1. Consider the two matrices

$$
\mathrm{A}=\left(\begin{array}{cccc}
2 & 2 & 0 & -1 \\
3 & -1 & 4 & 0 \\
0 & -8 & 8 & 3
\end{array}\right), \quad \mathrm{B}=\left(\begin{array}{cccc}
2 & -6 & 8 & 2 \\
5 & 1 & 4 & -1 \\
3 & -9 & 12 & 3
\end{array}\right)
$$

(a) Are A and B row equivalent?
(b) Are A and B column equivalent?
(c) Are A and B equivalent?
2. Let A be a real $m \times n$ matrix and prove that $\operatorname{rank}(A)=1$ if and only if A can be represented as $A=\boldsymbol{u} \boldsymbol{v}^{T}$ for some nonzero column vectors $\boldsymbol{u} \in \mathbb{R}^{m}, \boldsymbol{v} \in \mathbb{R}^{n}$.
3. Consider the upper triangular matrix

$$
\mathrm{U}=\left(\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)
$$

and find permutation matrices P_{1} and P_{2} so that $P_{1} \cup P_{2}$ is given by the lower triangular matrix

$$
\mathrm{P}_{1} \mathrm{UP}_{2}=\left(\begin{array}{ccc}
u_{33} & 0 & 0 \\
u_{23} & u_{22} & 0 \\
u_{13} & u_{12} & u_{11}
\end{array}\right)
$$

4. In class we claimed (and used) that the product of (lower) triangular matrices is (lower) triangular. Prove this.
5. Consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & 1 & -1 & 3 \\
4 & 2 & 2 & 7 \\
-2 & -1 & 16 & 2 \\
8 & 4 & 15 & 24
\end{array}\right)
$$

Now compute the following two matrix-matrix products:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 3 & 1 & 0 \\
4 & 1 & 5 & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & 1 & -1 & 3 \\
0 & 0 & 4 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-1 & \frac{15}{4} & 1 & 0 \\
4 & \frac{19}{4} & \frac{29}{5} & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & 1 & -1 & 3 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & \frac{5}{4} \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

What do you notice? Explain why this does or does not conflict with what we discussed in class.
6. Let $\mathrm{A}=\left(\begin{array}{ccc}1 & 4 & 5 \\ 4 & 18 & 26 \\ 3 & 16 & 30\end{array}\right)$.
(a) Compute the LU factorization of A .
(b) Use the LU factorization to solve the two linear systems $\mathrm{A} \boldsymbol{x}_{1}=\boldsymbol{b}_{1}$ and $\mathrm{A} \boldsymbol{x}_{2}=\boldsymbol{b}_{2}$ with

$$
\boldsymbol{b}_{1}=\left(\begin{array}{c}
6 \\
0 \\
-6
\end{array}\right), \quad \boldsymbol{b}_{2}=\left(\begin{array}{c}
6 \\
6 \\
12
\end{array}\right) .
$$

(c) Use the LU factorization to compute A^{-1}.
7. Consider the vector space $\mathcal{V}=\mathbb{R}^{n \times n}$ of square real matrices. Show that the subset \mathcal{S} of upper triangular matrices is also a subspace of \mathcal{V}.

