Math 532 - Pre-Test - Monday, January 12, 2015

1. Construct a 3×4 matrix A and 3×1 column vectors \boldsymbol{b} and \boldsymbol{c} such that the augmented matrix (A b) is the augmented matrix for an inconsistent linear system $\mathrm{A} \boldsymbol{x}=\boldsymbol{b}$, but (A \boldsymbol{c}) is the augmented matrix for a consistent system.
2. Assume that $m<n$ are positive integers and explain why a homogeneous linear system A $\boldsymbol{x}=\mathbf{0}$ of m equations in n unknowns must always possess infinitely many solutions.
3. Consider the linear system $\mathrm{A} \boldsymbol{x}=\boldsymbol{b}$ with

$$
\mathrm{A}=\left(\begin{array}{ccc}
2 & 2 & 3 \\
4 & 8 & 12 \\
6 & 2 & \alpha
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
0 \\
-4 \\
4
\end{array}\right) .
$$

(a) Determine all values of α for which the system is consistent, i.e., for which the system has at least one solution.
(b) Determine all values of α for which there is a unique solution, and compute the solutions for these cases.
(c) Determine all values of α for which there are infinitely many solutions, and give the general solution for these cases.
4. The trace of a square matrix A is given by the sum of its diagonal elements, i.e.,

$$
\operatorname{trace}(\mathrm{A})=\sum_{i=1}^{n}[\mathrm{~A}]_{i i} .
$$

Show that trace (\cdot) is a linear function.
5. Let A be an $m \times n$ matrix. The transpose A^{T} of A is defined by $\left[\mathrm{A}^{T}\right]_{i j}=[\mathrm{A}]_{j i}$. Use this definition to prove that

$$
(\mathrm{A}+\mathrm{B})^{T}=\mathrm{A}^{T}+\mathrm{B}^{T}
$$

provided both A and B are $m \times n$ matrices.
6. Prove or disprove: If A, B and C are matrices of compatible sizes, then $A B=A C$ implies $B=C$.
7. Let

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)
$$

and let A be an arbitrary 3×3 matrix.
(a) Describe the rows of EA in terms of the rows of A.
(b) Describe the columns of AE in terms of the columns of A.
8. For all $n \times k$ matrices A and $k \times n$ matrices B , show that the block matrix

$$
L=\left(\begin{array}{cc}
I-B A & B \\
2 A-A B A & A B-I
\end{array}\right)
$$

satisfies $\mathrm{L}^{2}=\mathrm{I}$, and therefore is a so-called involutory matrix.

