- 1. Let $\boldsymbol{x} \in \mathbb{R}^n$, and let A be an $m \times n$ matrix with rank(A) = n and let B = A^TA. Show that $\|\boldsymbol{x}\|_{\mathsf{B}} = (\boldsymbol{x}^T \mathsf{B} \boldsymbol{x})^{1/2}$ is a norm on \mathbb{R}^n .
- 2. (a) Show that $\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \|\boldsymbol{x}\|_{\infty}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$.
 - (b) Why does this imply that if a sequence converges in the ℓ_{∞} -norm then it converges to the same limit also in the ℓ_2 -norm? Here a sequence of vectors $\{\boldsymbol{x}_k\} = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots\} \subset \mathbb{R}^n$ is said to converge to a limit \boldsymbol{x} in the norm $\|\cdot\|$ if and only if for each $\epsilon > 0$ there exists a positive integer K such that for every k > K we have $\|\boldsymbol{x} \boldsymbol{x}_k\| < \epsilon$.
 - (c) Show that $\|\boldsymbol{x}\|_1 \leq \sqrt{n} \|\boldsymbol{x}\|_2$ for all $\boldsymbol{x} \in \mathbb{R}^n$.
 - (d) Show that $\|\boldsymbol{x}\|_1 \leq n \|\boldsymbol{x}\|_\infty$ for all $\boldsymbol{x} \in \mathbb{R}^n$.
- 3. Statisticians sometimes like to weight their data. Suppose that w_1, \ldots, w_n are positive scalars (called "weights"). Is $\|\boldsymbol{x}\|_{2,\boldsymbol{w}} = \left(\sum_{i=1}^n w_i |x_i|^2\right)^{1/2}$ a norm on \mathbb{R}^n ? Prove or disprove.
- 4. Do Exercise 5.1.12 in the textbook. Note that part (b) contains a typo. It should read $\hat{y} = y/||y||_q$. Also, do part (c) for the real inner product, i.e., show $|x^Ty| \leq ||x||_p ||y||_q$.
- 5. Do Exercise 5.1.13 in the textbook.