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Chapter 2 of Experiments with MATLAB

Fibonacci1 Numbers

1Fibonacci brought Arabic numerals into Western culture.
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Start with two newborn rabbits (one male rabbit and one female)2.
A rabbit will reach sexual maturity after one month.
The gestation period of a rabbit is one month.
Once it has reached sexual maturity, a female rabbit will give birth
to exactly one male and one female rabbit every month.
Rabbits never die.

How many pairs will there be at the end of one year?
Leonardo Fibonacci, Liber Abaci (1202)

Run the Mathematica demo FibonacciRabbits.cdf.

Remark
Even though this problem has been around since 1202, it’s just a
“textbook problem”. Rabbits do die, and they don’t reach maturity in
one month (it’s more like 6 months), etc..

2Note that [ExM] starts with a mature pair of rabbits, i.e., the sequence there
begins with f1 = 1, f2 = 2.
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To have some reasonable notation, we let fn denote the number of
rabbit pairs at the beginning of the nth month.

Since it takes one month for a newly born pair to mature, the sequence
begins with

f1 = 1, f2 = 1.

After that, the sequence progresses as

fn = fn−1 + fn−2,

i.e., the number of rabbits in a new month, fn, consists of those who
were alive a month ago, fn−1, and the babies of those who were also
around 2 months ago (i.e., were mature), fn−2.
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As mentioned earlier, if we don’t want to enter all commands
interactively in the MATLAB command window, then we can use M-files.

An M-file can be a script (such as scavenger_assign.m) or
fibonacci13.m:

% FIBONACCI13
% Generates the first 13 Fibonacci numbers
f = [1 1]
for n=3:13

f(n) = f(n-1) + f(n-2)
end

Remark
Here we use a for-loop to iteratively compute the first 13
Fibonacci numbers and store them in the vector f.
Note that f is expanded as needed. This can be inefficient, but
eliminates the need to allocate memory.
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Or an M-file can be a function such as fibonacci.m:

function f = fibonacci(n)
% f = FIBONACCI(n)
% Generates the first n Fibonacci numbers
f = zeros(n,1)
f(1) = 1
f(2) = 1
for k = 3:n

f(k) = f(k-1) + f(k-2)
end

Remark
This function is similar to the previous script. However, it allows us
to specify an upper limit for the for-loop without having to
rewrite the code.
Here we did allocate memory for f.
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Now a recursive function:

function f = fibnum(n)
%FIBNUM Fibonacci number.
% FIBNUM(n) demonstrates recursion by generating the n-th Fibonacci number.
% Warning: FIBNUM(50) takes a very long time.
if n <= 2

f = 1;
else

f = fibnum(n-1) + fibnum(n-2);
end

Remark
Note that we use an if. . .else conditional to handle the end of
the recursion.
Also note that the function calls itself with smaller values of n ( 
recursion).
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Example

Recursion is generallya slower than iteration:

tic, fibonacci(20), toc
tic, fibnum(20), toc

aThis depends on the programming language.

Remark
Recursion is essential in the design of so-called divide-and-conquer
algorithms.
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Fibonacci Numbers and the Golden Ratio

Run the Mathematica demo
FibonacciNumbersAndTheGoldenRatio.cdf.

We can solve the difference equation (or recursion)

fn = fn−1 + fn−2 (1)

by using the Ansatz
fn = cxn (2)

for some yet to be determined numbers x and c. Then fn−1 = cxn−1

and fn−2 = cxn−2 so that we get

fn = fn−1+ fn−2 ⇔ cxn = cxn−1+cxn−2 ⇔ cxn−2x2 = cxn−2x+cxn−2

or (assuming cxn−2 6= 0)
x2 = x + 1.
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Recall that the solutions of the quadratic equation

x2 = x + 1

are x1 = φ (the golden ratio) and x2 = 1− φ.
Plugging the two solutions x1 and x2 into our Ansatz (2), we get two
possible solutions xn

1 = φn and xn
2 = (1− φ)n, which can be used to

obtain all possible solutions of (1) via linear combinations, i.e.,

fn = c1φ
n + c2(1− φ)n. (3)

Since, however, we want a very special solution (namely the one for
which f1 = f2 = 1), we end up with two conditions that will determine
the constants c1 and c2:

f1 = c1φ+ c2(1− φ)
!
= 1

f2 = c1φ
2 + c2(1− φ)2 !

= 1.

You will use MATLAB to solve these equations in HW 6 (Exercise 2.3),
but one can also find the constants by hand as c1 = 1

2φ−1 and
c2 = 1

1−2φ , and then get the solution of (1) from (3).
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The following MATLAB code computes the first 12 Fibonacci numbers
by directly evaluating the formula just derived :

n = (1:13)’;
phi = (1+sqrt(5))/2
f = (phi.^n - (1-phi).^n)/(2*phi-1)

Remark
Note the elementwise operator .^ is used to compute the power
of φn for all different values of n simultaneously.
To get “clean” integer values we could use round(f), floor(f)
or fix(f).
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Applications
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Applications

fasshauer@iit.edu MATH 100 – ITP 13

http://math.iit.edu/~fass


Chapter 2 of Experiments with MATLAB MATLAB Functions

Look through fibonacci_recap.m.
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Friday the 13th

Read the corresponding section in [ExM] and look at friday13.m.
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