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Abstract

In this paper we consider a meshfree radial basis function approach for the valu-
ation of pricing options with non-smooth payoffs. By taking advantage of parallel
architecture, a strongly stable and highly accurate time stepping method is de-
veloped with computational complexity comparable to the implicit Euler method
implemented concurrently on each processor. This, in collusion with the radial ba-
sis function approach, provides an efficient and reliable valuation of exotic options,
such as American digital options.

1 Introduction

The radial basis function (RBF) collocation method uses global shape functions to
produce meshfree approximate solutions of PDEs with exponential convergence (see,
e.g., [3] and references therein). In recent years meshfree RBF approximation has been
considered by a number of authors as a means of solving the Black-Scholes equations
for European as well as American options ([4]–[8]). However, their application to
options with non–smooth payoffs has not been investigated. In this paper we consider
a meshfree RBF approach as spatial approximation for pricing American options with
non–smooth payoffs.

Non–smooth payoff functions can cause inaccuracies for numerical schemes when
financial contracts are priced, in particular, valuing catastrophe bonds which exhibit
features of instability due to the discontinuity of the payoffs of the digital (binary)
options around their threshold [12]. When solving in time, several methods are avail-
able. Explicit schemes are easy to implement but suffer from stability problems as
noticed by Hon and Mao [6] for vanilla options. Some well known second order implicit
schemes such as the Crank Nicolson method, are prone to spurious oscillations and,
due to discontinuity in the payoff function (or its derivative), severely deteriorate their
convergence properties ([9], [11], [13]) rendering them unreliable for pricing even vanilla
options.

The implicit Euler method does not experience oscillatory behavior, but rather
smoothes the effects of discontinuities in the initial data without affecting the nature
of the problem. In spite of its strong stability properties, however, the implicit Euler
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method is only first order accurate. To achieve second order accuracy the possibility
of using a multistep method, such as BDF2, would seem appropriate due to its strong
stability properties. However, Windcliff et al. [15] noted that multistep methods do
not perform optimally for complex American options, such as shout options.

In this paper, we take advantage of parallel architecture to develop a strongly stable
time stepping method of fourth order which consists of a linear combination of four
implicit Euler–like solves on four concurrent processors thereby retaining the smoothing
property of the standard implicit Euler method. This increase in order does not come
at the expense of any increase in ill-conditioning of the matrix systems when combined
with a meshfree RBF approach for the valuation of the American digital put option.

In the case of digital options, where the payoff is non–smooth, the American put
option takes the form
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The simple transformation S = ey changes the PDE in (1) to
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leaving the initial and boundary conditions unchanged.
The outline of this paper is as follows. In section 2 we consider the development

of multiquadric basis functions for the valuation of options along with a time stepping
procedure. In section 3 we perform numerical experiments and provide a comparative
analysis of the approach. Concluding remarks are given in section 4.

2 Development of Methods

2.1 Meshfree Approximations

Given N distinct data points (centers), yj , we interpolate the unknown function U by
the following radial basis functions φj :

U(y, t) ≈
N∑

j=1

αj(t)φj(y), (3)

where αj are unknown coefficients depending on time and φj(y) = φ(|y − yj |). We
will use multiquadric (MQ) RBFs with shape parameter c = 4dmin, where dmin is the
minimum distance between any two collocation points yj :

φj(y) =
√

(y − yj)2 + c2. (4)
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This choice of shape parameter was suggested by Hon and Mao [6]. While no “optimal”
value for c is known, more sophisticated strategies for choosing the shape parameter,
such as the leave-one-out cross validation algorithm of Rippa [10], can be found in the
literature.

Substituting (3) into (2) and collocating at N collocation points yi (taken to coincide
with the centers) yields the following system of N equations
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∂t

+
1
2
σ2 ∂2U(yi, t)

∂y2
+ (r − 1

2
σ2)

∂U(yi, t)
∂y

− rU(yi, t) = 0, (5)

where

∂U(yi, t)
∂t
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N∑
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dαj(t)
dt

φj(yi), (6)
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∂φj(yi)
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αj(t)
∂2φj(yi)

∂y2
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in which

∂φj(yi)
∂y

=
(yi − yj)√

(yi − yj)2 + c2
, (9)

∂2φj(yi)
∂y2

=
(yi − yj)√
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((yi − yj)2 + c2)3/2
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In matrix form, (5) becomes

Lα̇ +
1
2
σ2Lyyα + (r − 1

2
σ2)Lyα − rLα = 0, (11)

where α denotes the vector of unknown coefficients αj , and L, Ly and Lyy are the
N × N matrices with entries φj(yi),

∂φj(yi)
∂y , and ∂2φj(yi)

∂y2 given in (4), (9), and (10)
respectively. The matrix L is invertible since the collocation points are assumed distinct
and, consequently, equation (11) can be rewritten as linear homogeneous ODE system
for the time dependent coefficients

α̇ = −L−1[
1
2
σ2Lyyα + (r − 1

2
σ2)Lyα − rLα] ≡ Pα, (12)

where

P = rI − 1
2
σ2L−1Lyy + (r − 1

2
σ2)L−1Ly. (13)
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2.2 Time Stepping Procedures

For a given time step τ , the exact solution of (12) satisfies the two term recurrence
relation

α(t − τ) = e−τP α(t) (14)

which forms the basis of various time-stepping methods through approximating the
exponential function by rational functions. Diagonal [m/m]Padé approximations,
Rm,m(z) = Pm(z)

Qm(z) , may be used to approximate the exponential function in (14), where
z = τλ and λ an eigenvalue of P . Such algorithms involve the solution of linear systems
wherein the coefficient matrix is a polynomial of degree m in τP . This exasperates the
conditioning of the system thereby deteriorating the accuracy of the computed solution.
To circumvent these effects, the diagonal Padé approximations can be decomposed into
a partial fraction expansion to control the conditioning, however, this approach involves
linear solves with complex arithmetic; a detailed discussion on this issue is given Voss
et al. [13]. We consider rational approximations to ez of the form

R(z) =
N(z)
D(z)

=
1 + a1z + a2z

2 + a3z
3

(1 − b1z)(1 − b2z)(1 − b3z)(1 − b4z)
, (15)

where the coefficients ai and bi are real and bi > 0. Approximation (15) will be of order
p to the exponential function if R(z) = ez+Cp+1z

p+1+O(zp+2), where Cp+1 denotes the
error constant. It is well known that the maximum order attainable by R(z) is four, and
that the smallest error constant occurs in the case of repeated poles, bi = b. A rational
approximation to ez is said to be A–acceptable if |R(z)| < 1 whenever Re(z) < 0 and
L–acceptable if, in addition, |R(z)| → 0 as Re(z) → −∞. We consider L–acceptable
rational approximations to ez as oscillations are prevalent in methods arising from the
A–acceptable diagonal [m/m]Padé approximations, for example, the Crank–Nicolson
method which is based on the [1/1]Padé approximation. The L–acceptable, fourth
order R(z) with minimal error constant, C∗

5 , has bi = b ≈ 0.572 and |C∗
5 | ≈ .02725.

Replacing the exponential function by such rational repeated pole approximations leads
to inherently serial algorithms. Instead, we have constructed the L–acceptable rational
approximation

R(z) =
1 − 54

35z + 39
140z2 + 13

42z3

(1 − z)(1 − 2
5z)(1 − 9

14z)(1 − 1
2z)

(16)

with error constant, C5, where |C5| = 1
28 ≈ 0.0357 ≈ |C∗

5 |. Since R(z) possesses distinct
real poles, it admits a partial fraction expansion of the form

R(z) =
4∑

n=1

wn

1 − bnz
, (17)

where the expansion coefficients are found in the usual way

wn = lim
z→ 1

bn

(1 − bnz)R(z),
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Table 2.1: Definition of R(z)

n 1 2 3 4

bn 1 2
5

9
14

1
2

wn
19
45

−2500
153

−2401
255

79
3

and the ensuing algorithm can be implemented in a parallel computing environment.
The expansion coefficients are given in Table 2.1. The recurrence relation (14) is then
approximated by

α(t − τ) = R(−τP )α(t). (18)

Letting Un = Lαn denote the approximation U(yi, T − nτ), the resulting strongly
stable, parallel time–stepping algorithm, denoted L4, based on recurrence relation (18)
then becomes:

Parallel Algorithm (L4)

Initialize : α0 = L−1U0

for n = 1 . . . M

Solve on concurrent processors : (I + bkτP )vk = αn−1, k = 1, . . . , 4

Compute : αn =
4∑

k=1

wkvk

boundary update

Compute : Un = Lαn

Un(1) = 1
αn = L−1Un

end

The typically large and dense linear systems can be solved concurrently on four proces-
sors. Of course, further opportunity for parallelism exists in space, that is, in parallel
numerical linear algebra routines for solving each system. The stability functions for
the parallel L4 method and Crank Nicolson method are displayed in Figure 2.1. Notice
that the stability function for the Crank Nicolson method approaches −1, while that of
the strongly parallel L4 approaches 0 which naturally dampens the oscillations caused
by high frequency data.
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Figure 2.1: Stability functions

3 Numerical Experiments

The parallel algorithm developed in section 2 is implemented on the Black–Scholes
PDE (1) with non–smooth payoff whose analytical solution is given in [14]. Table 3.1
contains a comparison of results between the exact solution and the RBF solutions
for the Crank Nicolson (CN) and the parallel L4 method with X = 1, r = 0.1, σ =
0.20, T = 1.0, Smin = 1, Smax = 2 and S ∈ {1., 1.01, 1.02, 1.05, 1.1, 1.2, 1.4}. As the
ratio of time step to space step ( τ

h) increases, the accuracy of the Crank Nicolson
deteriorates while the L4 method produces a stable and accurate solution. This is
confirmed in Figure 3.1 which depicts the oscillatory behavior of the Crank Nicolson
method while the parallel L4 method returns a smooth and accurate solution.

Table 3.1: Root Mean Square Errors (RMSE) for
Crank Nicolson (CN) and parallel L4 methods

RMSE

N M τ
h CN L4

10 2.89 .3315 .0097

21 15 1.92 .0158 .0079

20 1.44 .0064 .0062

20 2.89 1737 .0210

41 40 1.44 58.47 .0068

80 0.72 .0062 .0062
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Figure 3.1: Digital option: N = 21, M = 10, σ = 0.2

Based on the performance of the parallel L4 method, we intend to consider it in
combination with RBFs for application on multi–asset American options with more
complicated payoff discontinuities, exotic options such as Asian and spread options [2],
and numerical challenges associated with the valuation of these instruments. In addi-
tion, it is well known that the value of the multiquadric shape parameter balances the
trade-off between achievable numerical accuracy and stability. Based on our experi-
ments we propose to investigate the influence of the shape parameter in the presence
of high volatility.
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