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Abstract. We describe two experiments recently conducted with
the approximate moving least squares (MLS) approximation method.
On the one hand, the NFFT library of Kunis, Potts, and Steidl is
coupled with the approximate MLS method to obtain a fast and ac-
curate multivariate approximation method. The second experiment
uses approximate MLS approximation in combination with a mul-
tilevel approximation algorithm. This method can be used for data
compression, or to obtain an approximation with radial functions
that employs variable scales and non-uniform center locations.

§1. Introduction

In this paper we address two limitations of approximate moving least
squares (MLS) approximation with radial weight functions encountered
in our earlier work (see, e.g., [3, 5, 6]). The first problem is that, even
though approximate MLS approximation reduces the computational work
for multivariate radial function approximation to that of a mere summa-
tion problem (i.e., no linear systems need to be solved), this task is still
rather expensive for weight functions with global support such as Gaus-
sians. In the present paper we take advantage of the recent NFFT library
by Kunis, Potts, and Steidl [9] to considerably speed up these summa-
tions. The NFFT library is an extension of the fast Fourier transform to
the situation of non-uniform centers. By combining the approximate MLS
approximation method with the NFFT library we are able to efficiently
evaluate radial function approximations based on Gaussians and similar
functions at millions of points in one, two and three space dimensions.
Contrary to fast multipole-type algorithms, the NFFT software can be
viewed as a general purpose approach that can handle many different ra-
dial functions without the need to develop different series expansions for
each one of them.

XXX 1
xxx and xxx (eds.), pp. 1–4.

Copyright c© 200x by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-x-x

All rights of reproduction in any form reserved.



2 G. E. Fasshauer and J. G. Zhang

The second difficulty associated with the approximate MLS approxi-
mation method is its application to non-uniform centers. While both the-
oretical [10] and computational work [6] on this topic exist, it still remains
an open problem to find an approximate MLS approximation algorithm
that works for arbitrarily scattered centers. By using a multilevel residual
updating iteration coupled with a thresholding strategy we end up with a
method that can be viewed as either a multivariate approximation method
based on radial functions with variable scales and non-uniform centers, or
as a data compression algorithm similar to those described in [1] and [8].

The remainder of the paper is organized as follows. In the next section
we provide the reader with a brief review of the MLS, and approximate
MLS methods. In Sect. 3 we explain how the NFFT library can be adapted
for our purposes, and present some numerical experiments. In Sect. 4 we
discuss our experiments with the multilevel approximation algorithm for
data compression, and close with a summary and outlook to future work
in Sect. 5.

§2. Review of MLS Approximation

Given a set of data, {(xi, f(xi)) : xi ∈ R
s, i = 1, . . . , N}, we seek a

quasi-interpolant in the form

Pf(x) =
N
∑

i=1

f(xi)Ψi(x), x ∈ R
s, (1)

with appropriate generating functions Ψi.
It is well known that if the Ψi are cardinal, i.e., Ψi(xj) = δij for

i, j = 1, . . . , N , then Pf interpolates the given set of data. Moreover,
if the cardinal functions are associated with positive definite radial func-
tions then Pf is norm-minimizing, i.e., the cardinal interpolant has min-
imal Chebyshev norm for all functions f in the native space associated
with the Ψi (see, e.g., [15]). Therefore, we intend to find values of the
generating functions Ψi(x) = Ψ(xi,x), which are as close to cardinal val-
ues as possible. Following this philosophy the Backus-Gilbert approach to
moving least squares (MLS) approximation (see, e.g., [2]) is to minimize

1

2

N
∑

i=1

Ψ2
i (x)

1

W (x,xi)
(2)

subject to the polynomial reproduction constraints

N
∑

i=1

p(xi)Ψi(x) = p(x) for all p ∈ Πs
d, (3)
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where Πs
d is the space of s-variate polynomials of total degree at most d

with dimension m =
(

s+d
d

)

. The W (·,xi), i = 1, . . . , N , form a set of
positive weight functions whose value changes with the evaluation point
x. According to the standard moving least squares method, if W (·,xi)
is strong at xi and decreases rapidly away from xi, then the resulting
approximation function nearly interpolates the given data. In fact, inter-
polation is achieved by using weights that are singular (infinite) at xi.

Besides the norm-minimization (2) the polynomial reproduction con-
straints (3) are used to obtain a desired approximation order (determined
by the value of d). One can show that the polynomial reproduction con-
straints correspond to a set of discrete moment conditions for the gener-
ating function.

For each fixed x (evaluation point), satisfying (2) and (3) involves the
solution of a (small) linear system obtained via the standard Lagrange
multiplier approach (see, e.g., [14] or [7]). To avoid doing this, we proposed
earlier [3, 5, 6] to use the idea of approximate approximation (see, e.g., [10])
first suggested by Maz’ya in the late 1980s. That is, our goal is to replace
the discrete moment conditions by continuous ones as described in the
following theorem.

Theorem 1. (Maz’ya and Schmidt [10]) Let f ∈ Cd+1(Rs), {xν = hν :
ν ∈ Z

s} ⊂ R
s and Ψ be a continuous generating function which satisfies

the continuous moment conditions
∫

Rs

xαΨ(x)dx = δα0, 0 ≤ |α| ≤ d, (4)

along with a mild decay requirement. Then

Mhf(x) = D−1/2
∑

ν∈Zs

f(xν)Ψ

(

x − xν√
Dh

)

(5)

leads to
||Mhf − f ||∞ = O(hd+1 + ε0(Ψ,D)).

This theorem tells us that we can approximate (or quasi-interpolate)
the given data with numerical approximation order O(hd+1) until a certain
so-called saturation error ε0 takes over. However, this saturation error can
be controlled by appropriately scaling the generating functions (with the
right choice of D). In other words, we can limit the saturation error within
the range of the machine accuracy on any particular computer. We point
out that we will be using regularly spaced data sites xν in all of our
applications below. However, another version of the theorem also covers
irregularly spaced centers (see [10]), and initial numerical experiments for
this more general situation have been reported in [6].
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Now, we have come to the essential part for the practical application
of this procedure, i.e., to find/construct appropriate generating functions.
To make a connection to radial basis function (RBF) approximation, we
assume that

Ψ(x) = q(||x2||)φ(||x||2),
where q is a polynomial which will give us the desired approximation
order, and φ is a sufficiently decaying univariate function to be chosen by
the user. Hence, all we need is to find q by satisfying (cf. (4))

∫

Rs

||x||2kq(||x||2)φ(||x||2)dx = δk0, 0 ≤ k ≤ d.

If we use s-dimensional spherical coordinates and the change of variables
r = ‖x‖ and y = r2, we have instead the 1D conditions

πs/2

Γ(s/2)

∫ ∞

0

yk−1q(y)φ(y)ys/2dy = δk0, 0 ≤ k ≤ d.

This is equivalent to finding a univariate polynomial q = q(y) orthog-
onal with respect to the weight φ(y)ys/2 on the interval [0,∞). Thus,
the guiding principle is to pick an arbitrary univariate weight function
φ(y)ys/2 (actually just φ), then look for a polynomial q of a certain order
d (depending on the desired approximation order).

For example, starting with φ(r) = e−r, the following table lists the
generating functions Ψ for s = 1, 2, 3 with approximation orders 2, 4, 6.

s O(h2) O(h4) O(h6)

1
1√
π

e
−‖x‖2 1√

π

(

3

2
− ‖x‖2

)

e
−‖x‖2 1√

π

(

15

8
− 5

2
‖x‖2 +

1

2
‖x‖4

)

e
−‖x‖2

2
1

π
e
−‖x‖2 1

π

(

2 − ‖x‖2
)

e
−‖x‖2 1

π

(

3 − 3‖x‖2 +
1

2
‖x‖4

)

e
−‖x‖2

3
1

π3/2
e
−‖x‖2 1

π3/2

(

5

2
− ‖x‖2

)

e
−‖x‖2 1

π3/2

(

35

8
− 7

2
‖x‖2 +

1

2
‖x‖4

)

e
−‖x‖2

Tab. 1. Generating functions associated with φ(r) = e−r.

The construction of many other generating functions is also possible.
For instance, in [3] compactly supported generating functions based on

the weight φ(r) = (1 −√
r)

4
+ (4

√
r + 1), r = ‖x‖, were constructed and

compared to the well-known radial basis function (1 − ‖x‖)4+ (4‖x‖ + 1)
of Wendland [13].

Later in this paper we will use the set of generating functions listed in
Table 1 to present applications of the fast evaluation via non-uniform fast
Fourier transform (NFFT) and data compression based on a multilevel
approximation algorithm.
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§3. Fast Evaluation via NFFT

Assume that for equally spaced data sites xν ∈ [0, 1)s we are to evaluate

Mhf(x) = D−s/2
∑

ν∈[1,N ]s

f(xν)Ψ

(

x − xν√
Dh

)

(6)

at non-equally spaced evaluation points x = yj ∈ [0, 1)s for j = 1, . . . ,M .

Direct evaluation of (1) or (6) at M points requires O(N sM) opera-
tions. It is therefore desirable to use a fast method with an acceptable
loss of accuracy to obtain a better computational speed. The fast Fourier
transform for non-equally spaced points (NFFT) ideally provides this ca-
pability. While various papers on this subject have appeared in recent
years (see, e.g., some of the references in [9]), public domain software and
a user’s guide are now available in form of the NFFT package [9].

We would like to emphasize that with the NFFT software neither the
M evaluation points nor the N s data centers need to be uniformly spaced
as in the standard FFT. Moreover M and N s do not have to be equal nor
does the number of centers have to be an integer power of N . However,
for this discussion on approximate MLS approximation we restrict our
attention to equispaced centers xν .

In order to perform the NFFT algorithm, let us present some necessary
background material. First, in order to use the NFFT software package for
our computational experiments some scaling and shifting of the variables
are needed. Specifically, we use two basic functions (provided in the NFFT
library), nfft (s)D trafo and nfft (s)D transpose (with s = 1, 2 or 3),
which correspondingly compute

ϕ(xj) =
∑

k∈[−n
2

, n
2
)s

cke±2πikxj for xj ∈ [−1

2
,
1

2
)s (7)

ck =
∑

xj∈[− 1

2
, 1

2
)s

ϕ(xj)e
±2πikxj for k ∈ [−n

2
,
n

2
)s, (8)

where the plus-minus signs indicate that the NFFT-functions can be used
either in forward or backward mode (e.g., a “+” in (7) and a “-” in (8)
correspond to the forward NFFT). Note that both (7) and (8) require a
domain that is symmetric about the origin but (6) is evaluated in [0, 1)s.

Denote the generating functions

Φ(x) = Ψ

(

x√
Dh

)

for x ∈ [−1, 1)s. (9)

Hence (6) becomes
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Mhf(x) = D−s/2
∑

ν∈[0,N)s

f(xν)Φ (x − xν) . (10)

Our goal is to eventually replace the right-hand side of (10) (or (6)) by
a pure Fourier transform. To this end, we first express Φ(x) by a Fourier
transform approximation. This is possible since Φ is infinitely smooth.

Thus, for a sufficiently large n, if we define coefficients b` ∈ C
s by

b` =
1

ns

∑

k∈In

Φ

(

2k

n

)

e2πik `
n for all ` ∈ In = [

−n

2
,
n

2
)s, (11)

then for j ∈ [−n, n)s

∑

`∈In

b`e
−2πi` j

2n =
1

ns

∑

`∈In

∑

k∈In

Φ

(

2k

n

)

e2πik `
n e−2πi` j

2n

=
1

ns

∑

k∈In

Φ

(

2k

n

)

∑

`∈In

e2πi`( k
n
−

j
2n

)

=
1

ns

∑

k∈In

Φ

(

2 j

2

n

)

= Φ

(

j

n

)

. (12)

The third equality in the above simplification follows since for (multi-
)integer j, k, `, and n

∑

`∈In

e−2πi` j−k
n

is n when j − k is a multiple of n (zero is the only possibility in our case)
and zero otherwise.

Result (12) simply implies that its left-hand side interpolates Φ at a
set of ns equally spaced points in [−1, 1)s. Hence, we have

Φ(x) ≈
∑

`∈In

b`e
−2πi` x

2 for x ∈ [−1, 1)s, (13)

where the Fourier transform coefficients b` are determined by (11). Note
that x, xν ∈ [0, 1)s. Hence Φ is evaluated in [−1, 1)s and therefore must
be approximated in this domain as well.

Now we replace Φ in (10) by (13). Hence, we have for x ∈ [−1, 1)s

Mhf(x) ≈ D−s/2
∑

xν∈[0,1)s

f(xν)
∑

`∈In

b`e
−2πi` x−xν

2 . (14)
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Evaluating (14) at x = yj ∈ [0, 1)s for j = 1, . . . ,M

Mhf(yj) ≈ D−s/2
∑

xν∈[0,1)s

f(xν)
∑

`∈In

b`e
−2πi`

yj−xν

2

= D−s/2
∑

`∈In

b`

∑

xν∈[0,1)2

f(xν)e2πi` xν
2 e−2πi`

yj

2 . (15)

If we introduce another set of coefficients a` ∈ C
s as

a` =
∑

xν∈[0,1)2

f(xν)e2πi` xν
2 for ` ∈ [−n

2
,
n

2
)s, (16)

and utilize the abbreviation d` = a`b`, then (10) can be rewritten (via
(15)) as

Mhf(yj) = D−s/2
∑

ν∈[0,N ]s

f(xν)Φ (yj − xν)

≈ D−s/2
∑

`∈In

d`e
−2πi`

yj

2 for j = 1, . . . ,M. (17)

Therefore, the entire fast computation algorithm is completed by three
basic NFFT computations. They are,

• b` given by (11) which is computed by (7);

• a` given by (16) which is computed by (8); and

• (17) which is again computed by (7).

Thus, if n is chosen to be constantly proportional to N , then the computa-
tional complexity becomes O(log(N)(N s + M)). Compared to O(N sM),
the evaluation time is significantly reduced when M is very large.

It is important to note that the key to this efficiency improvement
is the value for n, which decides the accuracy loss due to the FFT ap-
proximation (13) of the generating functions, and also the accuracy of the
computational algorithm for the NFFT itself. The latter is mathemati-
cally and experimentally analyzed in [9]. Although it is difficult to give
the explicit value for this error (caused by the NFFT algorithm itself), we
have seen that it is relatively small enough to be ignored. Hence, only the
error introduced by the representation (13) warrants a concern.

Let
Φn(x) =

∑

`∈In

b`e
−2πi` x

2 for x ∈ [−1, 1)s

as in (13). Therefore, as shown earlier, for each n

Φ(x) − Φn(x) = 0 at x =
k

n
for all k ∈ In. (18)
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Since Φ is infinitely smooth in [−1, 1)s, observing (11), b` is clearly bounded
for all n and all `. Hence, standard Fourier theory tells us that Φn is con-
tinuous and differentiable in [−1, 1)s for all n. Also, for all n the gradient
of Phin is pointwise bounded for any x ∈ [−1, 1)s. Therefore, Φn is uni-
formly convergent to Φ as n goes to ∞.

The test data for this experiment is taken from the following modified
version g of “Franke’s function” f given by

f(x1, x2, x3) =
3

4

[

exp(− (9x1 − 2)2

4
− (9x2 − 2)2

4
− (9x3 − 2)2

4
)

+ exp(− (9x1 + 1)2

49
− (9x2 + 1)2

10
− (9x3 + 1)2

29
)

]

+
1

2
exp(− (9x1 − 7)2

4
− (9x2 − 3)2 − (9x3 − 5)2

2
)

−1

5
exp(−(9x1 − 4)2 − (9x2 − 7)2 − (9x3 − 5)2)

g(x1, x2, x3) = 15f(x1, x2, x3)
3
∏

i=1

exp(
−1

1 − 4(xi − 1/2)2
),

where x1, x2, x3 are used according to the space dimension s.
In our experiments we use n = 4N in (11) for all computations except

for the very last experiments in 2D and 3D. We do not have an automated
strategy for choosing n. However, the values just mentioned yield satis-
factory results and go along with the values suggested by Theorems 3.1
and 3.4 of [11]. In all experiments displayed in Figures 1–3, the parameter
D in (6) is taken to be 3.0. Figure 4 shows the effect of different choices
of D on the saturation error.

The left graphs in Figures 1–3 show the maximum error versus the
number of centers N on a logarithmic scale for the three types of gen-
erating functions of Table 1. This illustrates that the approximation
does converge well (almost reaching the rates predicted by the theory)
as the data locations get finer. The errors are computed at M evaluation
points randomly distributed in the unit cube with M = 32, 768 for s = 1,
M = 262, 144 for s = 2, and M = 2, 146, 689 for s = 3. The presence of
the saturation error is clearly visible in Figure 1. The graphs on the right
compare the cost of direct summation versus the NFFT summation, and
show that the efficiency is greatly improved by the use of the NFFT. Due
to their long duration the computational times for the last two steps of the
direct summation in the right graph of Figure 3 were only extrapolated
(and therefore plotted with dashed lines).

We include Figure 4 to show the effect of the scaling parameter D in
(6) on the saturation error. As the value of D increases, the saturation
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Fig. 1. Convergence and execution times for 1D example (Gaussian,
linear and quadratic Gauss-Laguerre generating functions).
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Fig. 2. Convergence and execution times for 2D example (Gaussian,
linear and quadratic Gauss-Laguerre generating functions).

occurs at smaller and smaller errors.

§4. Data Compression via Multilevel Residual Iteration

In data compression applications (e.g., using wavelets) one often employs
a multi-scale representation of the given data. The following experiments
are motivated by the data compression algorithms described in [1] and
[8]. In those papers univariate and bivariate splines were used to obtain
the desired multi-scale representation. Since we are interested in multi-
dimensional applications we use radial functions instead. However, instead
of working in the standard radial basis function interpolation framework,
we use the idea of approximate MLS approximation with radial weights
described earlier. This has the advantage that we do not have to solve
any systems of linear equations.

In order to create a representation of the given data with multiple levels
of resolution we apply the following multilevel approximation algorithm.
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Fig. 4. Comparison of convergence for D = 0.5, 1.0, 1.25, 1.5, 1.75, 2.0,
and 3.0 for 1D Gaussian generating functions.

Algorithm: (Multilevel approximation)

Create nested sets X1 ⊂ · · · ⊂ XK = X ⊂ R
s.

Initialize s0 = 0.

For k = 1, 2, . . . ,K do

On Xk compute residuals

r
(k)
i = f(x

(k)
i ) − sk−1(x

(k)
i ), i = 1, . . . , N.

Then

Pr(k)(x) =

Nk
∑

i=1

r
(k)
i Ψi

(

x

ρk

)

.

Update sk = sk−1 + Pr(k).

End
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This algorithm updates the current approximation at level k by adding
an approximate MLS approximation to the residual at the level k − 1. At
the end of the algorithm sK approximates the given (data) function f on
the set X .

In our experiments we obtain the desired multi-scale representation of
the data by using sets of uniformly distributed centers Xk with mesh-size
hk, so that the generating functions Ψi are scaled by the level-dependent
factor ρk =

√
Dhk.

In order to reduce the amount of data used to represent f we rely on
a thresholding strategy, i.e., we ignore all terms in sK for which

|r(k)
i | < δk = tγk, k = 1, . . . ,K.

Here t is a basic threshold and γ > 1 is a ratio we use to allow a relaxed
tolerance for finer grids. The end result is a multi-scale representation of
the data using non-uniformly distributed centers.

It is well known (see any of the standard references on wavelet theory)
that this strategy will be justified if ‖Pf‖ ' ‖f‖, i.e., if our approximation
scheme is stable. In other words, one needs to show that small expansion

coefficients, r
(k)
i , indeed contribute only little to the approximation. This

amounts to establishing frame bounds for the approximation. Initial steps
in this direction are taken in [7].

In Figure 5 along with the corresponding Table 2 we illustrate the be-
havior of the multilevel approximation algorithm coupled with the thresh-
olding strategy just described, where the generating functions are the
Gaussians of Table 1. Table 3 contains analogous data for the first-order
Laguerre-Gaussians. The sets Xk consist of 2k+1 × 2k+1 uniformly spaced
points in [0, 1)2, and K = 5.

The plots in Figure 5 match (left-to-right, top-to-bottom) the entries
in Table 2.

before γ = 2, t = 10−3 γ = 4, t = 10−3 γ = 4, t = 2.5× 10−4

`∞ .0446 .0443 .2218 .0585

`2 .6570 .7044 3.6820 1.4756

% used 100 65.2525 16.0943 36.0269

Tab. 2. Errors for compression based on Gaussian generating functions.

While the bottom-left plot in Figure 5 (corresponding to γ = 4 and
t = 10−3) clearly shows a loss of accuracy in the compression, the corre-
sponding plots for the first-order Laguerre-Gaussians are virtually indis-
tinguishable and therefore not included. This fact, along with the entries
in the the 4th columns of Tables 2 and 3 clearly reveal the superior ap-
proximation properties of the higher-order generating functions. It should
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Fig. 5. Compression using Gaussian generating functions.

be emphasized that this significant improvement in approximation quality
is achieved at virtually no additional cost.

before γ = 2, t = 10−3 γ = 4, t = 10−3 γ = 4, t = 10−4

`∞ .0120 .0149 .0772 .0206

`2 .1246 .3374 1.6555 .5062

% used 100 37.7778 12.2559 31.4478

Tab. 3. Errors for compression based on first-order Laguerre-Gaussian
generating functions.

Another way to interpret this experiment is that almost the same ac-
curacy as for basic Gaussian quasi-interpolation (right-most entries in Ta-
ble 2) can be achieved with the first-order Gauss-Laguerre expansion using
close to one third the number of terms in the expansion (4th column in
Table 3). Thus the Gauss-Laguerre generating functions allow roughly
three times as much compression capability as the standard Gaussians.

As mentioned in the introduction it is also possible to view the end
result of the multilevel residual iteration as a multivariate radial function
approximation to the given data where the scales and centers of the radial
functions are selected adaptively by the thresholding strategy.
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§5. Closing Remarks

As already pointed out in earlier papers (see, e.g., [3, 5, 6]), the approxi-
mate approximation idea provides a matrix-free approach to MLS approx-
imation with a saturation error that can be pushed to within machine
accuracy. Moreover, computation with global generating functions can be
done efficiently and in a rather general way with the help of the NFFT
library. In this manner we are able to efficiently evaluate radial function
expansions consisting of millions of terms at millions of points in one, two
and three space dimensions.

The multilevel residual iteration based on quasi-interpolation provides
an alternative data compression strategy for multivariate data. However,
the theoretical foundation of this method (frame bounds) needs more work.
Moreover, in order to improve the efficiency of the method it should be
coupled with the NFFT algorithm. In any case, this application (along
with the experiments reported in [6]) show that matrix-free meshfree ap-
proximation for nonuniform multivariate data is possible. However, more
work for the case of arbitrarily scattered centers is required.

Some of the problems we plan to adapt our method to are approxima-
tion of Hermite data, and solution of PDEs (see [4] for some initial work
in this direction).
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2. L. P. Bos and K. Šalkauskas, Moving least-squares are Backus-Gilbert
optimal, J. Approx. Theory 59 (1989), 267–275.

3. G. E. Fasshauer, Approximate moving least-squares approximation
with compactly supported weights, in Lecture Notes in Computer Sci-
ence and Engineering Vol.26: Meshfree Methods for Partial Differential
Equations, M. Griebel and M. A. Schweitzer (eds.), Springer Verlag,
2002, 105-116.

4. G. E. Fasshauer, Approximate moving least-squares approximation
for time-dependent PDEs, in WCCM V, Fifth World Congress on
Computational Mechanics (http://wccm.tuwien.ac.at), H. A. Mang,
F. G. Rammerstorfer, and J. Eberhardsteiner (eds.), Vienna University
of Technology, 2002.



14 G. E. Fasshauer and J. G. Zhang

5. G. E. Fasshauer, Approximate moving least-squares approximation:
A fast and accurate multivariate approximation method, in Curve
and Surface Fitting: Saint-Malo 2002, A. Cohen, J.-L. Merrien, and
L. L. Schumaker (eds.), Nashboro Press, 2003, 139–148.

6. G. E. Fasshauer, Toward approximate moving least squares approxi-
mation with irregularly spaced centers, Computer Methods in Applied
Mechanics & Engineering, to appear.

7. G. E. Fasshauer, Dual bases and discrete reproducing kernels: A unified
framework for RBF and MLS approximation, submitted.

8. D. Hong and L. L. Schumaker, Surface compression using a space of C1

cubic splines with a hierarchical basis, preprint, Vanderbilt University.

9. Kunis, S., D. Potts, and G. Steidl, Fast Fourier transforms at noneq-
uispaced knots: A user’s guide to a C-library, Universität Lübeck,
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