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1Most of this discussion is closely linked to [Devlin, Chapter 2], but we also discuss
connections to MATLAB and Mathematica where appropriate.
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“That’s Logic”

“I know what you’re thinking
about,” said Tweedledum: “but it
isn’t so, nohow.”
“Contrariwise,” continued
Tweedledee, “if it was so, it might
be; and if it were so, it would be;
but as it isn’t, it ain’t. That’s logic.”

From “Through the Looking Glass” by Lewis Carroll (see http:
//www.online-literature.com/carroll/lookingglass/4/
for the complete Chapter 4: Tweedledee and Tweedledum)
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“That’s Logic”

Famous (western) Logicians

Artistole (right, with Plato) Gottlob Frege George Boole
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Logical Connectives

“And”, “Or” and “Not”

And: used when two “sentences” hold simultaneously
Mathematical notation: ∧, &
In words: φ ∧ ψ is T only if both φ and ψ are T

Example2(in MATLAB):
is_true = (3<pi) && (4>pi)
is_true = (3<pi) & (4>pi)
is_true = and(3<pi, 4>pi)

Example (in Mathematica):
(3<Pi) && (4>Pi)
And[3<Pi, 4>Pi]

Truth table: http://www.wolframalpha.com/
input/?i=P+%26%26+Q

2It is recommended that you run all the examples using either MATLAB or
Mathematica (or possibly Wolfram Alpha).
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Logical Connectives

Or: used when either one of two “sentences” holds (inclusive
“or”)

Mathematical notation: ∨, |
In words: φ ∨ ψ is T if at least one of φ and ψ is T

Example (in MATLAB):
is_true = (pi<3) || (4<pi)
is_true = (pi<3) | (4<pi)
is_true = or(pi<3, 4<pi)

Example (in Mathematica):
(Pi<3) || (4<Pi)
Or[Pi<3, 4<Pi]

Truth table: http:
//www.wolframalpha.com/input/?i=P+||+Q
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Logical Connectives

Not: negates the “sentence”
Mathematical notation: ¬, ∼
In words: ¬φ is T if φ is F

Example (in MATLAB):
is_true = ~(3<pi)
is_true = not(3<pi)

Example (in Mathematica):
!(3<Pi)
Not[3<Pi]

Truth table:
φ ¬φ
T F
F T
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Logical Connectives

Example (Negating a statement)

Being a German who loves a good beer, I’ve been asked by my
German friends how I can live in the U.S., claiming

All American beer tastes dreadful.

Obviously, this is not true. So how do I reply if I want to negate this
statement?

1 Not all American beer tastes dreadful.
2 All non-American (i.e., German!) beer tastes great.
3 All American beer tastes great.
4 All American beer does not taste dreadful.
5 At least one American beer tastes great.
6 At least one American beer does not taste dreadful.

We will see below which of these statements is logically most
appropriate.
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Logical Connectives

Example (Leap year calculation, from Ch. 3 [ExM])
Using this year (1st element of vector returned by clock function)

c = clock, y = c(1)
mod(y,4) == 0 && mod(y,100) ~= 0 || mod(y,400) == 0

Using two years at once

y = [2000 2100]
mod(y,4) == 0 && mod(y,100) ~= 0 || mod(y,400) == 0

leads to an error. Replace the “short-circuit”a operators && and || by
the “elementwise” operators & and |:

y = [2000 2100]
mod(y,4) == 0 & mod(y,100) ~= 0 | mod(y,400) == 0

Note: and and or have “elementwise” interpretations, not
“short-circuit”. not doesn’t care. Try it!

aThe 2nd operand, e.g., mod(y,100), is evaluated only when the result is
not fully determined by the 1st operand, e.g., mod(y,4).
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Logical Connectives

Example (Logical operations and arrays in MATLAB)
R=rand(4,3)
(R > 0.3) & (R < 0.7)

Note: here the “elementwise” operator is required.

Example (Logical operations and find in MATLAB)
find(R > 0.3 & R < 0.7)

Note: find goes through matrix in column-major order and returns
vector of indices.
More detailed:

[row,col,val] = find(R > 0.3 & R < 0.7)
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Conditionals and Biconditionals

Conditional: for logical implications; if . . . then
Mathematical notation: ⇒,→

Example3 (in MATLAB):
x = -3
if x < 0

abs_x = -x
else

abs_x = x
end
or – if you want a function – using logical multipliers
abs = @(x) (x<0)*(-x) + (x>=0)*x
abs(-3), abs(4)
Example (in Mathematica):
abs[x_] := If[x < 0, -x, x]
abs[-3]
abs[-4]

3This computer code use is different than the mathematical use since we can’t
assign a truth value to the “if . . . then” code fragment.
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Conditionals and Biconditionals

Truth table:
http://www.wolframalpha.com/input/?i=P+Implies+Q
Important concepts for all of mathematics:

φ implies ψ
if φ then ψ
φ is sufficient for ψ
φ only if ψ
ψ if φ
ψ whenever φ
ψ is necessary for φ
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Conditionals and Biconditionals

Are conditionals confusing?
Probably so. Consider the following interpretation of the truth table4:

If Springfield is the capital of Illinois, then Springfield is the capital
of Illinois

(T⇒ T is T). . . . OK
If Springfield is the capital of Illinois, then Chicago is the capital of
Illinois (T⇒ F is F). . . . This better be false!
If Chicago is the capital of Illinois, then Springfield is the capital of
Illinois (F⇒ T is T). . . . Weird!
If Chicago is the capital of Illinois, then Rockford is the capital of
Illinois (F⇒ F is T). . . . Very weird!

Read (carefully!) the discussion in [Devlin, pp. 18-19].
Conditional in words:

φ⇒ ψ is only then not T if ψ is F in spite of φ being T

More colloquially: φ⇒ ψ is considered true until proven false
(“innocent until proven guilty”).

4The state capital of Illinois is Springfield.
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Conditionals and Biconditionals

Another example for the conditional

Let’s consider the following promise I make to you:

If you average 85% or above in this class, then you will get an
A.

At the end of the semester we could have various outcomes:
You average 90% and get an A (T→ T is T, i.e., I kept my promise)
You average 90% and get a B (T→ F is F, i.e., I broke my
promise)
You average 80% and get an A (F→ T is T, i.e., I didn’t break my
promise ¨̂ )
You average 80% and get a B (F→ F is T, i.e., I didn’t break my
promise – and you received what you expected)

This illustrates perfectly that scoring 85% or higher was sufficient for
an A, but not necessary.
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Conditionals and Biconditionals

And a mathematical example

Let’s assume that n is a positive integer. Then

(n is a perfect square with last digit 7)⇒ (n is a prime number)

is a true statement.

This is so, because we have both (by definition)
F⇒ T is T
F⇒ F is T

and we know that no perfect square ends in 7 (so it is irrelevant that all
we know about n is that it is a positive integer).

Remark
Statements like these (and the earlier ones about the IL state capital)
do not agree with common sense. Usually we work with statements
that are in some logical context (see the discussion of causation in
[Devlin, p. 17]).
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Conditionals and Biconditionals

Biconditional: for logical equivalence; if and only if
Mathematical notation: ⇔,↔
Does not make sense in MATLAB (only in Symbolic
Toolbox)

Example (in Mathematica):
Equivalent[3<Pi, 4>Pi]

Truth table: http://www.wolframalpha.com/
input/?i=P+Equivalent+Q
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Truth Tables

Further insights via truth tables

Example

Prove ¬(φ ∧ ψ) is equivalent to (¬φ) ∨ (¬ψ).

φ ψ φ ∧ ψ ¬(φ ∧ ψ)
T T

T F

T F

F T

F T

F T

F F

F T

φ ψ ¬φ ¬ψ (¬φ) ∨ (¬ψ)
T T

F F F

T F

F T T

F T

T F T

F F

T T T
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Truth Tables

Example (Exercise 2.2.9(a) in [Devlin])

Prove ¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ).

φ ψ φ⇒ ψ ¬(φ⇒ ψ)

T T

T F

T F

F T

F T

T F

F F

T F

φ ψ φ ∧ (¬ψ)
T T

F

T F

T

F T

F

F F

F

How can we then interpret φ⇒ ψ in terms of ∧, ∨ and ¬? (¬φ) ∨ ψ

fasshauer@iit.edu MATH 100 – ITP 18

http://math.iit.edu/~fass


Truth Tables

Example (Exercise 2.2.9(a) in [Devlin])

Prove ¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ).

φ ψ φ⇒ ψ ¬(φ⇒ ψ)

T T T

F

T F F

T

F T T

F

F F T

F

φ ψ φ ∧ (¬ψ)
T T

F

T F

T

F T

F

F F

F

How can we then interpret φ⇒ ψ in terms of ∧, ∨ and ¬? (¬φ) ∨ ψ

fasshauer@iit.edu MATH 100 – ITP 18

http://math.iit.edu/~fass


Truth Tables

Example (Exercise 2.2.9(a) in [Devlin])

Prove ¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ).

φ ψ φ⇒ ψ ¬(φ⇒ ψ)

T T T F
T F F T
F T T F
F F T F

φ ψ φ ∧ (¬ψ)
T T

F

T F

T

F T

F

F F

F

How can we then interpret φ⇒ ψ in terms of ∧, ∨ and ¬? (¬φ) ∨ ψ

fasshauer@iit.edu MATH 100 – ITP 18

http://math.iit.edu/~fass


Truth Tables

Example (Exercise 2.2.9(a) in [Devlin])

Prove ¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ).

φ ψ φ⇒ ψ ¬(φ⇒ ψ)

T T T F
T F F T
F T T F
F F T F

φ ψ φ ∧ (¬ψ)
T T F
T F T
F T F
F F F

How can we then interpret φ⇒ ψ in terms of ∧, ∨ and ¬? (¬φ) ∨ ψ

fasshauer@iit.edu MATH 100 – ITP 18

http://math.iit.edu/~fass


Truth Tables

Example (Exercise 2.2.9(a) in [Devlin])

Prove ¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ).

φ ψ φ⇒ ψ ¬(φ⇒ ψ)

T T T F
T F F T
F T T F
F F T F

φ ψ φ ∧ (¬ψ)
T T F
T F T
F T F
F F F

How can we then interpret φ⇒ ψ in terms of ∧, ∨ and ¬?

(¬φ) ∨ ψ

fasshauer@iit.edu MATH 100 – ITP 18

http://math.iit.edu/~fass


Truth Tables

Example (Exercise 2.2.9(a) in [Devlin])

Prove ¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ).

φ ψ φ⇒ ψ ¬(φ⇒ ψ)

T T T F
T F F T
F T T F
F F T F

φ ψ φ ∧ (¬ψ)
T T F
T F T
F T F
F F F

How can we then interpret φ⇒ ψ in terms of ∧, ∨ and ¬? (¬φ) ∨ ψ

fasshauer@iit.edu MATH 100 – ITP 18

http://math.iit.edu/~fass


Truth Tables

Example (Wason Selection Task, Exercise 2.2.20 in [Devlin])

Assuming each card has a letter on one face and a number
on the other, which card(s) do you have to turn over in order
to test the truth of the proposition that if a card has a vowel on
one face, then its opposite shows an even number?a

Answer: Cards “E” and “7”.

Checking the other side of “E” is obvious (we need an even number to
show for the proposition to hold).
It doesn’t matter what’s on the other side of “K” (the proposition makes
no claim about cards with a consonant).
Nor does it matter what’s on the other side of “4” (if it’s a vowel, great; if
it’s a consonant, no rule was violated either).
We need to check “7” (if a vowel shows up, the proposition is false).

aOnly about 10% of the population get this right.
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Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k .

But then

(−1)n = (−1)2k

=
(
(−1)2︸ ︷︷ ︸

=1

)k
= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k .

But then

(−1)n = (−1)2k

=
(
(−1)2︸ ︷︷ ︸

=1

)k
= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k .

But then

(−1)n = (−1)2k

=
(
(−1)2︸ ︷︷ ︸

=1

)k
= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k .

But then

(−1)n = (−1)2k

=
(
(−1)2︸ ︷︷ ︸

=1

)k
= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k . But then

(−1)n = (−1)2k

=
(
(−1)2︸ ︷︷ ︸

=1

)k
= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k . But then

(−1)n = (−1)2k =
(
(−1)2︸ ︷︷ ︸

=1

)k

= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k . But then

(−1)n = (−1)2k =
(
(−1)2︸ ︷︷ ︸

=1

)k

= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

When we do a mathematical proof, then we need to decide whether a
certain mathematical statement is logically true or not.

The direct approach (known as modus ponens, i.e., method by
affirmation) is to conclude

If φ and (φ⇒ ψ), then ψ.

Example

Show that if n is an even integer, then (−1)n = 1.

Proof.
n is an arbitrary even integer, so n = 2k for some integer k . But then

(−1)n = (−1)2k =
(
(−1)2︸ ︷︷ ︸

=1

)k
= 1k = 1.

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Looking Ahead Toward Proofs

Contrapositive

Sometimes it is difficult to prove an implication directly. In this case we
can try to show that the contrapositive of the conditional holds, i.e., we
use (see HW 2.2.11)

φ⇒ ψ is equivalent to (¬ψ)⇒ (¬φ)

and conclude (modus tollens, method by denial)

If φ and ((¬ψ)⇒ (¬φ)), then ψ.

Note that this has nothing to do with proof by contradiction (more on
that later).

Example

Conditional: If you average 85% or above, then you will get an A.
Contrapositive: If you don’t/didn’t get an A, then you don’t/didn’t average
85% or above.
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Looking Ahead Toward Proofs

Converse

Do not confuse the contrapositive of a conditional with its converse:

If φ⇒ ψ then its converse is ψ ⇒ φ

There is no logical connection between a conditional and its converse.

The only link is that if both are true, then the biconditional holds, i.e.,

(φ⇒ ψ) ∧ (ψ ⇒ φ) is equivalent to (φ⇔ ψ)

Example

Conditional: If you average 85% or above, then you will get an A.
Contrapositive: If you don’t/didn’t get an A, then you don’t/didn’t average
85% or above.
Converse: If you get/got an A, then you average/averaged 85% or above.

Note: The converse assures us that scoring 85% or above is
necessary for an A (not so good for you _̈).
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Looking Ahead Toward Proofs

Also, do not confuse a statement with its
converse!

More Lewis Carroll:
‘Not the same thing a bit!’ said
the Hatter. ‘You might just as well
say that “I see what I eat” is the
same thing as “I eat what I see”!’

From “Alice in Wonderland” by Lewis Carroll (see
http://www.online-literature.com/carroll/alice/7/ for
the complete Chapter 7: A Mad Tea Party)
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Looking Ahead Toward Proofs

Inverse

One could also consider the contrapositive of the converse5 of a
conditional, also known as the inverse of the conditional:

Example

Conditional: If you average 85% or above, then you will get an A.
Contrapositive: If you don’t/didn’t get an A, then you don’t/didn’t average
85% or above.
Converse: If you get/got an A, then you average/averaged 85% or above.
Inverse: If you don’t average 85% or above, then you won’t get an A.

Note: The inverse (which is equivalent to the converse) perhaps shows
even better that scoring 85% or above is necessary for an A.

5Or, equivalently, the converse of the contrapositive.
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Looking Ahead Toward Proofs

Negated Conditional

You also might be tempted to confuse the contrapositive of a
conditional with its negation. As we showed earlier, the negation of a
conditional

¬(φ⇒ ψ) is equivalent to φ ∧ (¬ψ)

which is different from the contrapositive of φ⇒ ψ:

(¬ψ)⇒ (¬φ)

The latter would be equivalent to (verify this!)

(¬φ) ∨ ψ
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Looking Ahead Toward Proofs

We just said that the negated conditional is

φ ∧ (¬ψ)

Example

Conditional: If you average 85% or above, then you will get an A.
Contrapositive: If you don’t/didn’t get an A, then you don’t/didn’t average
85% or above.
Converse: If you get/got an A, then you average/averaged 85% or above.
Inverse: If you don’t average 85% or above, then you won’t get an A.
Negated conditional: You average 85% or above and you won’t get an A.

Note: The negated conditional is only true if the conditional is false,
i.e., in the case when I break my promise.
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Looking Ahead Toward Proofs

The perverse cube of reversed implications

¬φ⇒ ¬ψ
φ∨¬ψ

←→ ¬ψ ⇒ ¬φ
ψ∨¬φ

l l
φ⇒ ψ
¬φ∨ψ

←→ ψ ⇒ φ
¬ψ∨φ

l Negation l

¬ (¬φ⇒ ¬ψ)
¬φ∧ψ

· · · ¬ (¬ψ ⇒ ¬φ)
¬ψ∧φ

l l
¬ (φ⇒ ψ)

φ∧¬ψ
· · · ¬ (ψ ⇒ φ)

ψ∧¬φ

Create the truth tables for all these statements to verify their relations.
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Quantifiers

“For all” and “there exists”

Universal quantifier: ∀x , “for all x it is the case that . . .”
Existential quantifier: ∃x , “there exists an x such that . . .”

Example (in Mathematica – quantifiers don’t exist in MATLAB)
ForAll[x, Element[x,Reals], x^2 + 2 x + c > 0]
Reduce[%, c] (* find c s.t. the statement is T *)

In words: For what values of c is the inequality x2 + 2x + c > 0 true for
all values of x?

Example (in Mathematica)
Exists[x, x^2 + 2 x + c == 0 && x > 0]
Reduce[%, c, Reals] (*consider only real numbers*)

In words: For what values of c does the equation x2 + 2x + c = 0 have
a positive solution x? When does a positive solution exista?

aExistence (and uniqueness) of a solution are fundamental issues in math.
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Quantifiers

We can also nicely visualize what’s going on in Mathematica

Manipulate[
Plot[x^2 + 2 x + c, {x, -5, 5},
PlotRange -> {-6, 10}], {c, -5, 5}]

This shows that
for c ≤ 0 there is an intersection with the positive x-axis, so a
positive solution to the equation x2 + 2x + c = 0 exists.
for c > 0 the parabola does not intersect the positive x-axis, so
the equation x2 + 2x + c = 0 is false for positive values of x .
for c > 1 the parabola does not intersect the x-axis at all, so the
inequality x2 + 2x + c > 0 is true for all values of x (but the
equation x2 + 2x + c = 0 is false).

Remark
We could also use a restricted domain for the existence example, i.e.,

Exists[x, x>0, x^2 + 2 x + c == 0]
Reduce[%, c, Reals] (*consider only real numbers*)
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Quantifiers

Example (Comparing the use of ∃ and ∀ in common language)

Consider the two statements:
Everybody likes at least one drink, namely water.

(one drink liked by everybody)

Everybody likes at least one drink; I myself go for beer.

(everybody likes some drink)
How can we formalize these two statements using quantifiers?

There exists a drink D such that, for every person P, P likes D.

(∃D) (∀P) [P likes D]

For every person P there exists a drink D such that P likes D.

(∀P) (∃D) [P likes D]

The order of quantifiers matters! What about the other two cases?
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Quantifiers

A mathematical example

Let P be the set of prime numbers and N the set of natural numbers.
Then

(∀n ∈ N) (∃m ∈ N) [(m > n) ∧ (m ∈ P)]

says that

there are infinitely many primes.

Actually, it says that

For whatever natural number, n, we pick
we can find another natural number, m,
that is both larger than n and a prime number.

The statement m ∈ P (or “m is a prime number”) can be formalized as

(∀a,b ∈ N) [(ab = m)⇒ ((a = 1) ∨ (b = 1))]
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Quantifiers

Negation of Universal Statements

Earlier we used the example (in Mathematica)

(∀x ∈ R)
[
x2 + 2x + c > 0

]
Let’s assume it is true, i.e.,

For all x, the inequality x2 + 2x + c > 0 is true.

What if we want to negate this statement? We get

¬
[
(∀x ∈ R)

[
x2 + 2x + c > 0

]]
Not[ForAll[x, Element[x,Reals], x^2 + 2 x + c > 0]]
Reduce[%, c] (* find c s.t. the statement is T *)

What does the statement mean? (Mathematica resolved it!)

There exists some x for which the inequality is not true.
Note that the values of c found by Mathematica are complementary to
those for which the original statement was true.
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Quantifiers

Negation of Existential Statements
Let’s use our second earlier example

(∃x ∈ R)
[
(x2 + 2x + c = 0) ∧ (x > 0)

]
Let’s assume it is true, i.e.,

There exists an x, such that the equation x2 + 2x + c = 0 is
true and x > 0.

What if we want to negate this statement? We get

¬
[
(∃x ∈ R)

[
(x2 + 2x + c = 0) ∧ (x > 0)

]]
Not[Exists[x, x^2 + 2 x + c == 0 && x > 0]]
Reduce[%, c, Reals] (*consider only real numbers*)

What does the statement mean?
For all x, the equation is not true or x ≤ 0.

Again, the values of c found by Mathematica are complementary to
those for which the original statement was true.
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Quantifiers

Using a restricted domain, things are a little simpler:

(∃x ∈ R+)
[
x2 + 2x + c = 0

]
Let’s assume it is true, i.e.,

There exists a positive x, the equation x2 + 2x + c = 0 is true.

What if we want to negate this statement? We get

¬
[
(∃x ∈ R+)

[
x2 + 2x + c = 0

]]
Not[Exists[x, x > 0, x^2 + 2 x + c == 0]]
Reduce[%, c, Reals] (*consider only real numbers*)

What does the statement mean?
For all positive x, the equation is not true.

Again, the values of c found by Mathematica are complementary to
those for which the original statement was true.
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Quantifiers

Back to Beer

We end by determining the “correct” formulation for the beer example.
Let’s formalize the statement

All American beer tastes dreadful.

We introduce the following notation:
B: the set of all beers

A(x): the statement “x is American”
D(x): the statement “x tastes dreadful”

Then we get
(∀x ∈ B) [A(x)⇒ D(x)]

i.e.,
For all beers, if the beer is American then it tastes dreadful.
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Quantifiers

Now we need to negate

(∀x ∈ B) [A(x)⇒ D(x)]

According to our earlier discussion we have

(∃x ∈ B)¬ [A(x)⇒ D(x)]

which, using the fact that ¬ [φ⇒ ψ] is equivalent to φ ∧ (¬ψ), yields

(∃x ∈ B) [A(x) ∧ (¬D(x))]

In words:
There exists a beer which is American and does not taste
dreadful.
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