MATH 100 - Introduction to the Profession

Vectors, Functions and Dates in Matlab
(Fibonacci Numbers and Calendars)

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Fall 2012

Fibonacci ${ }^{1}$ Numbers

 Ce.evqubly parts gemmit alas quins quibesorticain auryo fora

 еた

[^0]- Start with two newborn rabbits (one male rabbit and one female) ${ }^{2}$.
- A rabbit will reach sexual maturity after one month.
- The gestation period of a rabbit is one month.
- Once it has reached sexual maturity, a female rabbit will give birth to exactly one male and one female rabbit every month.
- Rabbits never die.

How many pairs will there be at the end of one year?
Leonardo Fibonacci, Liber Abaci (1202)
Run the Mathematica demo FibonacciRabbits.cdf.

Remark

Even though this problem has been around since 1202, it's just a "textbook problem". Rabbits do die, and they don't reach maturity in one month (it's more like 6 months), etc..

[^1]To have some reasonable notation, we let f_{n} denote the number of rabbit pairs at the beginning of the $n^{\text {th }}$ month.

Since it takes one month for a newly born pair to mature, the sequence begins with

$$
f_{1}=1, \quad f_{2}=1
$$

After that, the sequence progresses as

$$
f_{n}=f_{n-1}+f_{n-2}
$$

i.e., the number of rabbits in a new month, f_{n}, consists of those who were alive a month ago, f_{n-1}, and the babies of those who were also around 2 months ago (i.e., were mature), f_{n-2}.

As mentioned earlier, if we don't want to enter all commands interactively in the MATLAB command window, then we can use M-files.

An M-file can be a script (such as scavenger_assign.m) or fibonacci13.m:
\% FIBONACCI13
\% Generates the first 13 Fibonacci numbers
f = [1 1]
for $n=3: 13$
$\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$
end

Remark

- Here we use a for-loop to iteratively compute the first 13 Fibonacci numbers and store them in the vector f .
- Note that f is expanded as needed. This can be inefficient, but eliminates the need to allocate memory.

Or an M-file can be a function such as fibonacci.m:

```
function f = fibonacci(n)
% f = FIBONACCI(n)
% Generates the first n Fibonacci numbers
f = zeros(n,1)
f(1) = 1
f(2) = 1
for k = 3:n
    f(k)=f(k-1) + f(k-2)
end
```


Remark

- This function is similar to the previous script. However, it allows us to specify an upper limit for the for-loop without having to rewrite the code.
- Here we did allocate memory for f .

Now a recursive function:

```
function f = fibnum(n)
%FIBNUM Fibonacci number.
% FIBNUM(n) demonstrates recursion by generating the
% Warning: FIBNUM(50) takes a very long time.
if n <= 2
    f = 1;
else
    f = fibnum(n-1) + fibnum(n-2);
end
```

Remark

- Note that we use an if...else conditional to handle the end of the recursion.
- Also note that the function calls itself with smaller values of $n(\rightsquigarrow$ recursion).

Example

Recursion is generally ${ }^{a}$ slower than iteration:

```
tic, fibonacci(20), toc
tic, fibnum(20), toc
```

${ }^{a}$ This depends on the programming language.

Remark

Recursion is essential in the design of so-called divide-and-conquer algorithms.

Fibonacci Numbers and the Golden Ratio

Run the Mathematica demo
FibonacciNumbersAndTheGoldenRatio.cdf.

We can solve the difference equation (or recursion)

$$
\begin{equation*}
f_{n}=f_{n-1}+f_{n-2} \tag{1}
\end{equation*}
$$

by using the Ansatz

$$
\begin{equation*}
f_{n}=c x^{n} \tag{2}
\end{equation*}
$$

for some yet to be determined numbers x and c. Then $f_{n-1}=c x^{n-1}$
and $f_{n-2}=c x^{n-2}$ so that we get
$f_{n}=f_{n-1}+f_{n-2} \Leftrightarrow c x^{n}=c x^{n-1}+c x^{n-2} \Leftrightarrow c x^{n-2} x^{2}=c x^{n-2} x+c x^{n-2}$
or (assuming $c x^{n-2} \neq 0$)

$$
x^{2}=x+1
$$

Recall that the solutions of the quadratic equation

$$
x^{2}=x+1
$$

are $x_{1}=\phi$ (the golden ratio) and $x_{2}=1-\phi$.
Plugging the two solutions x_{1} and x_{2} into our Ansatz (2), we get two possible solutions $x_{1}^{n}=\phi^{n}$ and $x_{2}^{n}=(1-\phi)^{n}$, which can be used to obtain all possible solutions of (1) via linear combinations, i.e.,

$$
\begin{equation*}
f_{n}=c_{1} \phi^{n}+c_{2}(1-\phi)^{n} . \tag{3}
\end{equation*}
$$

Since, however, we want a very special solution (namely the one for which $f_{1}=f_{2}=1$), we end up with two conditions that will determine the constants c_{1} and c_{2} :

$$
\begin{aligned}
& f_{1}=c_{1} \phi+c_{2}(1-\phi) \stackrel{!}{=} 1 \\
& f_{2}=c_{1} \phi^{2}+c_{2}(1-\phi)^{2} \stackrel{!}{=} 1 .
\end{aligned}
$$

You will use MATLAB to solve these equations in HW 6 (Exercise 2.3), but one can also find the constants by hand as $c_{1}=\frac{1}{2 \phi-1}$ and $c_{2}=\frac{1}{1-2 \phi}$, and then get the solution of (1) from (3).

The following MATLAB code computes the first 12 Fibonacci numbers by directly evaluating the formula just derived :

```
n = (1:13)';
phi = (1+sqrt(5))/2
f = (phi.^n - (1-phi).^n)/(2*phi-1)
```

Remark

- Note the elementwise operator . ^ is used to compute the power of ϕ^{n} for all different values of n simultaneously.
- To get "clean" integer values we could use round (f), floor (f) or fix(f).

Applications

Applications

Look through fibonacci_recap.m.

Friday the 13th

Read the corresponding section in [ExM] and look at friday $13 . m$.

References I

T. A. Driscoll.

Learning MatLAB.
SIAM, Philadelphia, 2009.
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_ mathematics/ot115
D. J. Higham and N. J. Higham.

Matlab Guide.
SIAM (2nd ed.), Philadelphia, 2005.
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_ mathematics/ot92
C. Moler.

Numerical Computing with MatLab.
SIAM, Philadelphia, 2004.
http://www.mathworks.com/moler/index_ncm.html

References II

B C. Moler.
Experiments with MATLAB.
Free download at
http://www.mathworks.com/moler/exm/chapters.html
L. Sigler.

Fibonaci's Liber Abaci.
Springer (New York), 2003.
The MathWorks.
Matlab 7: Getting Started Guide.
http://www.mathworks.com/access/helpdesk/help/pdf_doc/
matlab/getstart.pdf

[^0]: ${ }^{1}$ Fibonacci brought Arabic numerals into Western culture.

[^1]: ${ }^{2}$ Note that $[E x M]$ starts with a mature pair of rabbits, i.e., the sequence there begins with $f_{1}=1, f_{2}=2$.

