖2 .
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Test data is taken from a modified Franke function. In Figure 1 we
compare the convergence behavior of Gaussian RBF interpolation to that
of the iterated AMLS algorithm for a problem without noise. The in-
terpolation error is represented by the highly oscillatory curve caused by
the associated numerical instabilities. The other two curves represent the
errors for iterated AMLS approximation. The dash-dotted curve is for
the initial iterate Q(0)

f and the solid one corresponds to Q(10)
f . When ε

is small the iterated AMLS method successfully overcomes the numerical
difficulties associated with the interpolant since the residual iteration acts
as a smoothing operation. The graph on the right is a zoom-in of the left
graph in a small ε range.
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Fig. 1. RMS-errors vs. ε and illustration of instabilities. 33×33 Halton points.

Results based on data with 3% noise added are summarized in Table 1.
In addition to the two methods discussed in this paper we include results
for an iterated Shepard approximation. Clearly, simple RBF interpolation
(with a fixed ε) is not recommended for noisy data. All three methods
produce similar error drops. However, searching for optimal parameters
for ridge regression is considerably more time consuming than for the two
iterative methods which both do not require solutions of linear systems
during the iterations. We note that for the two iterative methods the initial
approximant based on an optimal ε is flat and does not approximate the
data very well. However, convergence is rather fast during early iterations,
and then slows down once the approximant starts feeding on the noise. We
hope to detect this point at which the noise is optimally filtered with the
LOOCV algorithm.

In summary, both iterative methods will produce reliably smooth re-
sults in significantly less time than the ridge regression method, and there-
fore perform quite well in this noise filtering application.
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N = 9 25 81 289 1089

AMLS

RMSerr 4.80e-3 1.53e-3 6.42e-4 4.39e-4 2.48e-4
ε 1.479865 1.268158 0.911530 0.652600 0.468866
no. iter. 7 6 6 4 3
time 0.2 0.4 1.0 5.7 254

Shepard

RMSerr 5.65e-3 1.96e-3 8.21e-4 5.10e-4 2.73e-4
ε 2.194212 1.338775 0.895188 0.656272 0.468866
no. iter. 7 7 7 5 3
time 0.2 0.4 2.1 7.0 225

Ridge

RMSerr 3.54e-3 1.62e-3 7.20e-4 4.57e-4 2.50e-4
ε 2.083918 0.930143 0.704802 0.382683 0.181895
γ 100.0 100.0 47.324909 26.614484 29.753487
time 0.3 1.2 1.1 21.3 672

Tab. 1. Comparison of different methods using Gaussians for noisy data sam-
pled at Halton points.
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