- 1. Here is what we used on slides 89–90 of Chapter 4: Let A be an $m\times n$ matrix and B be $n\times p.$ Show that
 - (a) $R(AB) \subseteq R(A)$.
 - (b) $N(\mathsf{B}) \subseteq N(\mathsf{AB})$
- 2. Let A be an $m \times n$ matrix and B be $n \times p$. Show that

$$\dim(N(\mathsf{AB})) = \dim(N(\mathsf{B})) + \dim(N(\mathsf{A}) \cap R(\mathsf{B})).$$

3. Let

$$A = \begin{pmatrix} 1 & 2.01 \\ -1 & -2 \\ 3 & 6 \end{pmatrix}, \qquad b = \begin{pmatrix} 1.01 \\ -1 \\ 3 \end{pmatrix}$$

- (a) Determine rank(A) and solve Ax = b using exact arithmetic.
- (b) Determine rank($A^T A$) and solve $A^T A \boldsymbol{x} = A^T \boldsymbol{b}$ using exact arithmetic.
- (c) Use 3-digit arithmetic to find rank(A) and solve Ax = b.
- (d) Use 3-digit arithmetic to find $A^T A$ and $A^T b$ and then solve $A^T A x = A^T b$.

4. Use an exponential model of the form $f(t) = \alpha e^{\beta t}$ to obtain a least squares fit for the data

t	1	2	3	4	5	
b	16	27	45	74	122].

5. Do Exercise 4.6.8 in the textbook.