MATH 100 – Introduction to the Profession Matrices and Linear Transformations in MATLAB

Greg Fasshauer

Department of Applied Mathematics Illinois Institute of Technology

Fall 2011

Basic Definitions of Vectors and Matrices

We go over some basic matrix and vector stuff in MATLAB:

- matrix_vector.m (definition of matrices and vectors)
- arithmetic.m (simple arithmetic with matrices and vectors)
- lin_sys.m (solving linear systems)
- submatrices.m (definition of submatrices)

Vector Equation of a Line

An arbitrary point \mathbf{r} on a line through the point \mathbf{r}_0 with direction vector \mathbf{v} is given by

$$r = r_0 + t v$$
,

where the parameter *t* tells us how much of, and which direction, the vector \mathbf{v} is added to \mathbf{r}_0 .

Look at the Mathematica demo EquationOfALineInVectorForm2D.cdf.

More details on vectors and equations of lines in 2D and 3D are given in [Stewart Calculus, Sections 12.2 and 12.5].

Matrices as Linear Transformations

We illustrate properties of linear transformations (matrix multiplication by A) with the following "data":

X = house dot2dot(X)

Straight lines are always mapped to straight lines.

A = rand(2,2)dot2dot(A*X)

The transformation is orientation-preserving¹ if det A > 0.

```
A = rand(2,2)
det(A)
dot2dot(A*X)
```


¹The door always stays on the left.

The angles between straight lines are preserved if the matrix is orthogonal².

```
A = orth(rand(2,2));
A = A(:,randperm(2))
det(A)
dot2dot(A*X)
```

% creates orthogonal matrix

) % randomly permute columns of A

10 5 Sample matrix $\mathsf{A} = \left| \begin{array}{c} -0.7767 & -0.6299 \\ 0.6299 & -0.7767 \end{array} \right|$ 0 -5 -10 -10 -5 n 5 10 2 An orthogonal matrix A has det A \pm 1 and represents either a rotation or a reflection.

A linear transformation is invertible³ only if det $A \neq 0$.

```
a22 = randi(3,1,1)-2 % creates random {-1,0,1}
A = triu(rand(2,2)); A(2,2) = a22
det(A)
dot2dot(A*X)
```


³If the transformation is not invertible, then the 2D image collapses to a line or even a point.

A linear transformation is invertible³ only if det $A \neq 0$.

```
a22 = randi(3,1,1)-2 % creates random {-1,0,1}
A = triu(rand(2,2)); A(2,2) = a22
det(A)
dot2dot(A*X)
```

10

5

Sample matrix

A diagonal matrix stretches the image or reverses its orientation.

A anti-diagonal matrix in addition interchanges coordinates.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}, \quad \det A = \frac{1}{2} \qquad A = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & 0 \end{bmatrix}, \quad \det A = -\frac{1}{2}$$

The action of a diagonal matrix provides an interpretation of the effect of eigenvalues. Note that these matrices have orthogonal columns, but their determinant is not ± 1 , so they are **not** orthogonal matrices. These matrices preserve right angles only.

Any rotation matrix can be expressed in terms of trigonometric functions:

The matrix

$${\sf G}(heta) = \left[egin{array}{cc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight]$$

represents a counter-clockwise rotation by the angle θ (measured in radians).

Look at wiggle.m.

Look through matrices_recap.m.

References I

T. A. Driscoll. Learning MATLAB.

SIAM, Philadelphia, 2009. http://epubs.siam.org/ebooks/siam/other_titles_in_applied_ mathematics/ot115

D. J. Higham and N. J. Higham. MATLAB Guide (2nd ed.).

SIAM, Philadelphia, 2005.

http://epubs.siam.org/ebooks/siam/other_titles_in_applied_ mathematics/ot92

C. Moler.

Numerical Computing with MATLAB.

SIAM, Philadelphia, 2004.

http://www.mathworks.com/moler/index_ncm.html

References II

C. Moler.

Experiments with MATLAB. Free download at

http://www.mathworks.com/moler/exm/chapters.html

J. Stewart. Calculus (7th ed.).

Brooks/Cole, 2011.

The MathWorks.

MATLAB 7: Getting Started Guide.

http://www.mathworks.com/access/helpdesk/help/pdf_doc/ matlab/getstart.pdf

