1. Show that the norm $\|\cdot\|$ is a function that depends continuously on its argument $x \in \mathbb{R}^n$, i.e., for every $\epsilon > 0$ there exists a δ such that

$$|\|\boldsymbol{x}\| - \|\boldsymbol{y}\|| < \epsilon$$

whenever $|x_i - y_i| < \delta$ for each $i = 1, \ldots, n$.

2. Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ be vectors in \mathbb{R}^n . Prove that

$$\|\boldsymbol{z} - \boldsymbol{x}\|_{2}^{2} + \|\boldsymbol{z} - \boldsymbol{y}\|_{2}^{2} = \frac{1}{2}\|\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + 2\left\|\boldsymbol{z} - \frac{1}{2}(\boldsymbol{x} + \boldsymbol{y})\right\|_{2}^{2}.$$

3. Let $\boldsymbol{x}, \boldsymbol{y}$ be vectors in \mathbb{R}^n such that $\boldsymbol{x}^T \boldsymbol{y} = 0$. Prove the Pythagorean theorem

$$\|\boldsymbol{x} - \boldsymbol{y}\|_2^2 = \|\boldsymbol{x}\|_2^2 + \|\boldsymbol{y}\|_2^2.$$

- 4. Do Exercise 5.2.6 in the textbook.
- 5. Do Exercise 5.2.7 in the textbook.