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Abstract. The radial basis function interpolant is known to be the best approximation to a set
of scattered data when the error is measured in the native space norm. The approximate moving
least squares method, on the other hand, was recently proposed as an efficient approximation
method that avoids the solution of the system of linear equations associated with the radial
basis function interpolant. In this paper we propose and analyze an algorithm that iterates
on the residuals of an approximate moving least squares approximation. We show that this
algorithm yields the radial basis interpolant in the limit. Supporting numerical experiments
are also included.
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1 Introduction

In this paper we will be interested in solving the following approximation problem.
For a given set of data {(xi, f (xi), i = 1, 2, . . . , N, xi ∈ � ⊆ R

s , f (xi) ∈ R}, we
seek a continuous function Pf : R

s → R that either interpolates the data, i.e.,

Pf (xi) = f (xi), i = 1, 2, . . . , N, (1)

or such that Pf provides a close approximation to f measured in some appropriate
norm.

We will be using radial basis functions (RBFs) to solve this problem, and one of
the main features of RBFs is the fact that they can be applied without any restriction
on the location of the data sites. Approximate moving least squares (AMLS) approx-
imation on the other hand is in its current form mainly applicable to uniformly spaced
data. This is due to the fact that it is known that the formulation of an approximate
approximation method for scattered data is significantly more complicated than in
the case of uniform data (see, e.g., [8, 9]).
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We are interested in the use and comparison of these two multivariate approxima-
tion methods. Radial basis function interpolation, on the one hand, is known to yield
the best approximation to given (scattered) data with respect to the native space norm
of the basic function used. The benefits of this optimality property are somewhat re-
duced by the need to solve a (generally) large system of linear equations which can
also be ill-conditioned. To avoid the solution of such a system of linear equations
we recently proposed an alternative meshfree method which we refer to as the ap-
proximate moving least squares method (see, e.g., [2–5]). Using the AMLS method
the solution is obtained via a simple sum based directly on the given data. Thus, the
AMLS method is a quasi-interpolation approach. The drawback associated with the
simplicity of the AMLS method is its lesser degree of accuracy.

We will see later that an algorithm which iterates on AMLS residuals converges
to the RBF interpolant, and therefore a few iterations can be considered as an ef-
ficient and numerically stable alternative to the RBF interpolation approach. While
the initial iterate of the algorithm will be an AMLS approximation designed for uni-
formly spaced data, we will see that the algorithm can generate an equivalently nice
solution even when the data sites are irregularly distributed.

The remainder of the paper is organized as follows. In Section 2 we set our nota-
tion and present some of the salient facts for the two approximation methods we are
interested in. The iterative algorithm is described in Section 3 which also contains
an analysis of its convergence. Numerical experiments that demonstrate the perform-
ance of the algorithm are presented in Section 4. The paper is concluded with some
remarks and an outlook on future work in Section 5.

2 The Two Approximation Methods

2.1 RBF Interpolation

The standard RBF interpolation approach for our data fitting problem is to assume
that the interpolant Pf is a linear combination of radial basis functions �j , i.e.,

Pf (x) =
N∑

j=1

cj�j (x) . (2)

where the �j : R
s → R are defined by shifting a single basic function to the data

sites, i.e.,

�j(x) = ϕ

(∥∥∥∥x − xj

h

∥∥∥∥
)

(3)

for some univariate function ϕ : [0,∞) → R. Note that we include a scale factor h

in the definition of the basic function. This scale factor is given by the fill distance
h = supx∈� minxj , j=1,...,N ‖x − xj‖2 of the data sites. Note that our definition of
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the radial basis functions is reminiscent of the stationary approximation paradigm,
i.e., the basis functions are scaled proportional to the fill distance. On the one hand it
is known that most RBFs do not yield a convergent stationary approximation scheme
(except when we use such functions as polyharmonic splines). However, it is exactly
the stationary setting that is studied in the approximate approximation context, and
there one can observe convergence subject to a saturation error whose size can be
controlled by an initial scaling of the basic function (see, e.g., [5, 9]).

Now, equation (2) can be rewritten as

Pf (x) =
N∑

j=1

cjϕ

(∥∥∥∥x − xj

h

∥∥∥∥
)

, (4)

and with condition (1) this leads to finding the coefficients cj from the linear system

Ac = f. (5)

Here A is an N × N interpolation matrix given by

A =
{
ϕ

(∥∥∥∥xi − xj

h

∥∥∥∥
)}N

i,j=1
or A = {

�j (xi)
}N

i,j=1 ,

c = [c1, c2, . . . , cN ]T , and f = [f (x1), f (x2), . . . , f (xN)]T . The interpolation mat-
rix A is guaranteed to be non-singular if ϕ is a strictly positive definite radial function
on R

s .
Examples of basic functions we could consider for the purpose of interpolation

are the strictly positive definite Gaussians ϕ(r) = e−ε2r2
or the inverse multiquad-

rics ϕ(r) = 1√
1+ε2r2

. Note that the shape parameter ε will play the role of the initial

scaling of the basic function just mentioned in the context of saturated approxim-
ate approximation. However, throughout this paper we will use the following set of
strictly positive definite functions defined as

ϕ(r) := 1√
πs

e−r2
L

s/2
n (r2), (6)

with

L
s/2
n (t) := et t−s/2

n!
dn

dtn

(
e−t tn+s/2

)
, n = 0, 1, 2, . . . ,

being the generalized Laguerre polynomials. We will refer to ϕ as a Laguerre–
Gaussian. Note that we did not include the shape parameter ε here in order to keep
the formulas transparent. Later we will consider the functions ϕε = ϕ(ε·).

The Laguerre–Gaussian functions are oscillatory. They can be explicitly written
as
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ϕ(r) =
n∑

k=0

(−1)k(n + s/2)!
n!(k + s/2)!

(
n

k

)
r2ke−r2

.

It is known that a (radial) function ϕ is strictly positive definite and radial on R
s

if its (radial) Fourier transform is non-negative and not identically equal to zero. For
the Laguerre–Gaussians one can show

ϕ̂(t) = e− t2
4√

2s

n∑
k=0

t2k

k!4k
≥ 0,

and it is obvious that equality holds only when t = 0.
Note that the definition of ϕ depends on the space dimension s, and therefore ϕ

is strictly positive definite and radial only on R
s for certain values of s. However,

in the special case n = 0 the basic function ϕ becomes the regular Gaussian whose
definition is independent of the space dimension s and thus it is strictly positive
definite on R

s for all s.
The primary motivation for us to investigate Laguerre–Gaussians lies in the fact

that they satisfy certain continuous moment conditions. These moment conditions
come up when one generates basis functions for approximate moving least squares
approximation. Details are given in next section.

2.2 Approximate Moving Least Squares Approximation

Roughly speaking, approximate moving least squares approximation is an approx-
imate version of the standard moving least squares method which does not require
the solution of any linear systems. The concept of approximate approximations was
first suggested by Maz’ya in the early 1990s. A key ingredient in this approach are
the continuous moment conditions for the basic function ϕ. A radial version of this
requirement may be described as∫

Rs

‖x‖kϕ(‖x‖)dx = δα,0 for 0 ≤ k ≤ d. (7)

According to the theory (see, e.g., [9]), a basic function ϕ that satisfies these
conditions provides the following results.

For uniformly spaced xj ∈ R
s and ε > 0, the quasi-interpolant

Qf (x) := εs
N∑

j=1

f (xj )ϕ

(
ε

∥∥∥∥x − xj

h

∥∥∥∥
)

(8)

approximately solves the data fitting problem (1) with a guaranteed convergence

‖f − Qf ‖∞ = O(hd+1) + ε(ϕ, ε).
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As before, h is the fill distance of the given data points. The quantity ε(ϕ, ε) is
referred to as a saturation error, and it depends only on the basic function ϕ and the
initial scale factor ε. By choosing an appropriate scaling parameter ε, this saturation
error may be pushed to the order of machine accuracy on any given computer.

One major advantage of the AMLS method is that the continuous moment con-
ditions (7) provide a possibility to explicitly derive such a basic function ϕ. For ex-
ample, any normalized integrable ϕ will satisfy (7) for d = 0. In fact, as mentioned
earlier, the Laguerre–Gaussian functions satisfy (7) with d = 2n + 1 for each cor-
responding s-dimensional space. Thus, Laguerre–Gaussians are admissible for both
RBF interpolation and AMLS approximation.

Unlike the standard RBF interpolation or moving least squares method, AMLS
approximation is a completely matrix free method and hence significantly improves
computational efficiency and successfully avoids the difficulties associated with ill-
conditioned system matrices. However, if we are interested in an approximation that
exactly interpolates the data given in (8), then the quasi-interpolant Qf requires that
its generating functions are cardinal functions. In other words, the approximant Qf

will naturally involve an error at the data sites in addition to the saturation error
ε(ϕ, ε). On the other hand, as we pointed out earlier, the interpolant Pf is the “best”
solution to problem (1) in the Hilbert function space defined by the chosen basis
functions. Therefore, we are motivated to seek a method that comes close to both
ideals, i.e., to find a solution that, on the one hand, does not require solving a linear
system but, on the other hand, is closer to the RBF interpolant than the plain AMLS
approximant.

Next, we will formulate a residual iteration algorithm that can achieve this goal
with an acceptable amount of additional computations.

3 Interpolation via Iterated AMLS Approximation

As shown in the previous section, it is possible that a standard RBF interpolant Pf

and an AMLS quasi-interpolant Qf share the same set of basis functions, e.g., basis
functions generated by a basic Laguerre–Gaussian function. In this section we will
explain how an initial approximant Qf can be pushed closer towards the corres-
ponding interpolant Pf by a residual iteration process. We will also provide some
theoretical analysis of the convergence of such an iteration.

3.1 The Iterative Algorithm

We will now combine all constant parameters h, ε, and εs into the definition of the
basic function ϕ. That is, we redefine (4) and (8) in the simple form
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Pf (x) :=
N∑

j=1

cjϕ
(‖x − xj‖

)
, (9)

Qf (x) :=
N∑

j=1

f (xj )ϕ
(‖x − xj‖

)
. (10)

Note that now each of Pf and Qf is a linear combination with the same basic
function ϕ. For example, we can use the scaled s-dimensional Gaussian,

ϕ(r) = εs

√
πs

e−ε2r2/h2
.

Clearly, the interpolation matrix based on (9) becomes

A = {
ϕ

(‖xi − xj‖
)}N

i,j=1 , (11)

and the linear system is still in the form Ac = f, where the vectors c and f are as
defined earlier.

To construct an algorithm that iterates on residuals, we start with an initial AMLS
quasi-interpolant

Q(0)
f (x) =

N∑
j=1

f (xj )ϕ
(‖x − xj‖

)
. (12)

We then iteratively define

Q(n)
f (x) = Q(n−1)

f (x) +
N∑

j=1

[
f (xj ) − Q(n−1)

f (xj )
]
ϕ

(‖x − xj‖
)
. (13)

That is, the current approximant is successively updated by a residual function which
is also constructed by AMLS approximation on the same set of data points.

Certainly, so far we have no evidence that the sequence of these approximating
functions {Q(n)

f } converges in any form as n → ∞, or what its limit will be if it is
convergent. Next, we will show that under some appropriate assumptions Qf does
converge to the interpolant Pf as n → ∞.

3.2 A Necessary and Sufficient Condition

Theorem 1. The sequence of functions {Q(n)
f } defined by (12) and (13) converges to

the interpolant Pf defined in (9) if and only if the chosen basic function ϕ generates
an interpolation matrix A that satisfies ‖I − A‖2 < 1 for a given set of distinct data
points {xj } ⊆ � ⊆ R

s .
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Proof. First, we convert our notation to matrix-vector form. Define a column
vector of functions

	(x) := [ϕ (‖x − x1‖) , ϕ (‖x − x2‖) , . . . , ϕ (‖x − xN‖)]T .

Clearly, 	(x) is related to the interpolation matrix A, i.e., due to the symmetry,

AT = [	(x1) | 	(x2) | · · · | 	(xN)] (= A) . (14)

The interpolant Pf defined in (9) can also be expressed in matrix-vector form
using the vector 	(x), i.e.,

Pf (x) = 	(x)T c. (15)

Next, we will inductively prove that the functions Q(n)
f defined in (13) can also

be explicitly expressed in matrix-vector notation

Q(n)
f (x) = 	(x)T

[
n∑

k=0

(I − A)k

]
f, for all n = 0, 1, 2, . . . , (16)

where f = [f (x1), f (x2), . . . , f (xN)]T as before.
The initial case n = 0 is clear. Suppose (16) holds up to an index n. We need to

show that

Q(n+1)
f (x) = 	(x)T

[
n+1∑
k=0

(I − A)k

]
f.

Using the induction hypothesis, the definition of f and the relation (14) between the
interpolation matrix A and the vector function 	 we have

Q(n+1)
f (x) = Q(n)

f (x) +
N∑

j=1

[
f (xj ) − Q(n)

f (xj )
]
ϕ

(‖x − xj‖
)

= 	(x)T

[
n∑

k=0

(I − A)k

]
f

+
N∑

j=1

[
f (xj ) − 	(xj )

T

[
n∑

k=0

(I − A)k

]
f

]
ϕ

(‖x − xj‖
)

= 	(x)T

[
n∑

k=0

(I − A)k

]
f

+ 	(x)T

[
f − AT

[
n∑

k=0

(I − A)k

]
f

]
.
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Now, straightforward algebra yields

Q(n+1)
f (x) = 	(x)T

[
I +

n∑
k=0

(I − A)k+1

]
f

= 	(x)T

[
n+1∑
k=0

(I − A)k

]
f.

As (16) shows, it is clear that each updated approximant Q(n)
f is still a linear

combination of the same basis functions but with an updated coefficient vector of the
form [

n∑
k=0

(I − A)k

]
f.

Thus, the fact that Q(n)
f → Pf as n → ∞ is equivalent to[

n∑
k=0

(I − A)k

]
f → c as n → ∞.

Since c is determined by the linear system (5) defined by the interpolation problem,
i.e., c = A−1f, the convergence is therefore equivalent to[

n∑
k=0

(I − A)k

]
f → A−1f as n → ∞,

or,
n∑

k=0

(I − A)k → A−1 as n → ∞.

The proof is completed by noting that a Neumann series satisfies

∞∑
k=0

(I − A)k = A−1

if and only if ‖I − A‖2 < 1. �
If the assumption of Theorem 1 holds, then a discrete 
2 error of this iterated approx-
imation with respect to the given data can be computed.

Corollary 1. Let

q(n) = [Q(n)
f (x1),Q

(n)
f (x2), . . . ,Q

(n)
f (xN)]T .

If ‖I − A‖2 < 1 then ‖f − q(n)‖2 → 0 for n → ∞.
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Proof.

‖f − q(n)‖2 =
∥∥∥∥∥AA−1f −

[
A

n∑
k=0

(I − A)k

]
f

∥∥∥∥∥
2

≤ ‖A‖2

∥∥∥∥∥A−1 −
n∑

k=0

(I − A)k

∥∥∥∥∥
2

‖f‖2.

Since the matrix A−1 is invertible, using the formula for the sum of a finite geometric
series, we have

‖f − q(n)‖2 ≤ ‖A‖2
∥∥A−1(I − A)n+1

∥∥
2‖f‖2

≤ ‖A‖2‖A−1‖2‖I − A‖n+1
2 ‖f‖2

= cond(A)‖I − A‖n+1
2 ‖f‖2 → 0,

where cond(A) is the 
2-condition number of A. �
If the assumption of Theorem 1 holds, then we can also estimate the norm of the
residual functions.

Corollary 2. If ‖I − A‖2 < 1 then

‖R(n)‖2 =
∥∥∥∥∥∥

N∑
j=1

[
f (xj ) − Q(n−1)

f (xj )
]
ϕ

(‖· − xj‖
)∥∥∥∥∥∥

2

→ 0

for n → ∞.

Proof. From (13) we have

R(n) =
N∑

j=1

[
f (xj ) − Q(n−1)

f (xj )
]
ϕ

(‖· − xj‖
)

= Q(n)
f − Q(n−1)

f .

But now, using matrix-vector notation,

∥∥Q(n)
f − Q(n−1)

f

∥∥
2 =

∥∥∥∥∥	(·)T
[

n∑
k=0

(I − A)k

]
f − 	(·)T

[
n−1∑
k=0

(I − A)k

]
f

∥∥∥∥∥
2

≤ ‖	(·)‖2 ‖I − A‖n
2 ‖f‖2 → 0,
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and thus the statement follows. �
Clearly, the speed of convergence is governed by the entries in the interpolation mat-
rix A, and thus by the choice of ϕ (see (11)). A basic function that is strictly positive
definite and satisfies the continuous moment conditions does not automatically guar-
antee such a matrix A. This may easily be demonstrated by counterexamples.

3.3 A Sufficient Condition

Theorem 2. Using the same notation as in Theorem 1, if a basic function ϕ is strictly
positive definite and generates an interpolation matrix A so that

max
i=1,2,...,N

⎧⎨
⎩

N∑
j=1

| Ai,j |
⎫⎬
⎭ < 2, (17)

then Q(n)
f converges to Pf as n → ∞.

Proof. Let λk for k = 1, 2, . . . , N be the eigenvalues of A. That is, 1 −λk are the
eigenvalues of the matrix I − A for k = 1, 2, . . . , N .

Since ϕ is a strictly positive definite function, the matrix A is positive definite,
i.e.,

λk > 0 for k = 1, 2, . . . , N.

Thus,
1 − λk < 1 for k = 1, 2, . . . , N. (18)

Recall that

Ai,j = ϕ‖xi − xj‖, for i, j = 1, 2, . . . , N.

This shows that all diagonal entries in A are identical and equal to ϕ(0). Hence,
Gerschgorin’s Theorem implies that

|λk − ϕ(0)| ≤ max
i=1,2,...,N

⎧⎨
⎩

N∑
j=1

| Ai,j |
⎫⎬
⎭ − ϕ(0), for k = 1, 2, . . . , N.

Using the assumption (17) we get

| λk − ϕ(0) |< 2 − ϕ(0),

which is equivalent to

ϕ(0) − 2 < λk − ϕ(0) < 2 − ϕ(0).
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Rearranging these inequalities yields

−1 < 1 − λk < 3 − 2ϕ(0), for k = 1, 2, . . . , N. (19)

Combining (18) and (19) we have

−1 < 1 − λk < 1, for k = 1, 2, . . . , N,

or
max

k=1,2,...,N
{|1 − λk |} < 1.

Since the matrix I−A is also symmetric, standard results from linear algebra tell
us that the 2-norm of the matrix I − A is given by

‖I − A‖2 = max
k=1,2,...,N

{|1 − λk|}.

So
‖I − A‖2 < 1,

and the convergence of Q(n)
f to Pf follows from Theorem 1. �

A simple example that illustrates Theorem 2 is obtained if we use Shepard’s partition
of unity functions. We define the set of basis functions as

wj(x) = ϕ(‖x − xj‖)
/ N∑


=1

ϕ(‖x − x
‖)

with a strictly positive definite and positive basic function ϕ. If an interpolant is
constructed with these basic functions, i.e.,

Pf (x) =
N∑

j=1

cjwj (x),

then one can easily show that the interpolation matrix W = {wj(xi)}Ni,j=1 is invert-
ible. Moreover, summation of the entries in any row of W always results in a row sum
equal to one due to the partition of unity property. Therefore, if the residual iteration
algorithm is started with a quasi-interpolant using the wj as generating functions,
then it will converge to Pf .

In order to ensure convergence of the residual iteration algorithm via Theorem 2
in the first place, and to increase its speed of convergence as much as possible, The-
orem 2 and its proof tell us that we want to have an interpolation matrix A whose
entries are not too large in magnitude. From the definition of the basic functions ϕ

we know that the entries of the matrix A carry a multiplicative factor εs . This simply
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implies that at least the diagonal entries in A could become arbitrarily large for ε > 0
being large (recall that Aj,j are indeed positive since ϕ is strictly positive definite).
Therefore, ε must be chosen to be small. On the other hand, however, it is known
that for many commonly used strictly positive definite functions (e.g., the Gaussian)
a small shape parameter ε implies that the smallest eigenvalue of A, λmin (which
again is always positive), will likely be very close to zero (see, e.g., Chapter 12 in
[10]). Therefore, again according to the proof of Theorem 2, ‖I−A‖2 will be at least
1 − λmin which is very close to 1. Thus, for such a choice of ε the convergence of
the iteration will be extremely slow. We will use a set of experiments to demonstrate
this trade-off phenomenon caused by the scaling parameter ε.

To conclude this section, we would like to come back to the data point distribu-
tion issue as mentioned earlier. Once Q(n)

f is guaranteed to converge to Pf it is not
so crucial how the initial approximant was constructed since Pf is still the “best”
solution to the problem even when data points are scattered. That is to say, although
Q(0)

f is an AMLS quasi-interpolant formulated with a scaling designed for the uni-
form data problem, the iterated approximant is still good when the data points are
scattered. From the experimental results presented in the next section, we will see
that this iterative method does work equivalently well for both regular and irregular
grid points.

4 Numerical Experiments

In this sections, we use a set of numerical experiments to illustrate some of the ad-
vantages and features of the iterated AMLS approximation method described in pre-
vious sections. We will study the behavior of the method with respect to the data
size N and the shape parameter ε used in the definition of the basic function ϕ.
Throughout the rest of this section the test function f we use for our experiments is
a mollified linear combination of exponentials similar to the famous Franke function.
More precisely, in the case s = 1 we use

f (x) = 15e
− 1

1−(2x−1)2

(
3

4
e− (9x−2)2

4 + 3

4
e− (9x+1)2

49 + 1

2
e− (9x−7)2

4 − 1

5
e−(9x−4)2

)
(20)

on the interval [0, 1], and for s = 2 we let

g(x, y) = 3

4
e−1/4((9x−2)2+(9y−2)2) + 3

4
e−(1/49)(9x+1)2−(1/10)(9y+1)2

+1

2
e−1/4((9x−7)2+(9y−3)2) − 1

5
e−(9x−4)2−(9y−7)2

f (x, y) = 15g(x, y)e
− 1

1−(2x−1)2 e
− 1

1−(2y−1)2 (21)

which we will sample in the unit cube [0, 1]2. The basic function used to generate
the basis functions for all experiments presented here is the scaled s-dimensional
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Fig. 1. Comparison of accuracy and stability of the RBF interpolant, AMLS approximant, and
iterated AMLS approximant for 1089 Halton data points in 2D.

Gaussian

ϕ(r) = εs

√
πs

e−ε2r2/h2
, (22)

where h is the fill-distance corresponding to a uniform distribution of points in the
domain. This manner of scaling the basic function proportional to the fill-distance is
known as the stationary approximation paradigm. We have performed the same set of
experiments also with first-order Laguerre–Gaussians (see (6)). Due to the similarity
of these results to those for Gaussians we focus only on Gaussians here.

Although it is known that RBF interpolation theoretically yields the native space
best approximation for scattered data fitting problems, the results obtained in prac-
tice are sometimes unreliable due to poor numerical stability of the solution of the
associated linear system (5). For a given set of data the accuracy of an interpolant
may strongly depend on the scale parameter ε that is often part of the definition of
the basic function, e.g., the Gaussian function (22).

Generally speaking, when ε is too large, the basic function is very peaked, and
thus the resulting interpolant will be very “spiky” so that it can not be considered as
a good approximant to the true function. On the other hand, a small ε makes a flat
basic function which will generate an ill-conditioned interpolation matrix A giving
rise to computational difficulty (in the extreme case, when ε → 0, the matrix A
becomes a constant matrix which is singular). The interpolant resulting from such an
ill-conditioned calculation is obviously to be trusted less. Figure 1 illustrates both of
these observations.

In both plots of Figure 1 we display the root-mean-squared error of the inter-
polant (f-qf, dashed line), the AMLS approximant (f-pf0, dash-dotted line), and
the result of ten iterations of the iterated AMLS method (f-pf10, solid line) versus
the scale parameter ε as used in (22). The data were obtained by sampling the two-
dimensional modified Franke function (21) at 1089 non-uniform Halton points (see,
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Fig. 2. Maximum row sum, maximum eigenvalue, ‖I − A‖, and cond(A), for the matrix A
used in Figure 1.

e.g., [11] for more information on Halton points). The error was computed on a grid
of 40 × 40 equally spaced evaluation points.

In this example ε should be characterized as being “large” if its value is greater
than approximately 1.2. For these values the error of the interpolant is not signific-
antly different from that of the AMLS approximation, and a plot of the interpolant
would be a very “spiky” surface as mentioned earlier. Within this range for the scale
parameter we can distinguish two different behaviors of the iterative algorithm. If ε

is so large that convergence of the iterative algorithm is no longer ensured then the
iterated approximant blows up. Figure 2 shows that the maximum row sum of the
matrix A is greater than two if ε > 1.5. In fact, the iterated algorithm does not blow
up until about ε = 1.8 (when the maximum eigenvalue of A > 1). This also indicates
that the maximum row sum criterion is a relatively easy to check and safe criterion
to ensure convergence of the iterative algorithm. Clearly, one wants to avoid the use
of these “large” ε values.

Moreover, within the “large” ε range we can usually find those values for which
the iterative algorithm converges rapidly to the interpolant. For the example shown in
Figure 1 this corresponds to about 1.2 < ε < 1.8. Since the interpolant is still rather
“spiky” for these ε-values neither the interpolant nor the iterated approximant are
desirable in this case. However, the (iterated) AMLS apprimant is usually smoother
for this range of ε-values and there may be certain circumstances in which this may
be more desirable than the interpolant.

A third range of values of the scale parameter corresponds to a “good” inter-
polant – usually accompanied by slow convergence of the iterative algorithm. For
the example shown in Figure 1 this corresponds to about 0.4 < ε < 1.2. For most
problems of small to modest size (for which we were able to compute the inter-
polant in Matlab) the smallest achievable RMS-error for the interpolant falls into
this range. However, for larger problems the optimal interpolant may be associated
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with an ε-value that leads to an ill-conditioned system matrix. This brings us to the
last ε-range.

If ε is in the range that causes instability (roughly ε < 0.4 in Figure 1), then the
iterated AMLS method can successfully overcome the computational difficulty asso-
ciated with the solution of the ill-conditioned interpolation system. To illustrate this
more clearly we have displayed a “zoomed-in” view for this range of small ε in the
right part of Figure 1. Even pure AMLS quasi-interpolation may work better than in-
terpolation for this range of ε. In addition, the error between the test function and the
iterated AMLS approximant is significantly improved after only 10 iterations. It is
clear that if the number of iterations is much smaller than the number of data points,
then the iterated AMLS method requires far less computational work compared to
solving for the interpolant. In the experiments reported here we always perform 10
iterations. That is, the computational complexity is of order O(10N2) while direct
computation of the interpolant usually requires a computational complexity on the
order of O(N3). Of course, fast summation techniques such as the fast (non-uniform)
Fourier transform (see, e.g., [6, 7] or [5]) can be used to improve the efficiency of
both approaches.

In order to study the connection between the convergence behavior of the inter-
polant and that of the iterated AMLS approximant we will now focus on an ε that
falls into the “reasonable” range for both the interpolant and the iterative algorithm,
say, 0.4 ≤ ε ≤ 0.8 for the examples we present.

It is well-known (see, e.g., [1]) that stationary interpolation with Gaussians is
saturated. However, to our knowledge until now no one has provided an explicit es-
timate for the saturation error. In the quasi-interpolation setting, on the other hand,
which is discussed in the literature on approximate approximations (see, e.g., [9])
the saturation error is well understood. This begs the question whether the saturation
error of stationary RBF interpolation can be explained by the one of AMLS ap-
proximation via the residual iteration process. Since we have shown convergence of
iterated approximate MLS approximation to the RBF interpolant we may expect the
saturation error of the approximate approximation setting to propagate to the inter-
polant. This may be intuitively reasonable since the residual function is constructed
with the same AMLS functions as the initial AMLS approximant. Further detailed
analysis of this phenomenon is required.

The graphs in Figure 3 illustrate how the convergence behavior of the iterated
AMLS approximation matches that of the interpolant. The graphs shows RMS-errors
versus N , the number of data points, for a 1D approximation problem with data
function (20). The graphs in the left column are for uniformly spaced data, and in the
right column for Halton points. Each row corresponds to a different (fixed) value of
ε.

We see that the behavior is very similar in both the uniform and the non-uniform
(Halton) setting. The main difference is the larger error for the basic AMLS approx-
imation (f-pf0, dash-dotted line) in the Halton setting. This is easily explained by the
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Fig. 3. Saturated convergence of stationary RBF interpolation and iterated AMLS approxima-
tion for ε = 0.8, 0.6, 0.4 from top down with uniform (left) and Halton data (right).

fact that we have not adapted the scaling of the basis functions for the non-uniform
point distribution (see (22)). The similarity of the errors for the iterated AMLS ap-
proximant in the Halton and uniform settings clearly illustrates how the iterative
algorithm automatically adapts the AMLS method to the non-uniform setting.

In Figure 4 we collect the error curves for the iterated AMLS approximants from
the two columns of Figure 3 in one graph each. We can now clearly see that a larger
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Fig. 4. Saturation errors of iterated AMLS approximation for uniform (left) and Halton (right)
data in 1D.

ε makes the saturation error come in earlier, i.e., the drop in the error stops at a larger
error value and at a smaller data size N .

5 Conclusions

In this report we have presented a residual iterative algorithm for solving the
scattered data fitting problem. As shown by the analysis and numerical results in
the previous sections, the method works well for both uniform data and Halton data
(an example of irregular data). This is true in terms of accuracy, convergence speed,
numerical stability and computational cost.

As illustrated above, the residual iterative algorithm provides a mechanism to
transfer the saturation error associated with (stationary) AMLS approximation to
RBF interpolation. We plan to investigate this connection more carefully in the fu-
ture.

As is well known, RBF interpolation is the best approximation in the native space
for the data fitting problem. However, in practice, this “best” solution might not be
“good enough” – especially if the choice of the shape parameter ε is bad. Moreover,
in some cases one may not really desire an interpolant as the “best” solution. This
will be true, for example, when the data are obtained from some inaccurate noisy
experiments. In this case the residual iterative method will definitely provide a more
stable and more reliable solution for the problem.

Clearly, the success of our iterative method is determined by several components
such as the scaling parameter ε and the basic function itself. As pointed out above,
we want the basic function to be strictly positive definite to ensure uniqueness of the
RBF interpolant. Moreover, we want the basic function to satisfy a set of continuous
moment conditions defined in (7) required for AMLS approximation. As an example
of a class of functions that carry both of these properties we presented the Laguerre–
Gaussian functions. In order to obtain more insight and carry out a deeper analysis of
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the performance of this iterative method, it is desirable to test the method with some
other basic functions besides the Laguerre–Gaussians. Presently we are not aware
of any direct connection between strict positive definiteness of a function and the
set of continuous moment conditions (7). Of course, it is a simple matter to verify
that any integrable normalized strictly positive definite function satisfies condition
(7) for (at least) d = 0. On the other hand, a function that satisfies condition (7) is
not guaranteed to be strictly positive definite. For example, let ϕ : [0,∞) → R be
defined as

ϕ(r) = 1 + r2

1 + r2 + r4 .

Then its one-dimensional radial version

ϕ(‖x‖) =
√

3

2π

1 + ‖x‖2

1 + ‖x‖2 + ‖x‖4
, x ∈ R

satisfies condition (7) for d = 0. But it can be verified that the Fourier transform of
ϕ is negative at some points. Therefore ϕ is not strictly positive definite.

Since finding strictly positive definite functions that satisfy the continuous mo-
ment conditions seems to be a non-trivial task, we plan to search for additional func-
tion classes that carry both of these properties.
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