
MATH 100 – Introduction to the Profession
Linear Equations in MATLAB

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Fall 2012

fasshauer@iit.edu MATH 100 – ITP 1

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Where do systems of linear equations come up?
Everywhere!

They appear straightforwardly in
analytic geometry (intersection of lines and planes),
traffic flow networks,
Google page ranks,
linear optimization problems,
statistical data fitting,
Leontief’s input-output model in economics,
electric circuit problems,
the steady-state analysis of a system of chemical or biological
reactors,
the structural analysis of trusses (see Exercise 5.6),
and many other applications.

They are solved as the main step in the linearization of many
nonlinear systems (in the solution of differential equations,
optimization, etc.).
One can certainly refer to them as one of the workhorses of
applied mathematics.

fasshauer@iit.edu MATH 100 – ITP 2

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Representation of Linear Systems

Equation form:

x1 + 2x2 + 3x3 = 1
2x1 + x2 + 4x3 = 1
3x1 + 4x2 + x3 = 1

Matrix form: Ax = b, with

A =

 1 2 3
2 1 4
3 4 1

 , x =

 x1
x2
x3

 , b =

 1
1
1

 .

Remark
We always think of vectors as column vectors. If we need to refer to a
row vector we use the notation xT (in mathematics) or x’ (in MATLAB).

fasshauer@iit.edu MATH 100 – ITP 3

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Never use A−1 to solve Ax = b

In linear algebra (MATH 332) you will learn that the solution of

Ax = b

is given by
x = A−1b.

This is correct, but inefficient and more prone to roundoff errors.

Always use special algorithms (preferably with some decomposition
method such as LU, QR or SVD) to solve linear systems – even to
compute the inverse itself (should you actually happen to need it).

fasshauer@iit.edu MATH 100 – ITP 4

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Never use A−1 to solve Ax = b (cont.)
Example
Consider the trivial “system” 7x = 21 and compare solution via the
“inverse” and by straightforward division.

Solution

Division immediately yields x = 21
7 = 3.

Use of the “inverse” yields

x = 7−1 × 21 = 0.142857× 21 = 2.999997.

Clearly, use of the inverse requires more work (first compute the
inverse, then multiply it into the right-hand side), and it is less accurate.
This holds even more so for larger systems of equations.

Note that MATLAB is “smarter” than this, so that 7^(-1)*21 is still
equal to 3.

fasshauer@iit.edu MATH 100 – ITP 5

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

How to solve linear systems by “division” in MATLAB

In order to mimic what we do (naturally) for a single equation, MATLAB

provides two very sophisticated matrix division operators:

For systems Ax = b, we have the backslash (or mldivide)
operator, i.e.,

x = A\b,

and xT A = bT is solved using a forward slash or (mrdivide)
operator, i.e.,

xT = bT/A.

Remark
These operators provide black boxes for the solution of (possibly even
non-square or singular) systems of linear equations. They can be even
extended to the cases AX = B (see Exercise 5.4) and XA = B.

fasshauer@iit.edu MATH 100 – ITP 6

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Cramer’s rule is especially inefficient!

Table : Computer times for solving n × n linear systems using Cramer’s rule
on various computers (“o.r.” stands for “out of reach”). Borrowed from
[Scientific Computing with MATLAB and Octave (2010)].

“Flops” stands for “floating point operation per second”.
Standard desktop PCs and laptops (Intel i5, i7) currently can
perform on the order of about 10-50 gigaflops.
Today’s fastest supercomputer (LLNL’s IBM BlueGene/Q Sequoia,
see http://top500.org/) runs at 16 petaflops.

fasshauer@iit.edu MATH 100 – ITP 7

http://top500.org/
http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

The World’s Simplest Impossible Problem [Cleve’s Corner]

“I’m thinking of two numbers and their average is 3.”

What’s the issue here?
Not enough information is given (it is under-determined).
So the problem is not well-posed.
It does not have a unique solution, but has infinitely many
solutions.

In MATLAB we get different answers using different algorithms:
Using the backslash operator:
A = [1/2 1/2], b=3
x = A\b

Using the pseudo-inverse:
A = [1/2 1/2], b=3
x = pinv(A)*b

fasshauer@iit.edu MATH 100 – ITP 8

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Compressed Sensing

An interesting recent article relating these two different algorithms
(especially the backslash algorithm) to the hot research area of
compressed sensing is
http://www.mathworks.com/company/newsletters/
articles/clevescorner-compressed-sensing.html.

There are additional links at the end of this article.

The main idea of compressed sensing is to be able to accurately
reconstruct objects from very sparse information.

fasshauer@iit.edu MATH 100 – ITP 9

http://www.mathworks.com/company/newsletters/articles/clevescorner-compressed-sensing.html
http://www.mathworks.com/company/newsletters/articles/clevescorner-compressed-sensing.html
http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Massimo Fornasier is a researcher in Linz, Austria, who does lots of
work in compressed sensing.

[Math enters the picture] describes the reconstruction (using matrix
encoding and so-called circular harmonics) of the Italian renaissance
frescoes by Andrea Mantegna in the Ovetari Chapel in Padua.

fasshauer@iit.edu MATH 100 – ITP 10

http://math.iit.edu/~fass


Chapter 5 of Experiments with MATLAB

Summary scripts

The basic commands for dealing with systems of linear equations in
MATLAB are summarized in

lin_sys.m (solving linear systems on the MATH 100 website)
linear_recap.m (on the ExM website)

fasshauer@iit.edu MATH 100 – ITP 11

http://math.iit.edu/~fass


Appendix References

References I

T. A. Driscoll.
Learning MATLAB.
SIAM, Philadelphia, 2009.
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_
mathematics/ot115

D. J. Higham and N. J. Higham.
MATLAB Guide (2nd ed.).
SIAM, Philadelphia, 2005.
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_
mathematics/ot92

C. Moler.
Numerical Computing with MATLAB.
SIAM, Philadelphia, 2004.
http://www.mathworks.com/moler/index_ncm.html

fasshauer@iit.edu MATH 100 – ITP 12

http://epubs.siam.org/ebooks/siam/other_titles_in_applied_mathematics/ot115
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_mathematics/ot115
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_mathematics/ot92
http://epubs.siam.org/ebooks/siam/other_titles_in_applied_mathematics/ot92
http://www.mathworks.com/moler/index_ncm.html
http://math.iit.edu/~fass


Appendix References

References II

C. Moler.
Experiments with MATLAB.
Free download at
http://www.mathworks.com/moler/exm/chapters.html

A. Quarteroni, F. Saleri and P. Gervasio.
Scientific Computing with MATLAB and Octave (3rd ed.).
Springer, Berlin, 2010.

M. Fornasier.
Mathematics enters the picture.
Proceedings of the conference Mathknow 2008. http://www.ricam.oeaw.
ac.at/people/page/fornasier/mathsinpict.pdf.

C. Moler.
Cleve’s Corner. The World’s Simplest Impossible Problem.
The MathWorks News & Notes, Vol.4 No.2, 1990. http://www.mathworks.
com/company/newsletters/news_notes/pdf/dec1990cleve.pdf

fasshauer@iit.edu MATH 100 – ITP 13

http://www.mathworks.com/moler/exm/chapters.html
http://www.ricam.oeaw.ac.at/people/page/fornasier/mathsinpict.pdf
http://www.ricam.oeaw.ac.at/people/page/fornasier/mathsinpict.pdf
http://www.mathworks.com/company/newsletters/news_notes/pdf/dec1990cleve.pdf
http://www.mathworks.com/company/newsletters/news_notes/pdf/dec1990cleve.pdf
http://math.iit.edu/~fass


Appendix References

References III

The MathWorks.
MATLAB 7: Getting Started Guide.
http://www.mathworks.com/access/helpdesk/help/pdf_doc/
matlab/getstart.pdf

fasshauer@iit.edu MATH 100 – ITP 14

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf
http://math.iit.edu/~fass

	Chapter 5 of Experiments with Matlab
	Appendix

