- 1. Construct a 3 × 3 matrix A with $\sigma(A) = \{2, 4, 6\}$ and eigenvectors $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$.
- 2. Work out the details of the proof of (7.2.4) in the textbook. More precisely, consider a matrix $A \in \mathbb{C}^{n \times n}$ with spectrum $\sigma(A)$ consisting of k distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Show that if \mathcal{B}_i is a basis for $N(A \lambda_i I)$ and geomult_A (λ_i) = algmult_A (λ_i) for each i, then

$$\mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_i$$

is a linearly independent set.

- 3. Assume $U \in \mathbb{C}^{n \times n}$ is unitary and show that the eigenvectors associated with distinct eigenvalues of U are orthogonal.
- 4. Assume that $A \in \mathbb{C}^{n \times n}$ and show that $\lambda \in \sigma(A)$ implies that $\lambda^k \in \sigma(A^k)$.
- 5. On slide #102 of Chapter 4 we used the Neumann series of a matrix A to obtain the inverse of I A, i.e.,

$$(\mathsf{I} - \mathsf{A})^{-1} = \sum_{k=1}^{\infty} \mathsf{A}^k.$$

Show that if A is diagonalizable then the "sufficiently small" argument used in Chapter 4 to justify convergence of the series amounts to A having small enough eigenvalues. More precisely, show that

$$\rho(\mathsf{A}) < 1 \quad \Longleftrightarrow \quad \lim_{k \to \infty} \mathsf{A}^k = 0,$$

where $\rho(A)$ is the spectral radius of A.