- 1. Assume that A and B are square matrices and that their product AB is invertible. Show that A and B must also be invertible.
- 2. Assume that A and B are invertible $n \times n$ matrices.
 - (a) Show that

$$A^{-1} + B^{-1} = A^{-1}(A + B)B^{-1}.$$

- (b) What is the corresponding formula in the scalar case, i.e., take n = 1 and consider A = a and B = b? Does the formula in (a) "make sense"?
- (c) Assume that A + B is also invertible. What is $(A^{-1} + B^{-1})^{-1}$?
- 3. True or false? Any $n \times n$ matrix can be expressed as the sum of two invertible matrices. Provide a proof if you think this is true, or a counterexample to show it is false.
- 4. (a) Compute the inverse of

$$\mathsf{A} = \begin{pmatrix} 14 & 17 & 3\\ 17 & 26 & 5\\ 3 & 5 & 1 \end{pmatrix}.$$

(b) Use the Sherman-Morrison formula and the result for A^{-1} from (a) to compute the inverse of

$$\tilde{\mathsf{A}} = \begin{pmatrix} 14 & 17 & 3\\ 17 & 24 & 5\\ 3 & 5 & 1 \end{pmatrix}.$$

5. Consider the $(n+m) \times (n+m)$ block matrix $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where A is $n \times n$ and invertible, D is $m \times m$, and B and C have appropriate sizes.

Verify that

$$\begin{pmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{C} & \mathsf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathsf{A}^{-1} + \mathsf{A}^{-1}\mathsf{B}\mathsf{S}^{-1}\mathsf{C}\mathsf{A}^{-1} & -\mathsf{A}^{-1}\mathsf{B}\mathsf{S}^{-1} \\ -\mathsf{S}^{-1}\mathsf{C}\mathsf{A}^{-1} & \mathsf{S}^{-1} \end{pmatrix},$$

where $S = D - CA^{-1}B$ is the *Schur complement* of A in M.

6. Consider the linear system Ax = b with $n \times n$ nonsingular system matrix A and $n \times 1$ right-hand side vector **b**.

Now apply a rank-1 update of the form cd^T with $n \times 1$ vectors c and d to A to get the matrix $\tilde{A} = A + cd^T$.

Show that the solution of the linear system $\tilde{A}\tilde{x} = b$ is given by

$$ilde{m{x}} = m{x} - rac{m{y}m{d}^Tm{x}}{1+m{d}^Tm{y}},$$

where y is the solution of Ay = c.

7. *Smoothing splines* are a popular tool for statistical data analysis and prediction. They can be expressed in the form

$$s(\boldsymbol{x}) = \boldsymbol{k}(\boldsymbol{x})^T \boldsymbol{c},\tag{1}$$

where $\mathbf{k}(\mathbf{x})^T = (K_1(\mathbf{x}) \cdots K_n(\mathbf{x}))$ is a vector of values of basis functions (or *kernels*) used to represent the prediction model. The unknown expansion coefficients \mathbf{c} are obtained by solving a linear system of the form

$$(\mathsf{K} + \mu \mathsf{I}) \, \boldsymbol{c} = \boldsymbol{y},$$

where K is a so-called *kernel matrix* whose entries are $[K]_{ij} = K_j(\boldsymbol{x}_i)$, i, j = 1, ..., n, i.e., the kernels evaluated at the locations \boldsymbol{x}_i at which the data is sampled. Furthermore, $\boldsymbol{y} = (y(\boldsymbol{x}_1) \cdots y(\boldsymbol{x}_n))^T$ represents the given data values, I is an $n \times n$ identity matrix, and μ is a (fixed) smoothing parameter.

An alternative approach to data analysis and prediction is the so-called *kriging* (or radial basis function) interpolation approach, which is also of the form (1). However, its expansion coefficients c are obtained by solving a linear system of the form

$$\mathsf{K} \boldsymbol{c} = \boldsymbol{y},$$

where \boldsymbol{y} and K are as above.

Use the results on the inverse of sums of matrices to show that — for given data \boldsymbol{y} , kernel matrix K, and smothing parameter μ — the smoothing spline fit of \boldsymbol{y} can also be interpreted as the kriging fit of appropriately smoothed data $\tilde{\boldsymbol{y}}$. What is the relation of $\tilde{\boldsymbol{y}}$ to \boldsymbol{y} ?