Math 532 - Homework 2 - Due: Wednesday, January 28, 2015

1. Assume that A and B are square matrices and that their product $A B$ is invertible. Show that A and B must also be invertible.
2. Assume that A and B are invertible $n \times n$ matrices.
(a) Show that

$$
\mathrm{A}^{-1}+\mathrm{B}^{-1}=\mathrm{A}^{-1}(\mathrm{~A}+\mathrm{B}) \mathrm{B}^{-1} .
$$

(b) What is the corresponding formula in the scalar case, i.e., take $n=1$ and consider $\mathrm{A}=a$ and $\mathrm{B}=b$? Does the formula in (a) "make sense"?
(c) Assume that $A+B$ is also invertible. What is $\left(A^{-1}+B^{-1}\right)^{-1}$?
3. True or false? Any $n \times n$ matrix can be expressed as the sum of two invertible matrices. Provide a proof if you think this is true, or a counterexample to show it is false.
4. (a) Compute the inverse of

$$
A=\left(\begin{array}{ccc}
14 & 17 & 3 \\
17 & 26 & 5 \\
3 & 5 & 1
\end{array}\right)
$$

(b) Use the Sherman-Morrison formula and the result for A^{-1} from (a) to compute the inverse of

$$
\tilde{A}=\left(\begin{array}{ccc}
14 & 17 & 3 \\
17 & 24 & 5 \\
3 & 5 & 1
\end{array}\right)
$$

5. Consider the $(n+m) \times(n+m)$ block matrix $\mathrm{M}=\left(\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right)$, where A is $n \times n$ and invertible, D is $m \times m$, and B and C have appropriate sizes.
Verify that

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right)
$$

where $\mathrm{S}=\mathrm{D}-\mathrm{CA}^{-1} \mathrm{~B}$ is the Schur complement of A in M.
6. Consider the linear system $\mathbf{A} \boldsymbol{x}=\boldsymbol{b}$ with $n \times n$ nonsingular system matrix \mathbf{A} and $n \times 1$ right-hand side vector \boldsymbol{b}.
Now apply a rank-1 update of the form $\boldsymbol{c} \boldsymbol{d}^{T}$ with $n \times 1$ vectors \boldsymbol{c} and \boldsymbol{d} to A to get the matrix $\tilde{\mathrm{A}}=\mathrm{A}+\boldsymbol{c} \boldsymbol{d}^{T}$.
Show that the solution of the linear system $\tilde{A} \tilde{\boldsymbol{x}}=\boldsymbol{b}$ is given by

$$
\tilde{\boldsymbol{x}}=\boldsymbol{x}-\frac{\boldsymbol{y} \boldsymbol{d}^{T} \boldsymbol{x}}{1+\boldsymbol{d}^{T} \boldsymbol{y}},
$$

where \boldsymbol{y} is the solution of $\mathrm{A} \boldsymbol{y}=\boldsymbol{c}$.
7. Smoothing splines are a popular tool for statistical data analysis and prediction. They can be expressed in the form

$$
\begin{equation*}
s(\boldsymbol{x})=\boldsymbol{k}(\boldsymbol{x})^{T} \boldsymbol{c} \tag{1}
\end{equation*}
$$

where $\boldsymbol{k}(\boldsymbol{x})^{T}=\left(\begin{array}{lll}K_{1}(\boldsymbol{x}) & \cdots & K_{n}(\boldsymbol{x})\end{array}\right)$ is a vector of values of basis functions (or kernels) used to represent the prediction model. The unknown expansion coefficients \boldsymbol{c} are obtained by solving a linear system of the form

$$
(\mathrm{K}+\mu \mathrm{I}) \boldsymbol{c}=\boldsymbol{y}
$$

where K is a so-called kernel matrix whose entries are $[\mathrm{K}]_{i j}=K_{j}\left(\boldsymbol{x}_{i}\right), i, j=1, \ldots, n$, i.e., the kernels evaluated at the locations \boldsymbol{x}_{i} at which the data is sampled. Furthermore, $\boldsymbol{y}=$ $\left(y\left(\boldsymbol{x}_{1}\right) \quad \cdots \quad y\left(\boldsymbol{x}_{n}\right)\right)^{T}$ represents the given data values, I is an $n \times n$ identity matrix, and μ is a (fixed) smoothing parameter.
An alternative approach to data analysis and prediction is the so-called kriging (or radial basis function) interpolation approach, which is also of the form (1). However, its expansion coefficients \boldsymbol{c} are obtained by solving a linear system of the form

$$
\mathrm{K} \boldsymbol{c}=\boldsymbol{y}
$$

where \boldsymbol{y} and K are as above.
Use the results on the inverse of sums of matrices to show that - for given data \boldsymbol{y}, kernel matrix K , and smothing parameter μ - the smoothing spline fit of \boldsymbol{y} can also be interpreted as the kriging fit of appropriately smoothed data $\tilde{\boldsymbol{y}}$. What is the relation of $\tilde{\boldsymbol{y}}$ to \boldsymbol{y} ?

