1. Construct a 3×3 matrix A with $\sigma(\mathrm{A})=\{2,4,6\}$ and eigenvectors $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.
2. Work out the details of the proof of (7.2.4) in the textbook. More precisely, consider a matrix $\mathrm{A} \in \mathbb{C}^{n \times n}$ with spectrum $\sigma(\mathrm{A})$ consisting of k distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Show that if \mathcal{B}_{i} is a basis for $N\left(\mathrm{~A}-\lambda_{i} \mathrm{I}\right)$ and geomult ${ }_{\mathrm{A}}\left(\lambda_{i}\right)=\operatorname{algmult}_{\mathrm{A}}\left(\lambda_{i}\right)$ for each i, then

$$
\mathcal{B}=\bigcup_{i=1}^{k} \mathcal{B}_{i}
$$

is a linearly independent set.
3. Assume $U \in \mathbb{C}^{n \times n}$ is unitary and show that the eigenvectors associated with distinct eigenvalues of U are orthogonal.
4. Assume that $\mathrm{A} \in \mathbb{C}^{n \times n}$ and show that $\lambda \in \sigma(\mathrm{A})$ implies that $\lambda^{k} \in \sigma\left(\mathrm{~A}^{k}\right)$.
5. On slide $\# 102$ of Chapter 4 we used the Neumann series of a matrix A to obtain the inverse of $I-A$, i.e.,

$$
(\mathrm{I}-\mathrm{A})^{-1}=\sum_{k=1}^{\infty} \mathrm{A}^{k}
$$

Show that if A is diagonalizable then the "sufficiently small" argument used in Chapter 4 to justify convergence of the series amounts to A having small enough eigenvalues. More precisely, show that

$$
\rho(\mathrm{A})<1 \quad \Longleftrightarrow \quad \lim _{k \rightarrow \infty} \mathrm{~A}^{k}=0
$$

where $\rho(\mathrm{A})$ is the spectral radius of A .

