Math 532 - Homework 10 - Due: Wednesday, April 15, 2015

1. Show that - as claimed on slide $\# 183-R\left(\mathrm{~A}^{\dagger}\right)=R\left(\mathrm{~A}^{T}\right)$, where A is an arbitrary $m \times n$ matrix.
2. Do Exercise 5.13.12 in the textbook.
3. Do Exercise 6.2.17 in the textbook.
4. Show that any singular matrix A has at least one zero eigenvalue, and vice versa, if $\lambda=0$ is an eigenvalue of A then A is singular.
5. Show that the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A, and that the corresponding eigenvectors are the same.
6. Show that the eigenvalues of the block upper triangular matrix $\left(\begin{array}{cc}A & O \\ B & C\end{array}\right)$ are given by the union of the eigenvalues of A and those of C.
