Math 532 - Homework 5 - Due: Wednesday, February 18, 2015

1. Here is what we used on slides $89-90$ of Chapter 4 : Let A be an $m \times n$ matrix and B be $n \times p$. Show that
(a) $R(\mathrm{AB}) \subseteq R(\mathrm{~A})$.
(b) $N(\mathrm{~B}) \subseteq N(\mathrm{AB})$
2. Let A be an $m \times n$ matrix and B be $n \times p$. Show that

$$
\operatorname{dim}(N(\mathrm{AB}))=\operatorname{dim}(N(\mathrm{~B}))+\operatorname{dim}(N(\mathrm{~A}) \cap R(\mathrm{~B}))
$$

3. Let

$$
\mathrm{A}=\left(\begin{array}{cc}
1 & 2.01 \\
-1 & -2 \\
3 & 6
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
1.01 \\
-1 \\
3
\end{array}\right)
$$

(a) Determine $\operatorname{rank}(A)$ and solve $A \boldsymbol{x}=\boldsymbol{b}$ using exact arithmetic.
(b) Determine $\operatorname{rank}\left(A^{T} A\right)$ and solve $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$ using exact arithmetic.
(c) Use 3-digit arithmetic to find $\operatorname{rank}(A)$ and solve $A \boldsymbol{x}=\boldsymbol{b}$.
(d) Use 3-digit arithmetic to find $A^{T} A$ and $A^{T} \boldsymbol{b}$ and then solve $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$.
4. Use an exponential model of the form $f(t)=\alpha \mathrm{e}^{\beta t}$ to obtain a least squares fit for the data

t	1	2	3	4	5
b	16	27	45	74	122

5. Do Exercise 4.6.8 in the textbook.
