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Abstract Many radial basis function (RBF) methods contain a free shape parameter

that plays an important role for the accuracy of the method. In most papers the authors

end up choosing this shape parameter by trial and error or some other ad-hoc means.

The method of cross validation has long been used in the statistics literature, and

the special case of leave-one-out cross validation forms the basis of the algorithm for

choosing an optimal value of the shape parameter proposed by Rippa in the setting of

scattered data interpolation with RBFs.

We discuss extensions of this approach that can be applied in the setting of iterated

approximate moving least squares approximation of function value data and for RBF

pseudo-spectral methods for the solution of partial differential equations. The former

method can be viewed as an efficient alternative to ridge regression or smoothing spline

approximation, while the latter forms an extension of the classical polynomial pseudo-

spectral approach. Numerical experiments illustrating the use of our algorithms are

included.
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parameter · Cross validation · Pseudo-spectral methods

Mathematics Subject Classification (2000) 65D05 · 65D15 · 65M70

1 Introduction

Many radial basis functions (RBFs) contain a free shape parameter ε that can be

tuned by the user. In the traditional RBF approach (as described in Section 2 below)

the problem boils down to the solution of a system of linear equations with a system

matrix A whose condition number grows (often exponentially) as the shape parameter

ε goes to zero. On the other hand, standard error estimates via the so-called power func-

tion indicate (exponentially) better accuracy for decreasing ε. This inter-dependence

is known in the literature (see, e.g., [32]) as the uncertainty or trade-off principle and

has been recognized as an important issue by many researchers.
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More recent research conducted mostly by Fornberg and co-workers (see, e.g., [2,

15,16,22,23]) has shown that one may be able to overcome the conditioning problems

of the traditional RBF approach by using other techniques such as the Contour-Padé

algorithm of [15]. This research has confirmed that — even when circumventing the

ill-conditioning of the system matrix — there usually is a value of the shape parameter

which results in optimal approximation errors.

Due to a connection between RBF interpolation and polynomial interpolation (also

studied in some of the papers listed above) it is likely that RBF interpolation also

suffers from a phenomenon that is similar to the well-known Runge phenomenon for

polynomial interpolation, and that the choice of the shape parameter can alleviate this

effect. Of course, other factors such as center placement are likely to play an important

role in successfully dealing with this Runge phenomenon, also. Nevertheless, once a set

of RBF centers has been chosen, it is of importance to find the corresponding optimal

shape parameter ε.

In summary, regardless of whether one follows the traditional RBF approach (and

therefore looks for a good balance between accuracy and stability), or whether one

applies stabilization techniques such as the Contour-Padé algorithm (which is applica-

ble only to rather small problems), the flexibility and potential for improved accuracy

offered by the shape parameter present in many RBFs should be exploited by the user.

It is somewhat ironic that this freedom is often viewed as a disadvantage since the

user is forced to make a decision on the choice of the shape parameter. This leads to

the fact that the authors of many papers end up choosing ε by a rather costly trial

and error approach performing their numerical experiments over and over again until

they end up with a satisfactory result. Alternatively, the shape parameter is picked

by some (non-optimal) ad-hoc criterion. For example, in one of the earliest RBF pa-

pers on (inverse) multiquadric RBF interpolation in R2 Hardy [18] suggests the use of

ε = 1/(0.815d), where d = 1
N

∑N
i=1 di, and di is the distance from the data point xi

to its nearest neighbor. Franke [17] on the other hand recommends ε = 0.8
√

N
D , where

D is the diameter of the smallest circle containing all data points. Here ε is used as in

the examples listed in Section 2 below, and thus may differ slightly from the discussion

in the original papers.

The method of cross validation has long been used in the statistics literature, and

the special case of leave-one-out cross validation (LOOCV) forms the basis of the

algorithm for choosing an optimal value of the RBF shape parameter proposed by

Rippa [27] in the setting of scattered data interpolation. We will review this algorithm

below in Section 2 as it forms the starting point for our work.

In particular, we discuss extensions of Rippa’s LOOCV algorithm that can be ap-

plied in the setting of iterated approximate moving least squares (AMLS) approxima-

tion and for RBF pseudo-spectral (PS) methods for the solution of partial differential

equations. In Section 4 we will discuss how an LOOCV strategy can be used in the

context of iterated AMLS approximation (which we review in Section 3) to find both

the optimal number of iterations and the optimal shape parameter. As our numerical

experiments presented in Section 5 will show, this iterative approach can be viewed

as an efficient alternative to ridge regression or smoothing spline approximation. In

Section 6 we switch to our second application and briefly review the RBF-PS method

showing that it generalizes the classical polynomial pseudo-spectral method. Rippa’s

algorithm is modified in Section 7 to yield the optimal shape parameter for the RBF-PS

approach, and some numerical experiments are included in Section 8.



3

2 Some Background Information

In the standard RBF interpolation problem we are given generally scattered data sites

X = {x1, . . . ,xN} ⊂ Ω and associated real function values f(xi), i = 1, . . . , N . Here

Ω is usually some bounded domain in Rs. It is our goal to find a (continuous) function

Pf : Rs → R that interpolates the given data, i.e., such that

Pf (xi) = f(xi), i = 1, . . . , N. (1)

In the RBF literature (see, e.g., [8,32]) one assumes that this interpolant is of the form

Pf (x) =

N∑
j=1

cjϕ(‖x− xj‖), (2)

where the basic function ϕ is (in this paper) assumed to be strictly positive definite and

the coefficients c = [c1, . . . , cN ]T are found by enforcing the interpolation constraints

(1). This implies that

c = A−1f ,

where Aij = ϕ(‖xi − xj‖) and f = [f(x1), . . . , f(xN )]T .

The kind of RBFs Φ = ϕ(‖ · ‖) we will be mostly interested in are the Gaussians

Φ(x) = e−ε2‖x‖2 , Matérn functions such as

Φ(x) = e−ε‖x‖,

Φ(x) = (1 + ε‖x‖)e−ε‖x‖,

Φ(x) = (3 + 3ε‖x‖+ ε2‖x‖2)e−ε‖x‖,

or the multiquadrics Φ(x) = (1+ε2‖x‖2)β , β /∈ 2N. While this latter family of functions

is quite popular, only those multiquadrics for β < 0 are strictly positive definite. Other

commonly used RBFs such as polyharmonic splines or compactly supported functions

will not play a role in this paper.

Many nice properties of the RBF interpolant are emphasized in the RBF literature.

For example, Pf is the minimum norm interpolant to f in a Hilbert space H, i.e.,

Pf = argmin {‖s‖H : s ∈ H, s(xi) = f(xi), i = 1, . . . , N} .

Here H is actually a reproducing kernel Hilbert space with reproducing kernel ϕ(‖·−·‖)
— sometimes referred to as the native space of ϕ. Moreover, the interpolant Pf is even

a best approximation to f in the sense that

‖f − Pf‖H ≤ ‖f − s‖H

for all s ∈ HX = {s =
∑N

j=1 ajϕ(‖ · −xj‖), xj ∈ X}.
Clearly, the space H varies with the choice of shape parameter ε present in all of

the RBFs listed above, and one will want to find the “best” Hilbert space in which the

interpolant Pf is optimal.

A popular strategy for estimating this shape parameter based on the given data

(xi, f(xi)), i = 1, . . . , N , is the method of cross validation well-known in statistics. In

[27] an algorithm is described that corresponds to a variant of cross validation known

as “leave-one-out” cross validation (LOOCV). In this algorithm an optimal value of

ε is selected by minimizing a cost function that collects the errors for a sequence of
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partial fits to the data. Even though the true error of the full RBF interpolant is not

known in general, we can estimate this error by splitting the data set into two parts:

one to base an approximation to the interpolant on, and the other to base an estimate

for the error on. In LOOCV one splits off only a single data point at which to compute

the error, and then bases the approximation to the interpolant on the remaining N −1

data points. This procedure is in turn repeated for each one of the N data points.

The result is a vector of error estimates and the cost function that is used to find

the “optimal” value of ε is provided by some norm of this error vector. One of the

main contributions of [27] was to show that this procedure can be executed efficiently

without having to compute all of the N partial interpolants based on subsets of N − 1

data points (cf. formula (5) below).

Since the LOOCV method is based on errors computed on the given data, the pre-

dicted “optimal” shape parameter is usually close to the actual optimum value (which,

of course, can only be found if we already know the function to be reconstructed).

For the following discussion we define

x[k] = [x1, . . . ,xk−1,xk+1, . . . ,xN ]T ,

the vector of datasites with the point xk removed (indicated by the superscript [k]).

Similarly, we define f [k], P
[k]
f , c[k] and all other quantities appearing in LOOCV-like

algorithms later on.

Specifically, if P
[k]
f is the partial RBF interpolant to the data f [k], i.e.,

P
[k]
f (x) =

N−1∑
j=1

c
[k]
j ϕ(‖x− x

[k]
j ‖),

and if ek is the error estimator

ek = f(xk)− P
[k]
f (xk),

then the quality of the overall fit to the entire data set will be determined by the norm

of the vector of errors e = [e1, . . . , eN ]T obtained by removing in turn each one of the

data points and comparing the resulting fit with the (known) value at the removed

point as described above. As mentioned earlier, the norm of e as a function of ε will

serve as a cost function for the shape parameter. In principle any vector norm can be

used. In [27] the author presented examples based on use of the `1 and `2 norms. We

will base all of our numerical experiments on the use of the `2 norm.

According to the ideas presented so far the LOOCV algorithm for RBF interpola-

tion can be summarized as follows:

Algorithm 1

Fix ε

For k = 1, . . . , N

Let

P
[k]
f (x) =

N−1∑
j=1

c
[k]
j ϕ

(
‖x− x

[k]
j ‖
)

(3)

Compute the error estimator at the kth data point

ek =
∣∣∣f(xk)− P

[k]
f (xk)

∣∣∣ (4)
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end

Form the cost vector e = [e1, . . . , eN ]T

The optimal ε is given by minimizing ‖e‖

While this naive implementation of the leave-one-out algorithm would be rather

expensive (on the order of N4), Rippa showed that the algorithm can be simplified to

a single formula by which

ek =
ck

A−1
kk

, (5)

where ck is the kth coefficient in the expansion of the interpolant Pf based on the

full data set, and A−1
kk is the kth diagonal element of the inverse of the corresponding

interpolation matrix.

Note that only a single interpolant (on the entire data set) needs to be computed

for this formulation. Thus, this results in O(N3) computational complexity. Moreover,

all entries in the error vector e can be computed in a single statement in MATLAB

provided we vectorize the component formula (5) (see line 4 in Program 2 below). In

order to determine a good value of the shape parameter as quickly as possible we can

use the Matlab function fminbnd to find the minimum of the cost function for ε.

A possible implementation of the cost function in the form of the subroutine

CostEps.m is displayed in Program 2.

Program 2 CostEps.m

1 function ceps = CostEps(ep,rbf,DM,rhs)

2 A = rbf(ep,DM);

3 invA = pinv(A);

4 errorvector = (invA*rhs)./diag(invA);

5 ceps = norm(errorvector);

Here rbf needs to provide a MATLAB function that can generate the interpolation

matrix A based on a shape parameter ep and a matrix DM of all the pairwise distances

‖xi − xj‖ among the datasites. For a Gaussian kernel the function rbf could look like

rbf = @(ep,r) exp(-(ep*r).^2);

A possible calling sequence for the cost function CostEps is given by

[ep,fval] = fminbnd(@(ep) CostEps(ep,rbf,DM,rhs),minep,maxep);

where minep and maxep define the interval to search in for the optimal ε value.

3 Iterated Approximate MLS Approximation

In [9] it was shown that iterated approximate moving least squares (AMLS) approxi-

mation yields the RBF interpolant in the limit. The algorithm can be interpreted as

a variant of iterative refinement. The AMLS method is based on quasi-interpolants of

the form

Qf (x) =

N∑
j=1

fjϕ(‖x− xj‖),
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where fj = f(xj) are the given data values, and the generating function ϕ(‖ · ‖) is

required to satisfy a number of conditions. In order to guarantee a desired order of

approximation ϕ has to satisfy certain continuous moment conditions. The number of

vanishing moments determines the precise approximation order of the scheme. More-

over, the generating function ϕ needs to satisfy a mild decay condition. If no connection

to RBF interpolation is desired, then ϕ is not subject to any further restrictions. How-

ever, if this connection is desired, then we need to ensure further that ϕ generates the

same function space as the RBF, i.e., the function is strictly positive definite. Finally,

we can ensure convergence of the iterative algorithm by an appropriate scaling of the

generating function. Details of the basic AMLS method are provided in [8] and the it-

erative method is described in [9]. A specific family of generating functions that satisfy

all of the requirements just mentioned is listed in (11) below. We note that, in general,

ϕ need not be a radial function. However, in this paper we concentrate on the radial

case.

The iterative algorithm proceeds as follows:

Algorithm 3

Compute the initial approximation

Q
(0)
f (x) =

N∑
j=1

fjϕ(‖x− xj‖)

For n = 1, 2, . . .

For j = 1, . . . , N

Compute residuals at the data sites

r
(n)
j = fj −Q

(n−1)
f (xj)

end

Compute the correction

u(x) =

N∑
j=1

r
(n)
j ϕ(‖x− xj‖)

Update Q
(n)
f (x) = Q

(n−1)
f (x) + u(x)

end

As pointed out above, we expect the sequence of approximants
{

Q
(n)
f

}
to con-

verge to the RBF interpolant Pf . For the following discussion it will be convenient to

introduce some more abbreviations:

Pf = [Pf (x1), . . . , Pf (xN )]T , (6)

Q
(n)
f = [Q

(n)
f (x1), . . . , Q

(n)
f (xN )]T . (7)

With this additional notation one can derive an explicit formula for the iterated AMLS

approximant as

Q
(n)
f (x) =

N∑
j=1

[
n∑

i=0

(I−A)i f

]
j

ϕ(‖x− xj‖) (8)
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(see [9] for details). By evaluating the approximant on the data sites we obtain the

vectorized expression

Q
(n)
f = A

n∑
i=0

(I−A)i f =
(
I− (I−A)n+1

)
f , (9)

where the latter equality holds due to

n∑
i=0

(I−A)i = A−1
(
I− (I−A)n+1

)
,

which in turn is a consequence of

∞∑
i=0

(I−A)i = A−1, (10)

the standard Neumann series for the matrix inverse.

The sufficient scaling condition mentioned above that guarantees convergence of

the iteratively computed AMLS approximant to the RBF interpolant is

max
i=1,2,...,N


N∑

j=1

|Bij |

 < 2,

where the matrix B is a scaled version of A, i.e.,

Bij = εsϕ
( ε

h
‖xi − xj‖

)
.

Here h is a data-dependent scale parameter which we take to be h = 1/(N1/s − 1),

i.e., for uniformly spaced data in Rs h behaves just like the fill distance (see [9]).

One of the features of the iterative approximate MLS approximation algorithm

is that it automatically adapts to non-uniformly spaced data since it converges to

the RBF interpolant which is known to work reasonably well with non-uniform data.

Without the residual iteration it is well known that approximate MLS approximation

does not perform well on scattered data unless a complicated non-uniform scaling is

performed for the generating function (see, e.g., [5]).

Finally, the most critical point for our application is to actually have generat-

ing functions that satisfy both the continuous moment conditions required for the

approximate MLS method and are strictly positive definite — as required for RBF

interpolation.

The Laguerre-Gaussians given by

Φ(x) = e−‖x‖
2
L

s/2
n (‖x‖2), x ∈ Rs, (11)

with generalized Laguerre polynomials L
s/2
n are strictly positive definite on Rs. Specific

examples are:

Φ(x) =
1√
πs

e−‖x‖
2
, x ∈ Rs,

Φ(x) =
1

π

(
2− ‖x‖2

)
e−‖x‖

2
, x ∈ R2,

Φ(x) =
1

π

(
3− 3‖x‖2 − 1

2
‖x‖4

)
e−‖x‖

2
, x ∈ R2.

These functions provide approximation order O(h2), O(h4), and O(h6), respectively

(see, e.g., [4]).
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4 LOOCV for the Optimization of Iterated AMLS

As explained in Section 2, Rippa originally designed the leave-one-out cross-validation

algorithm to optimize the shape parameter for a standard RBF interpolation problem.

We now propose two LOOCV schemes that have been adapted to the situation

that arises in iterated AMLS approximation. Our task now becomes to find not only a

good value of the shape parameter ε, but also a good stopping criterion that results in

an optimal number of iterations. For the latter to make sense it needs to be noted that

for noisy data the iteration acts like a noise filter. However, after a certain number of

iterations the noise will begin to feed on itself and the quality of the approximant will

degrade.

4.1 Direct LOOCV for Iterated AMLS Approximation

Since the basic Rippa algorithm for LOOCV was designed to deal with the interpolation

setting we now convert the iterated AMLS approximation to a similar formulation.

From (9) we know that

A

n∑
i=0

(I−A)i f = Q
(n)
f . (12)

This formulation is similar to the linear system for an interpolation problem with

system matrix A, coefficient vector
∑n

i=0 (I−A)i f , and right-hand side Q
(n)
f . In this

formulation the right-hand side vector is obtained by evaluating the quasi-interpolant

at the data sites instead of by the given data values themselves. If we multiply both

sides of (12) by [
n∑

i=0

(I−A)i
]−1

A−1

then we obtain [
n∑

i=0

(I−A)i
]−1( n∑

i=0

(I−A)i f

)
= f , (13)

where the right-hand side of (13) is itself a consequence of (12). Note that (13) now is

in the form of a standard interpolation system with system matrix
[∑n

i=0 (I−A)i
]−1

,

the same coefficient vector
∑n

i=0 (I−A)i f as above, and the usual right-hand side f

given by the data.

As a consequence of the Neumann series expansion (10) it turns out that the

system matrix
[∑n

i=0 (I−A)i
]−1

of (13) is an approximation to the RBF interpolation

matrix A. More details of the connection between these two interpolation matrices as

it pertains to smoothing and preconditioning will be discussed elsewhere.

In light of the reformulation of the iterative AMLS approximation described above

one will expect that an LOOCV optimization of the system (13) will yield good pa-

rameter values for the iterated AMLS scheme. This means that in our current setting

the Rippa formula (5) applied to compute an error vector for Q
(n)
f is given by

ek =

[∑n
i=0 (I−A)i f

]
k[∑n

i=0 (I−A)i
]
kk

. (14)
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Note that — in contrast to the RBF interpolation setting — in (14) we do not have

to compute a matrix inverse. In fact, the numerator and denominator in (14) can be

accumulated iteratively. Namely, if we let v(0) = f then the recursion

v(n) = f + (I−A)v(n−1)

will generate the coefficient vector whose kth component appears in the numerator of

(14).

Moreover, the complexity of the matrix powers in the denominator can be reduced

by using an eigen-decomposition, i.e., we first compute

I−A = XΛX−1,

where Λ is the diagonal matrix of eigenvalues, and the columns of X are given by the

eigenvectors of I −A. At this point it is worthwhile to note that not only the matrix

A is symmetric and positive definite (by our assumptions on the generating functions

ϕ(‖ · ‖)), but the matrix I−A has the same properties due to the scaling assumption

required for convergence of the iterated AMLS method (see [9]).

Then, starting with M(0) = I we can iteratively generate the denominator of (14)

via

M(n) = ΛM(n−1) + I (15)

so that, for any fixed n, [
n∑

i=0

(I−A)i
]

= XM(n)X−1.

Note that the matrix-matrix product in (15) involves only diagonal matrices. Moreover,

the diagonal elements of XM(n)X−1 can also be obtained without full matrix-matrix

multiplications since M(n) is diagonal.

We summarize everything we derived for the direct LOOCV strategy of iterated

AMLS approximation in

Algorithm 4

Fix ε. Perform an eigen-decomposition

I−A = XΛX−1

Initialize v(0) = f and M(0) = I

For n = 1, 2, . . .

Perform the updates

v(n) = (I−A)v(n−1) + f

M(n) = ΛM(n−1) + I

Compute the cost vector e(n) as the componentwise quotient of v(n) and the

diagonal of XM(n)X−1 (cf. line 4 of the MATLAB Program 2)

If
∥∥∥e(n)

∥∥∥− ∥∥∥e(n−1)
∥∥∥ < tol

Stop the iteration

end

end

An optimal value of the shape parameter ε is given by minimizing the norm of the

cost vector e(n) with respect to ε. This can again be done using the MATLAB function

fminbnd. Note that an optimal stopping value for n is automatically generated by the

above algorithm.
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4.2 Iterative LOOCV for Iterated AMLS Approximation

A second — albeit different — LOOCV strategy for the iterated AMLS algorithm is to

follow the basic leave-one-out paradigm of Algorithm 1. Since the quasi-interpolation

approach does not involve the solution of any linear systems it is conceivable to consider

a straightforward implementation. This leads to

Algorithm 5

Fix ε

For k = 1, . . . , N

Let

Q
(0)[k]
f (x) =

N∑
j=1

f
[k]
j ϕ

(
‖x− x

[k]
j ‖
)

For n = 1, 2, . . .

For j = 1, . . . , N

Compute residuals at the data sites

r
(n)[k]
j = f

[k]
j −Q

(n−1)[k]
f (x

[k]
j )

end

Compute the correction

u(x) =

N∑
j=1

r
(n)[k]
j ϕ(‖x− x

[k]
j ‖)

Update Q
(n)[k]
f (x) = Q

(n−1)[k]
f (x) + u(x)

Compute the error estimate for the kth data point

e
(n)[k]
k =

∣∣∣f(xk)−Q
(n)[k]
f (xk)

∣∣∣ (16)

end

Form the cost vector e(n) =
[
e
(n)[1]
1 , . . . , e

(n)[N ]
N

]T
If
∥∥∥e(n)

∥∥∥− ∥∥∥e(n−1)
∥∥∥ < tol

stop the iteration

end

end

As in the previous algorithm, an optimal ε is given by minimizing ‖e(n)‖. Note that

this algorithm essentially performs N copies of Algorithm 3 inside the leave-one-out

loop over k.

In order to speed up this computation and simplify computer programming we now

derive a simpler formulation for this iterative LOOCV process. Clearly, the residual

computation (16) can actually be performed at all data points besides the kth one.

Thus, we extend the notation for residuals to

e
(n)[k]
j =

∣∣∣f(xj)−Q
(n)[k]
f (xj)

∣∣∣ , j, k = 1, . . . , N, (17)
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and then form a residual matrix E(n) with entries E
(n)
jk = e

(n)[k]
j . Consequently, the

cost vector e(n) actually lies along the diagonal of E(n).

A component-wise examination of the relation between the iterated vectors and

matrices reveals the following iterative procedure for computing the residual matrix

E(n) (whose derivation is less obvious but quite straightforward to verify).

Algorithm 6

Fix ε

Initialize E
(0)
jk = f(xj), j, k = 1, . . . , N

For n = 1, 2, . . .

Let D(n−1) = diag(E(n−1))

Update

E(n) = E(n−1) −A
(
E(n−1) −D(n−1)

)
end

This formulation is simple enough to program but the computation requires a ma-

trix multiplication with the interpolation matrix A during each iteration. Fortunately,

the matrix multiplication can be avoided since we need only the diagonal entries of the

residual matrix E(n). This gives rise to the final version of the iterative version of the

LOOCV algorithm for the iterated AMLS method.

Algorithm 7

Fix ε. Perform an eigen-decomposition

A = XΛX−1

Initialize

S(0) = X−1E(0)

D(0) = diag(E(0))

For n = 1, 2, . . .

Update

S(n) = (I−Λ)S(n−1) + ΛX−1D(n−1)

D(n) = diag
(
XS(n)

)
Set the cost vector

e(n) = D(n)

If
∥∥∥e(n)

∥∥∥− ∥∥∥e(n−1)
∥∥∥ < tol

stop the iteration

end

end

An optimal ε is given by minimizing ‖e(n)‖. Use this ε and the corresponding

stopping n to construct an iterative AMLS approximant Q
(n)
f . We point out that only

matrix scalings are performed for the update step, and in order to obtain the diagonal

matrix D(n) one does not need to perform the full matrix-matrix product XS(n).
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5 Numerical Examples I

The iterative AMLS method is particularly well suited for the approximation of noisy

data. In the numerical experiments summarized in Table 1 we sampled a standard

test function (similar to Franke’s function) at different sets of N randomly distributed

Halton points in the unit square [0, 1]2. Then we artificially added 3% (uniformly

distributed) random noise to the function values in order to obtain our simulated noisy

data. Gaussian generating functions were used for all of the computations.

In addition to the two LOOCV algorithms discussed above for iterated approximate

MLS approximation we also include results for analogous algorithms applied to an

iterated Shepard approximation scheme. In contrast to the approximate MLS methods,

Shepard’s method is a true MLS approximation method which preserves constants,

i.e., if (non-noisy) data has been sampled from a constant function, then Shepard’s

method will reconstruct that function. While approximate MLS methods form only an

approximate partition of unity, Shepard’s method is exact.

For noisy data it does not make sense to apply standard RBF interpolation and

therefore this method is not used here. Instead we use a ridge regression (or smoothing

spline) approximation. In the ridge regression approach the coefficients c of the RBF

expansion (2) are determined by minimizing the functional

N∑
j=1

[
Pf (xj)− fj

]2
+ ωcT Ac.

Here the first term measures the goodness of fit, and the second term is a smoothness

measure (also known as the native space norm of the RBF interpolant). The smoothing

(or regression) parameter ω ≥ 0 balances the trade-off between these two quantities.

A zero value of ω corresponds to the interpolation setting, while a larger value will

allow a smoothing effect. It is well known that the coefficients can be found by solving

a regularized interpolation system, i.e.,

(A + ωI) c = f .

This method (and optimal choice of its parameters) was discussed in [10]. In that

paper only the direct LOOCV strategy of Algorithm 4 was applied to the iterated

AMLS method. We include those results in Table 1 for comparison with the iterative

LOOCV strategy of Algorithm 7.

We can observe similar approximation errors for all methods. Also, the two different

variants of LOOCV result in similar “optimal” values of the shape parameter ε and

similar execution times for both the iterated AMLS and iterated Shepard methods.

However, use of the iterated LOOCV strategy seems to lead to fewer (albeit costlier)

iterations. Clearly, the ridge regression approach requires considerably more time than

any of the iterative methods. This is easily explained since the iterative methods do

not require solution of any linear systems.

6 The RBF-PS Approach to PDEs

The second situation in which we will determine an optimal value of the RBF shape pa-

rameter ε is within a pseudo-spectral (PS) approach to the solution of partial differen-

tial equations. Before we explain how to adapt the LOOCV method for this application

we first give a brief introduction to the RBF-PS method.
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Table 1 Performance of different LOOCV algorithms for the approximation of noisy data.

N 9 25 81 289 1089

AMLS
Direct

LOOCV

RMSerr 4.80e-3 1.53e-3 6.42e-4 4.39e-4 2.48e-4
ε 1.479865 1.268158 0.911517 0.652600 0.46741
no. iter. 7 6 6 4 3
time 0.2 0.4 1.0 5.7 254

AMLS
Iterative
LOOCV

RMSerr 4.57e-3 1.63e-3 6.77e-4 4.22e-4 2.30e-4
ε 1.482765 1.229673 0.871514 0.593223 0.383817
no. iter. 7 3 3 2 2
time 0.25 0.25 0.84 7.54 238.0

Shepard
Direct

LOOCV

RMSerr 5.65e-3 1.96e-3 8.21e-4 5.10e-4 2.73e-4
ε 2.194212 1.338775 0.895198 0.656266 0.468866
no. iter. 7 7 7 5 3
time 0.2 0.4 2.1 7.0 225

Shepard
Iterative
LOOCV

RMSerr 5.51e-3 2.01e-3 8.15e-4 5.07e-4 2.77e-4
ε 2.077628 1.314021 0.910505 0.634368 0.409473
no. iter. 5 4 4 2 2
time 0.39 0.36 0.86 7.75 332.9

Ridge

RMSerr 3.54e-3 1.62e-3 7.20e-4 4.57e-4 2.50e-4
ε 2.083918 0.930143 0.704802 0.382683 0.181895
ω 0.010000 0.010000 0.021131 0.037574 0.033610
time 0.3 1.2 1.1 21.3 672

Polynomial pseudo-spectral methods are well known as highly accurate solvers for

PDEs (see, e.g., [14,31]). We now describe a generalization that involves multivariate

radial basis functions instead of univariate polynomials. Our approach does indeed

generalize polynomials since a number of authors have shown recently (see, e.g., [1,2,29,

30]) that in the limiting case of “flat” basis functions, i.e., ε → 0, the one-dimensional

RBF interpolant yields a polynomial interpolant.

The basic idea behind any pseudo-spectral method is to expand the solution u of

the partial differential equation in terms of smooth global basis functions, i.e.,

u(x) =

N∑
j=1

λjφj(x), x ∈ Ω ⊂ Rs. (18)

The smoothness and global support of the basis functions φj , j = 1, . . . , N , are the

main properties that ensure the spectral approximation order of the method. While

the basis functions φj could be rather general we will use radial basis functions, i.e.,

φj = ϕ(‖ · −xj‖).
In the numerical examples below we will be presenting both elliptic and parabolic

PDEs, but for the present discussion we can limit ourselves to the spatial part of the

solution. Time dependence will be dealt with in the standard way.

Expansion (18) is exactly the same as that used for the well-known non-symmetric

RBF collocation method or Kansa’s method [20]. However, as the following discussion

shows, Kansa’s method and the RBF-PS approach are not identical. The difference

is that for Kansa’s one explicitly computes the expansion coefficients λj and then

subsequently is able to evaluate the approximate PDE solution at an arbitrary point

x. In the RBF-PS approach one obtains values of the approximate solution at the
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collocation points only, and the coefficients λj are never explicitly computed. Instead

one works with a so-called differentiation matrix. This slightly different view of RBF

collocation has been adopted recently by a number of authors (see, e.g., [6,7,26,28]).

Details of this approach are now presented.

There are many similarities between the RBF-PS method we are about to describe

and the RBF interpolation method reviewed at the beginning of this article. However,

for PDEs we need to be able to represent values of derivatives of u. Therefore we require

not only the expansion (18), but also

Lu(x) =

N∑
j=1

λjLφj(x), (19)

which follows directly from (18) provided L is assumed to be a linear differential oper-

ator.

An important difference between the RBF-PS method and standard RBF interpo-

lation is that for the PS approach we limit evaluation to the collocation points only.

Thus, instead of attempting to obtain the function u defined in (18) for arbitrary x-

values we compute only the vector u = [u(x1), . . . , u(xN )]T of function values at the

collocation points x1, . . . ,xN .

Now, the key idea is to relate this vector of function values to a vector of “derivative”

values uL using a differentiation matrix D, i.e.,

uL = Du. (20)

In order to derive an expression for the differentiation matrix we first evaluate (18)

at the collocation points. That yields

u = Aλ, (21)

where the matrix A has entries Aij = φj(xi). This means that A is just an RBF

interpolation matrix as used earlier, and use of the same notation is justified. Similarly,

evaluation of (19) at the collocation points results in

uL = ALλ, (22)

where AL,ij = Lφj(xi). We can solve (21) for λ (since the interpolation matrix A is

known to be invertible) and then insert this into (22) to arrive at

uL = ALA−1u.

Comparison of this expression with (20) yields the differentiation matrix in the form

D = ALA−1.

Note that up to this point the discussion has been rather generic. No specific

properties of the differential operator were required other than linearity (and as we

will see in the examples in the next section nonlinear PDEs can also be solved by this

approach). More importantly, we have up to now completely ignored the boundary

conditions of the problem. Dirichlet conditions can be incorporated in a completely

trivial manner since such a condition at a boundary collocation point corresponds to

having a row of the identity matrix in D. If the prescribed function value is even

zero, then one can just delete the appropriate row and column from D (for more
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details see, e.g., [8] or [31]). The implementation of other boundary conditions can

be accomplished in a similar manner, but does require a little more care. We denote

the differentiation matrix that incorporates the boundary conditions by DΓ , where Γ

denotes the boundary of the domain Ω.

In the literature on RBF collocation methods one frequently encounters two dif-

ferent approaches: Kansa’s non-symmetric method (see, e.g., [20]), and a symmetric

method based on Hermite interpolation (see, e.g., [3]). As mentioned above, the present

RBF-PS method has many similarities with the non-symmetric Kansa method. How-

ever, here the coefficient vector is never explicitly determined and one is not interested

in the function u representing the solution of the PDE — only its function values u

at the collocation points. Also, boundary conditions are handled differently in Kansa’s

method and in the RBF-PS approach.

The precise connection between the RBF-PS approach and the standard RBF col-

location methods is discussed in [8]. It is shown there that for the non-symmetric

RBF-PS method with Dirichlet boundary conditions we get

DΓ =

[
ÃL

Ã

]
A−1,

where the block matrix that arises here is exactly the well-known collocation matrix

from Kansa’s method. As a consequence of this we cannot ensure general invertibility

of the differentiation matrix DΓ for the RBF-PS approach (cf. [19]).

On the other hand, it is possible to formulate an RBF-PS approach that is analogous

to the symmetric RBF collocation method. In that case, however, the differentiation

matrix (for a Dirichlet problem) would be of the form

D̂Γ =

[
ÂLL∗ ÂL

ÂL∗ Â

] [
AL∗ Ã

T
]−1

,

where the first block matrix is the collocation matrix that arises in the symmetric

RBF collocation method, and the second block matrix is the transpose of the Kansa

matrix (see [8] for details). As a consequence of this we know (from the standard

RBF collocation approach) that the elliptic PDE Lu = f can be solved. However,

formulation of the differentiation matrix D̂Γ cannot be justified since it contains as

one of its factors the inverse of the (transpose of the) Kansa matrix.

In summary, for elliptic PDEs one should use the symmetric collocation method,

and for parabolic problems the (non-symmetric) RBF-PS approach outlined at the

beginning of this section. However, since configurations of collocation points that lead to

singular matrices are rare (cf. [19]) and since one can employ QR or SVD techniques to

deal even with these situations (see, e.g., [24]), most people will prefer to use the simpler

non-symmetric approach for both time-dependent and time-independent problems. We

will follow this general trend with our numerical examples below.

7 Selecting a Good Shape Parameter for the RBF-PS Method

Due to the similarity of the RBF-PS method with the standard RBF interpolation

problem we will be able to adapt Rippa’s LOOCV algorithm [27] for determining an

optimal shape parameter with only some minor modifications.
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In the RBF interpolation setting the LOOCV algorithm targets solution of the

underlying linear system Ac = f , where the entries of the matrix A depend on the

RBF shape parameter ε which we seek to optimize. As stated in (5), the components

of the cost vector are given by

ek =
ck

A−1
kk

.

According to the previous section the RBF-PS differentiation matrix is given by

D = ALA−1.

Equivalently, we can write this as

ADT = (AL)T , (23)

where we have taken advantage of the symmetry of the (RBF interpolation) matrix A.

We will use (23) as a basis for our LOOCV algorithm. The structure of this formula

is just as that of the standard RBF interpolation problem discussed in [27]. Now,

however, we are dealing with multiple systems of the form Ac = f having a common

system matrix A.

Therefore, the components of our cost matrix are given by

Ek` =
(DT )k`

A−1
kk

.

In MATLAB this can again be vectorized, so that we end up with a program very

similar to Program 2.

Program 8 CostEpsLRBF.m

1 function ceps = CostEpsLRBF(ep,DM,rbf,Lrbf)

2 n = size(DM,2);

3 A = rbf(ep,DM);

4 rhs = Lrbf(ep,DM)’;

5 invA = pinv(A);

6 errormatrix = (invA*rhs)./repmat(diag(invA),1,n);

7 ceps = norm(errormatrix(:));

The function Lrbf creates the matrix AL. For the Gaussian RBF and the Laplacian

differential operator this could look like

Lrbf = @(ep,r) 4*ep^2*exp(-(ep*r).^2).*((ep*r).^2-1);

Note that for differential operators of odd order one will also have to provide a

matrix of pairwise differences. For example, the partial derivative with respect to the

x-coordinate for the Gaussian would be coded as

Lrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

Here dx is the matrix containing the pairwise differences in the x-coordinates of

the collocation points.
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8 Numerical Examples II

Example 9 Our first example deals with the following Laplace equation

uxx + uyy = 0, x, y ∈ (−1, 1)2,

with piecewise defined boundary conditions

u(x, y) =

sin4(πx), y = 1 and −1 < x < 0,
1
5 sin(3πy), x = 1,

0, otherwise.

This is the same problem as used in Program 36 of [31]. In our implementation we use

the MATLAB code of [31] and simply replace the call to the subroutine cheb in that

program with equivalent code that generates the RBF-PS differentiation matrices D

and D21. Implementation details are provided in [8].

We use the “cubic” Matérn RBF ϕ(r) = (15 + 15εr + 6(εr)2 + (εr)3)e−εr whose

optimal shape parameter was determined to be ε = 0.362752 by the LOOCV algorithm.

The spatial discretization consists of a tensor product of 25× 25 Chebyshev points.

Figure 1 shows the solution obtained via the RBF-PS and Chebyshev pseudospec-

tral methods, respectively. The qualitative behavior of the two solutions is very similar.
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Fig. 1 Solution of the Laplace equation using a Chebyshev PS approach (left) and cubic
Matérn RBFs with ε = 0.362752 (right) with 625 collocation points.

Note that for this type of elliptic problem we require inversion of the differentiation

matrix. As pointed out at the end of the previous section we use the non-symmetric

RBF-PS method even though this may not be warranted theoretically.

Example 10 As our second example we consider the 2-D Helmholtz equation (see Pro-

gram 17 in [31])

uxx + uyy + k2u = f(x, y), x, y ∈ (−1, 1)2,

1 For the RBF-PS approach this second derivative matrix has to be generated separately
since, contrary to the polynomial case, we in general do not get the second derivative matrix
as the square of the first derivative matrix (for details see [8])
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with boundary condition u = 0 and

f(x, y) = exp

(
−10

[
(y − 1)2 + (x− 1

2
)2
])

.

The solution of the Helmholtz equation for k = 9 with Gaussians using ε = 2.549243

and 625 collocation points placed on a Chebyshev tensor-product grid is displayed next

to the Chebyshev pseudospectral solution of [31] in Figure 2.
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Fig. 2 Solution of 2-D Helmholtz equation with 625 collocation points using the Chebyshev
pseudospectral method (left) and Gaussians with ε = 2.549243 (right).

Example 11 Our final example is the most challenging for the RBF-PS method. This

example is based on Program 35 in [31] which is concerned with the solution of the

nonlinear reaction-diffusion (or Allen-Cahn) equation. As mentioned earlier, this ex-

ample shows that the RBF-PS method can be applied in a straightforward manner also

to nonlinear problems by incorporating the nonlinearity into the time-stepping method

(for details see either the original code in [31] or the RBF-PS modification in [8]). The

PDE is of the form

ut = µuxx + u− u3, x ∈ (−1, 1), t ≥ 0,

with parameter µ, initial condition

u(x, 0) = 0.53x + 0.47 sin

(
−3

2
πx

)
, x ∈ [−1, 1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1 and u(1, t) = sin2(t/5).

The solution to this equation has three steady states (u = −1, 0, 1) with the two

nonzero solutions being stable. The transition between these states is governed by the

parameter µ. For our example displayed in Figure 3 we use µ = 0.01, and the unstable

state should vanish around t = 30.

The two plots in Figure 3 show the solution obtained via the Chebyshev pseu-

dospectral method and via an RBF-PS approach based on the same “cubic” Matérn
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functions used above. The spatial discretization is given by a (one-dimensional) grid

of 21 Chebyshev points. This time the optimal shape parameter determined by the

LOOCV algorithm is ε = 0.350920. We can see from the figure that the solution based

on Chebyshev polynomials appears to be slightly more accurate since the transition

occurs at a slightly later and correct time (i.e., at t ≈ 30) and is also a little “sharper”.
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Fig. 3 Solution of the Allen-Cahn equation using the Chebyshev pseudospectral method (left)
and a cubic Matérn functions (right) with 21 Chebyshev points.

9 Remarks and Conclusions

Two applications of leave-one-out cross validation for the determination of RBF shape

parameters were discussed in this paper: iterated approximate moving least squares

approximation, and an RBF pseudo-spectral method.

For the iterated AMLS method we suggested two different LOOCV algorithms:

one based on an explicit formula for the iterated approximant (Algorithm 4), the

other directly based on the iterative formulation of the approximant (Algorithm 7).

We showed that both algorithms yield similar results in terms of accuracy and effi-

ciency for reconstruction of noisy function data. Moreover, the execution time of our

iterative algorithms performed favorably when compared to an RBF ridge regression

(or smoothing spline) algorithm. The fundamental difference between our iterative al-

gorithms and the more traditional smoothing spline approach is that we work with

quasi-interpolants, and thus are able to avoid the solution of dense linear systems.

In the second part of the paper we showed how the RBF-PS method on the one

hand generalizes the traditional polynomial pseudo-spectral approach, and on the other

hand provides a standard framework in which to discuss as well as implement RBF

collocation solutions of PDEs. It was pointed out that the RBF-PS approach is more

efficient than Kansa’s method for time-dependent PDEs. The shape parameter problem

was addressed in this context, also, by providing an adaption of Rippa’s LOOCV

algorithm (see Program 8).

One important point that has not yet been addressed by our work is the computa-

tional cost of the RBF-PS method as compared to implementations of the traditional
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polynomial PS method. At this point the RBF-based approach is clearly more expen-

sive since it requires a matrix inversion to determine the differentiation matrix, and for

polynomial PS methods the entries of the differentiation matrix are known explicitly

(see, e.g., [31]). On the other hand, differentiation methods do not give rise to the most

efficient implementation of PS methods anyway. Thus, the search for an efficient imple-

mentation of the RBF-PS method in the vain of FFT implementations for polynomial

PS methods is still a wide open research area.

The RBF-PS method has also been applied successfully to a number of engineering

problems (see, e.g., [11,12]). Of course, as mentioned earlier, Kansa’s method has been

popular since its introduction in [20] and countless papers exist in the literature dealing

with all kinds of applications in science and engineering. An LOOCV algorithm for

finding an “optimal” shape parameter similar to the one described in this paper was

used with Kansa’s method in [13].

Clearly, there is still much to be done regarding the optimal choice of RBF shape

parameters. For example, many researchers have suggested the use of variable shape

parameters (e.g., [21]). On the one hand, following this suggestion provides a clear

potential for improved accuracy and stability of the RBF method. On the other hand,

the use of variable shape parameters raises some challenging theoretical problems that

have up to now remained unsolved. The choice of optimal RBF shape parameters

that vary spatially with the centers of the basis functions was studied in the recent

paper [16]. We are currently also working on this problem in connection with an SVD

stabilization of the RBF interpolant. Another interesting application presently being

investigated by us is the use of the iterated AMLS algorithm as a preconditioner for

the standard RBF interpolant.
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