1. Consider a general (complex) inner product space \mathcal{V} and show that the following two properties follow from the basic definition:

$$egin{aligned} &\langle lpha m{x}, m{y}
angle = \overline{lpha} \langle m{x}, m{y}
angle \ &\langle m{x} + m{y}, m{z}
angle = \langle m{x}, m{z}
angle + \langle m{y}, m{z}
angle. \end{aligned}$$

- 2. Prove that the $p = \infty$ vector norm on \mathbb{R}^n , $n \ge 2$ is not induced by an inner product.
- 3. Show that the reduced QR factorization as defined in the notes is unique.
- 4. Consider two Householder reflections R_1 and $\mathsf{R}_2.$
 - (a) Show that $\begin{pmatrix} \mathsf{R}_1 & \mathsf{O} \\ \mathsf{O} & \mathsf{R}_2 \end{pmatrix}$ can't be another Householder reflection. (b) Show that $\begin{pmatrix} \mathsf{I} & \mathsf{O} \\ \mathsf{O} & \mathsf{R}_2 \end{pmatrix}$ is a Householder reflection.
- 5. Do Exercise 5.5.9 in the textbook.