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Introduction

So far all of our problems have involved the two-point BVP

ϕ′′(x) + λϕ(x) = 0

which – depending on the boundary conditions – leads to a certain set
of eigenvalues and eigenfunctions: e.g.,

1 ϕ(0) = ϕ(L) = 0:

λn =
(nπ

L

)2
, ϕn(x) = sin

nπx
L
, n = 1,2,3, . . .

2 ϕ′(0) = ϕ′(L) = 0:

λn =
(nπ

L

)2
, ϕn(x) = cos

nπx
L
, n = 0,1,2, . . .

3 ϕ(−L) = ϕ(L) and ϕ′(−L) = ϕ′(L):

λn =
(nπ

L

)2
, ϕn(x) = c1 cos

nπx
L

+ c2 sin
nπx

L
, n = 0,1,2, . . .
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Introduction

Remark
The eigenfunctions in the examples on the previous slide were
subsequently used to generate

1 Fourier sine series,
2 Fourier cosine series, or
3 Fourier series.

In this chapter we will study problems which involve more general
BVPs and then lead to generalized Fourier series.
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Examples

Heat Flow in a Nonuniform Rod

Recall the general form of the 1D heat equation:

c(x)ρ(x)
∂u
∂t

(x , t) =
∂

∂x

(
K0(x)

∂u
∂x

(x , t)
)
+ Q(x , t).

The separation of variables technique is likely to be applicable if the
PDE is linear and homogeneous. Therefore, we assume

Q(x , t) = α(x)u(x , t)

with x-dependent proportionality factor α.
The resulting PDE

c(x)ρ(x)
∂u
∂t

(x , t) =
∂

∂x

(
K0(x)

∂u
∂x

(x , t)
)
+ α(x)u(x , t) (1)

is linear and homogeneous and we will derive the corresponding BVP
resulting from separation of variables below.
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Examples

Remark
Note that

∂

∂x

(
K0(x)

∂u
∂x

(x , t)
)

= K ′0(x)
∂u
∂x

(x , t) + K0(x)
∂2u
∂x2 (x , t).

Therefore, a PDE such as

c(x)ρ(x)
∂u
∂t

(x , t) =
∂

∂x

(
K0(x)

∂u
∂x

(x , t)
)
+ α(x)u(x , t)

arises, e.g., as convection-diffusion-reaction equation in the modeling
of chemical reactions (such as air pollution models) with
convection term: K ′0(x)

∂u
∂x (x , t)

diffusion term: K0(x)∂
2u
∂x2 (x , t)

reaction term: α(x)u(x , t)
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Examples

We now assume u(x , t) = ϕ(x)T (t) and apply separation of variables
to

c(x)ρ(x)
∂u
∂t

(x , t) =
∂

∂x

(
K0(x)

∂u
∂x

(x , t)
)
+ α(x)u(x , t).

This results in

c(x)ρ(x)ϕ(x)T ′(t) =
d

dx
(
K0(x)ϕ′(x)T (t)

)
+ α(x)ϕ(x)T (t).

Division by c(x)ρ(x)ϕ(x)T (t) gives

T ′(t)
T (t)

=
1

c(x)ρ(x)ϕ(x)
d

dx
(
K0(x)ϕ′(x)

)
+

α(x)
c(x)ρ(x)

= −λ.

Remark
As always, we choose the minus sign with λ so that the resulting ODE
T ′(t) = −λT (t) has a decaying solution for positive λ.
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Examples

From

T ′(t)
T (t)

=
1

c(x)ρ(x)ϕ(x)
d

dx
(
K0(x)ϕ′(x)

)
+

α(x)
c(x)ρ(x)

= −λ.

we see that the resulting ODE for the spatial BVP is

d
dx
(
K0(x)ϕ′(x)

)
+ α(x)ϕ(x) + λc(x)ρ(x)ϕ(x) = 0

and it is in general not known how to solve this ODE eigenvalue
problem analytically.
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Examples

Circularly Symmetric Heat Flow in 2D

The standard 2D-heat equation in polar coordinates is given by

∂u
∂t

(r , θ, t) = k∇2u(r , θ, t),

where

∇2u =
1
r
∂

∂r

(
r
∂u
∂r

)
+

1
r2
∂2u
∂θ2 .

If we assume circular symmetry, i.e., no dependence on θ, then
∂2u
∂θ2 = 0 and we have (see also HW 1.5.5)

∂u
∂t

(r , t) =
k
r
∂

∂r

(
r
∂u
∂r

(r , t)
)
.
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Examples

We assume u(r , t) = ϕ(r)T (t) and apply separation of variables to

∂u
∂t

(r , t) =
k
r
∂

∂r

(
r
∂u
∂r

(r , t)
)

to get

ϕ(r)T ′(t) =
k
r

d
dr
(
rϕ′(r)T (t)

)
or

1
k

T ′(t)
T (t)

=
1

rϕ(r)
d
dr
(
rϕ′(r)

)
= −λ.
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Examples

From
1
k

T ′(t)
T (t)

=
1

rϕ(r)
d
dr
(
rϕ′(r)

)
= −λ

we see that the ODE for the spatial (radial) BVP problem is

d
dr
(
rϕ′(r)

)
+ λrϕ(r) = 0.

Again, we don’t yet know how to solve this ODE. Contrary to the
previous problem, this equation can be solved using Bessel functions
(more later).

In earlier work (see Chapter 2.5) we encountered the steady-state
solution of this equation, i.e., Laplace’s equation.
Potential BCs therefore are:

On an annulus, with BCs u(a, t) = u(b, t) = 0 or ϕ(a) = ϕ(b) = 0.
On a circular disk, with BCs u(b, t) = 0 and |u(0, t)| <∞, i.e.,
ϕ(b) = 0 and |ϕ(0)| <∞.
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Sturm–Liouville Eigenvalue Problems

A general form of an ODE that captures all of the examples discussed
so far is the Sturm–Liouville differential equation

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0

with given coefficient functions p, q and σ, and parameter λ.

We now show how this equation covers all of our examples.
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Sturm–Liouville Eigenvalue Problems

Example

If we let p(x) = 1, q(x) = 0 and σ(x) = 1 in

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0

we get
ϕ′′(x) + λϕ(x) = 0

which led to the standard Fourier series earlier.
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Sturm–Liouville Eigenvalue Problems

Example

If we let p(x) = K0(x), q(x) = α(x) and σ(x) = c(x)ρ(x) in

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0

we get

d
dx
(
K0(x)ϕ′(x)

)
+ α(x)ϕ(x) + λc(x)ρ(x)ϕ(x) = 0

which is the ODE for the heat equation in a nonuniform rod.
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Sturm–Liouville Eigenvalue Problems

Example

If we let p(x) = x , q(x) = 0 and σ(x) = x in

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0

and then replace x by r we get

d
dr
(
rϕ′(r)

)
+ λrϕ(r) = 0

which is the ODE for the circularly symmetric heat equation.
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Sturm–Liouville Eigenvalue Problems

Example

If we let p(x) = T0, q(x) = α(x) and σ(x) = ρ0(x) in

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0

we get
T0ϕ

′′(x) + α(x)ϕ(x) + λρ0(x)ϕ(x) = 0

which is the ODE for vibrations of a nonuniform string (see HW
5.3.1).
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Sturm–Liouville Eigenvalue Problems

Boundary Conditions

A nice summary is provided by the table on p.156 of [Haberman]:
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Sturm–Liouville Eigenvalue Problems

Regular Sturm–Liouville Eigenvalue Problems

We will now consider the ODE
d

dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0, x ∈ (a,b) (2)

with boundary conditions

β1ϕ(a) + β2ϕ
′(a) = 0

(3)
β3ϕ(b) + β4ϕ

′(b) = 0

where the βi are real numbers.

Definition
If p, q, σ and p′ in (2) are real-valued and continuous on [a,b] and if
p(x) and σ(x) are positive for all x in [a,b], then (2) with (3) is called a
regular Sturm–Liouville problem.

Remark
Note that the BCs don’t capture those of the periodic or singular type.
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Sturm–Liouville Eigenvalue Problems

Facts for Regular Sturm–Liouville Problems

We pick the well-known example

ϕ′′(x) + λϕ(x) = 0
ϕ(0) = ϕ(L) = 0

with eigenvalues λn =
(nπ

L

)2 and eigenfunctions ϕn(x) = sin nπx
L ,

n = 1,2,3, . . . to illustrate the following facts which hold for all regular
Sturm–Liouville problems.

Later we will study the properties and prove that they hold in more
generality.
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Sturm–Liouville Eigenvalue Problems

1 All eigenvalues of a regular SL problem are real.
For our example, obviously λn =

(nπ
L

)2 is real for any value of the
integer n.

Remark
This property ensures that when we search for eigenvalues of a
regular SL problem it suffices to consider the three cases

λ > 0, λ = 0 and λ < 0.

Complex values of λ are not possible.

We will later prove this fact.
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Sturm–Liouville Eigenvalue Problems

2 Every regular SL problem has infinitely many eigenvalues which
can be strictly ordered (after a possible renumbering)

λ1 < λ2 < λ3 < . . .

For our example, clearly λn =
(nπ

L

)2 satisfy this property. We have

λ1 =
π2

L2 and λn →∞ as n→∞.

We will not prove this fact.
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Sturm–Liouville Eigenvalue Problems

3 Every eigenvalue λn of a regular SL problem has an associated
eigenfunction ϕn which is unique up to a constant factor.
Moreover, ϕn has exactly n − 1 zeros in the open interval (a,b).
For our example, λn =

(nπ
L

)2 is uniquely associated with
ϕn(x) = sin nπx

L which has n − 1 zeros in (0,L).

Figure: ϕ3(x) = sin 3πx
L has two zeros in (0,L).

We will later prove the first part of this fact.
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Sturm–Liouville Eigenvalue Problems

4 The set of eigenfunctions, {ϕn}∞n=1, of a regular SL problem is
complete, i.e., any piecewise smooth function f can be
represented by a generalized Fourier series (or eigenfunction
expansion)

f (x) ∼
∞∑

n=1

anϕn(x)

which converges to 1
2 [f (x+) + f (x−)] for a < x < b.

The generalized Fourier coefficients an are addressed below in
property 5.
For our example, we have the Fourier sine series

f (x) ∼
∞∑

n=1

an sin
nπx

L

with the stated convergence properties.
We do not prove the completeness claim.
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Sturm–Liouville Eigenvalue Problems

5 The eigenfunctions associated with different eigenvalues of a
regular SL problem are orthogonal on (a,b) with respect to the
weight σ, i.e.,∫ b

a
ϕn(x)ϕm(x)σ(x)dx = 0 provided λn 6= λm.

For our example (where σ(x) = 1) we have∫ L

0
sin

nπx
L

sin
mπx

L
dx =

{
0 provided n 6= m,
L
2 if n = m.

These orthogonality relations give us the generalized Fourier
coefficients.
We will later prove this fact.
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Sturm–Liouville Eigenvalue Problems

In order to derive the formula for the generalized Fourier coefficients
we begin with the generalized Fourier series

f (x) ∼
∞∑

n=1

anϕn(x)

Next, we multiply both sides by ϕm(x)σ(x) and integrate from a to b
(assuming we can interchange infinite summation and integration):∫ b

a
f (x)ϕm(x)σ(x)dx =

∞∑
n=1

an

∫ b

a
ϕn(x)ϕm(x)σ(x)dx︸ ︷︷ ︸
6=0 only if n=m

Therefore ∫ b

a
f (x)ϕm(x)σ(x)dx = am

∫ b

a
ϕ2

m(x)σ(x)dx

or

an =

∫ b
a f (x)ϕn(x)σ(x)dx∫ b

a ϕ
2
n(x)σ(x)dx

, n = 1,2,3, . . .
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Sturm–Liouville Eigenvalue Problems

Remark
Note that the formula

an =

∫ b
a f (x)ϕn(x)σ(x)dx∫ b

a ϕ
2
n(x)σ(x)dx

, n = 1,2,3, . . .

for the generalized Fourier coefficients is well-defined, i.e., the
denominator ∫ b

a
ϕ2

n(x)σ(x)dx 6= 0

since
for a regular SL problem we demanded that σ(x) > 0 on [a,b]
and we always have ϕ2

n(x) ≥ 0. In fact, we know that ϕn 6≡ 0 due
to the properties of its zeros (see fact 3).
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Sturm–Liouville Eigenvalue Problems

6 The Rayleigh quotient provides a way to express the eigenvalues
of a regular SL problem in terms of their associated
eigenfunctions:

λ =
− p(x)ϕ(x)ϕ′(x)|ba +

∫ b
a

(
p(x) [ϕ′(x)]2 − q(x)ϕ2(x)

)
dx∫ b

a ϕ
2(x)σ(x)dx

The Rayleigh quotient is obtained by integrating the SL-ODE by
parts.

We will prove this fact in Chapter 5.6.
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Sturm–Liouville Eigenvalue Problems

In our example, we have p(x) = 1, q(x) = 0, σ(x) = 1, a = 0 and
b = L, so that

λ =
− ϕ(x)ϕ′(x)|L0 +

∫ L
0 [ϕ′(x)]2 dx∫ L

0 ϕ
2(x)dx

.

Using the boundary conditions ϕ(0) = ϕ(L) = 0 we get

λ =

∫ L
0 [ϕ′(x)]2 dx∫ L

0 ϕ
2(x)dx

.

Remark
Note that this formula gives us information about the relationship
between the eigenvalue and eigenfunction – even though in general
neither λ nor ϕ is known.
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Sturm–Liouville Eigenvalue Problems

For example, since
ϕ2(x) ≥ 0,
ϕ 6≡ 0, and
[ϕ′(x)]2 ≥ 0

we can conclude from the Rayleigh quotient

λ =

∫ L
0 [ϕ′(x)]2 dx∫ L

0 ϕ
2(x)dx

,

i.e., for our example, that λ ≥ 0
Therefore, the Rayleigh quotient shows – without any detailed
calculations – that our example can not have any negative eigenvalues.
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Sturm–Liouville Eigenvalue Problems

Moreover, we can also conclude that λ = 0 is not possible for our
example.
If we had λ = 0 then the Rayleigh quotient would imply∫ L

0

[
ϕ′(x)

]2 dx = 0

or
ϕ′(x) = 0 for all x in [0,L] =⇒ ϕ(x) = const.

However, the BCs ϕ(0) = ϕ(L) = 0 would then imply ϕ ≡ 0, but this is
not an eigenfunction, and so λ = 0 is not an eigenvalue.
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Heat Flow in a Nonuniform Rod without Sources

As discussed at the beginning of this chapter, the PDE used to model
heat flow in a 1D rod without sources (i.e., Q(x , t) = 0) is

c(x)ρ(x)
∂u
∂t

(x , t) =
∂

∂x

(
K0(x)

∂u
∂x

(x , t)
)
.

We add boundary conditions

u(0, t) = 0 and
∂u
∂x

(L, t) = 0

to model fixed temperature zero at the left end and perfect insulation at
x = L.
The initial temperature is

u(x ,0) = f (x).

Note that this corresponds to (1) studied earlier with α(x) = 0, and
therefore we will use separation of variables.
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Heat Flow in a Nonuniform Rod without Sources

The Ansatz u(x , t) = ϕ(x)T (t) gives us the two ODEs

T ′(t) = −λT (t) (4)

and
d

dx
(
K0(x)ϕ′(x)

)
+ λc(x)ρ(x)ϕ(x) = 0. (5)

The boundary conditions for (5) are

ϕ(0) = 0 and ϕ′(L) = 0. (6)

We also know that solutions of (4) are given by

Tn(t) = c1e−λnt ,

where λn, n = 1,2,3, . . ., are the eigenvalues of the Sturm–Liouville
problem (5)-(6).
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Heat Flow in a Nonuniform Rod without Sources

Note that the boundary value problem (5)-(6)

d
dx (K0(x)ϕ′(x)) + λc(x)ρ(x)ϕ(x) = 0

ϕ(0) = 0 and ϕ′(L) = 0

is indeed a regular Sturm–Liouville problem:
p(x) = K0(x), the thermal conductivity, is positive, real-valued and
continuous on [0,L],
q(x) = 0, so it is also real-valued and continuous on [0,L],
σ(x) = c(x)ρ(x), the product of specific heat and density, is
positive, real-valued and continuous on [0,L], and
p′(x) = K ′0(x) is real-valued and (hopefully) continuous on [0,L].

Remark
Note that the above assertions are true only for “nice enough”
functions K0, c and ρ.
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Heat Flow in a Nonuniform Rod without Sources

The boundary value problem

d
dx (K0(x)ϕ′(x)) + λc(x)ρ(x)ϕ(x) = 0

ϕ(0) = 0 and ϕ′(L) = 0

is quite a bit more complicated than the eigenvalue problems we
studied earlier and for general K0, c and ρ an analytical solution does
not exist.

Instead, we use the properties of regular Sturm–Liouville
problems to obtain as much qualitative information about the
solution u as possible.
One could use numerical methods to find approximate
eigenvalues and eigenfunctions.
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Heat Flow in a Nonuniform Rod without Sources

From the general Sturm–Liouville properties we know:
1. & 2. There are infinitely many real eigenvalues satisfying

λ1 < λ2 < λ3 < . . .

3. & 4. A complete set of associated eigenfunctions {ϕn}∞n=1
exists (but in general we don’t know the explicit form of
ϕn).

5. The eigenfunctions are orthogonal on [0,L] with respect
to the weight

σ(x) = c(x)ρ(x).

Therefore, using superposition and Tn(t) = e−λnt , the solution will be
of the form

u(x , t) =
∞∑

n=1

anϕn(x)e−λnt .
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Heat Flow in a Nonuniform Rod without Sources

As we have done before, the generalized Fourier coefficients an can be
determined using the orthogonality of the eigenfunctions and the initial
condition:

u(x ,0) =
∞∑

n=1

anϕn(x)
!
= f (x).

Multiplication by ϕm(x)c(x)ρ(x) and integration from 0 to L yield:

∫ L

0
f (x)ϕm(x)c(x)ρ(x)dx =

∞∑
n=1

an

∫ L

0
ϕn(x)ϕm(x)c(x)ρ(x)dx︸ ︷︷ ︸

=0 when n 6=m
Therefore

an =

∫ L
0 f (x)ϕn(x)c(x)ρ(x)dx∫ L

0 ϕ
2
n(x)c(x)ρ(x)dx

, n = 1,2,3, . . .
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Heat Flow in a Nonuniform Rod without Sources

Qualitative analysis of the solution for large values of t

First, we use the Rayleigh quotient

λ =
− p(x)ϕ(x)ϕ′(x)|ba +

∫ b
a

(
p(x) [ϕ′(x)]2 − q(x)ϕ2(x)

)
dx∫ b

a ϕ
2(x)σ(x)dx

,

which for us – using [a,b] = [0,L], p(x) = K0(x), q(x) = 0, and
σ(x) = c(x)ρ(x) – becomes

λ =
− K0(x)ϕ(x)ϕ′(x)|L0 +

∫ L
0 K0(x) [ϕ′(x)]

2 dx∫ L
0 ϕ

2(x)c(x)ρ(x)dx
,

to show that all eigenvalues are positive.
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Heat Flow in a Nonuniform Rod without Sources

We have

λ =
− K0(x)ϕ(x)ϕ′(x)|L0 +

∫ L
0 K0(x) [ϕ′(x)]

2 dx∫ L
0 ϕ

2(x)c(x)ρ(x)dx

=

K0(0)ϕ(0)︸︷︷︸
=0

ϕ′(0)− K0(L)ϕ(L)ϕ′(L)︸ ︷︷ ︸
=0

+
∫ L

0 K0(x) [ϕ′(x)]
2 dx

∫ L
0 ϕ

2(x)c(x)ρ(x)dx

=

∫ L
0 K0(x) [ϕ′(x)]

2 dx∫ L
0 ϕ

2(x)c(x)ρ(x)dx
Since K0(x), c(x) and ρ(x) are all positive we have λ ≥ 0.

The only way for λ = 0 would be to have ϕ′(x) = 0.
This, however, is not possible since this would imply ϕ(x) = const and
the BC ϕ(0) = 0 would force ϕ(x) ≡ 0 (which is not a possible
eigenfunction).
Therefore, λ > 0.
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Heat Flow in a Nonuniform Rod without Sources

The fact that all eigenvalues λn > 0 implies that the solution

u(x , t) =
∞∑

n=1

anϕn(x)e−λnt

will decay over time.

Moreover, since
the decay is exponential
and since λn increases with n,

the most significant contribution to the solution for large values of t
comes from the first term of the series, i.e.,

u(x , t) ≈ a1ϕ1(x)e−λ1t , t large.
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Heat Flow in a Nonuniform Rod without Sources

Since

a1 =

∫ L
0 f (x)ϕ1(x)c(x)ρ(x)dx∫ L

0 ϕ
2
1(x)c(x)ρ(x)dx

we can conclude that a1 6= 0 provided f (x) ≥ 0 (and not identically
equal zero).
This is true since

c(x) > 0, ρ(x) > 0 and
either ϕ1(x) > 0 or ϕ1(x) < 0 (recall that SL-property 3 tells us
that ϕ1 has no zeros in (0,L).

Remark
Thus, the smallest eigenvalue along with its associated eigenfunction
provide essential qualitative information about the solution.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

We now begin our careful study of the general regular Sturm–Liouville
problem

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0, x ∈ (a,b)

with boundary conditions

β1ϕ(a) + β2ϕ
′(a) = 0

β3ϕ(b) + β4ϕ
′(b) = 0

where the βi are real numbers, and p, q, σ and p′ are real-valued and
continuous on [a,b] and p(x) and σ(x) are positive for all x in [a,b].
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

The notation is simplified and our discussion will be more transparent if
we use operator notation, i.e., we write the Sturm–Liouville problem as

(Lϕ)(x) + λσ(x)ϕ(x) = 0

with the SL differential operator L defined by

Lϕ =
d

dx
(
pϕ′
)
+ qϕ.

Remark
Recall that we used differential operators earlier in our discussion
of linearity.
From now on, L will denote the specific SL operator defined
above.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Lagrange’s Identity

For arbitrary functions u and v (with sufficient smoothness) and the SL
operator L defined by

Lϕ =
d

dx
(
pϕ′
)
+ qϕ

the formula
uLv − vLu =

d
dx
[
p
(
uv ′ − vu′

)]
is known as Lagrange’s identity.

Remark
This identity will play an important role in the definition of
self-adjointness of a linear operator – an important concept analogous
to symmetry of a matrix.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

We now verify that Lagrange’s identity is true:

uLv − vLu def L
= u

[
d

dx
(
pv ′
)
+ qv

]
− v

[
d

dx
(
pu′
)
+ qu

]
distribute

= u
d

dx
(
pv ′
)
+ uqv − v

d
dx
(
pu′
)
−vqu

= u
d

dx
(
pv ′
)
− v

d
dx
(
pu′
)

prod rule
= u

(
p′v ′ + pv ′′

)
− v

(
p′u′ + pu′′

)
rearrange

= p′
(
uv ′ − vu′

)
+ p

(
uv ′′ − vu′′

)
= p′

(
uv ′ − vu′

)
+ p

(
u′v ′ + uv ′′ − v ′u′ − vu′′

)
prod rule

= p′
(
uv ′ − vu′

)
+ p

(
uv ′ − vu′

)′
prod rule

=
d

dx
[
p
(
uv ′ − vu′

)]
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Green’s Formula

For arbitrary functions u and v (with sufficient smoothness) and the SL
operator L defined by

Lϕ =
d

dx
(
pϕ′
)
+ qϕ

the formula∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx =

[
p(x)

(
u(x)v ′(x)− v(x)u′(x)

)]b
a

is known as Green’s formula.

Remark
Green’s formula is an immediate consequence of Lagrange’s identity,
i.e., we simply replace the integrand uLv − vLu by d

dx [p (uv ′ − vu′)].
Therefore it may also be called the integral form of Lagrange’s identity.

fasshauer@iit.edu MATH 461 – Chapter 5 50

http://math.iit.edu
http://math.iit.edu/~fass


Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Example

Let’s consider the special SL differential operator Lu = u′′, i.e., with
p(x) = 1 and q(x) = 0, and see what Lagrange’s identity and Green’s
formula look like in this case.
For Lagrange’s identity we have the left-hand side

uLv − vLu = uv ′′ − vu′′

and right-hand side

d
dx
[
p
(
uv ′ − vu′

)]
=

d
dx
[(

uv ′ − vu′
)]
.

Therefore Lagrange’s identity says that

uv ′′ − vu′′ =
d

dx
[(

uv ′ − vu′
)]
.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Example (cont.)
For Green’s formula the left-hand side is∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)]dx =

∫ b

a

[
u(x)v ′′(x)− v(x)u′′(x)

]
dx

and the right-hand side[
p(x)

(
u(x)v ′(x)− v(x)u′(x)

)]b
a =

[
u(x)v ′(x)− v(x)u′(x)

]b
a .

Therefore Green’s formula says that∫ b

a

[
u(x)v ′′(x)− v(x)u′′(x)

]
dx =

[
u(x)v ′(x)− v(x)u′(x)

]b
a .
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Self-adjointness

Let’s assume we have functions u and v that satisfy the condition[
p(x)

(
u(x)v ′(x)− v(x)u′(x)

)]b
a = 0,

but are otherwise arbitrary.
Then Green’s formula∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx =

[
p(x)

(
u(x)v ′(x)− v(x)u′(x)

)]b
a

tells us that ∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx = 0.

In fact, we will illustrate below that if u and v simply satisfy the same
set of (SL-type) boundary conditions, then L satisfies∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx = 0. (7)
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Remark

With the inner product notation 〈f ,g〉 =
∫ b

a f (x)g(x)dx we used in
Chapter 2 we can write (7)∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx = 0

as

〈u,Lv〉 = 〈v ,Lu〉.

This is analogous to the vector-matrix identity xT Ay = yT Ax which is
true if A = AT is symmetric.

Thus, the SL operator behaves in some ways similarly to a symmetric
matrix. Since symmetric matrices are sometimes also referred to as
self-adjoint matrices, the operator L is called a self-adjoint differential
operator.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Example
The general SL differential operator

Lϕ =
d

dx
(
pϕ′
)
+ qϕ

with boundary conditions ϕ(0) = ϕ(L) = 0 is self-adjoint.

To show this we take arbitrary functions u and v that both satisfy the
BCs, i.e.,

u(0) = u(L) = 0 and v(0) = v(L) = 0,

and we show that (7) holds, i.e.,∫ L

0
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx = 0.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Example (cont.)

∫ L

0
[u(x)(Lv)(x)− v(x)(Lu)(x)]dx Green

= [p(x) (u(x)v ′(x)− v(x)u′(x))]L0

= p(L)
(

u(L)︸︷︷︸
=0

v ′(L)− v(L)︸︷︷︸
=0

u′(L)
)

−p(0)
(

u(0)︸︷︷︸
=0

v ′(0)− v(0)︸︷︷︸
=0

u′(0)
)

= 0.

Remark
In fact, any regular Sturm–Liouville problem is self-adjoint (see
HW 5.5.1).
Moreover, the Sturm–Liouville differential equation with periodic or
singularity BCs is also self-adjoint (see HW 5.5.1).
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Orthogonality of Eigenfunctions

Earlier we claimed (see Property 5):

For regular SL problems the eigenfunctions to different eigenvalues
are orthogonal on (a,b) with respect to the weight σ, i.e.,∫ b

a
ϕn(x)ϕm(x)σ(x) = 0 provided n 6= m,

and we illustrated this property with the functions

ϕn(x) = sin
nπx

L
, n = 1,2,3, . . .

We now prove this is true in general.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

We start by considering two different eigenvalues λm and λn of L.
The corresponding SL differential equations are (in operator notation)

Lϕm(x) + λmσ(x)ϕm(x) = 0 (8)
Lϕn(x) + λnσ(x)ϕn(x) = 0 (9)

and the corresponding BCs are

β1ϕm(a) + β2ϕ
′
m(a) = 0

β3ϕm(b) + β4ϕ
′
m(b) = 0

and (with the same constants βi )

β1ϕn(a) + β2ϕ
′
n(a) = 0

β3ϕn(b) + β4ϕ
′
n(b) = 0
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

We now subtract ϕm(9)− ϕn(8):

ϕm (Lϕn + λnσϕn)− ϕn (Lϕm + λmσϕm) = 0

or

ϕmLϕn − ϕnLϕm = ϕnλmσϕm − ϕmλnσϕn

⇐⇒ ϕmLϕn − ϕnLϕm = (λm − λn)σϕmϕn (10)

Green’s formula with u = ϕm and v = ϕn says∫ b

a
[ϕm(x)(Lϕn)(x)− ϕn(x)(Lϕm)(x)]dx = [p(x) (ϕm(x)ϕ′n(x)− ϕn(x)ϕ′m(x))]

b
a

(11)

and we replace the integrand of (11) with the right-hand side of (10).
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

This gives us∫ b

a
(λm − λn)σ(x)ϕm(x)ϕn(x)dx = [p(x) (ϕm(x)ϕ′n(x)− ϕn(x)ϕ′m(x))]

b
a

= p(b)
(
ϕm(b)ϕ′n(b)− ϕn(b)ϕ′m(b)︸ ︷︷ ︸

=B

)
−p(a)

(
ϕm(a)ϕ′n(a)− ϕn(a)ϕ′m(a)︸ ︷︷ ︸

=A

)

Note that the BCs for ϕm and ϕn at x = b

β3ϕm(b) + β4ϕ
′
m(b) = 0

β3ϕn(b) + β4ϕ
′
n(b) = 0

imply

ϕ′m(b) = −
β3

β4
ϕm(b) and ϕ′n(b) = −

β3

β4
ϕn(b)

Therefore B = 0, and A = 0 follows similarly.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Since both A and B are zero we have∫ b

a
(λm − λn)σ(x)ϕm(x)ϕn(x)dx = 0

or

(λm − λn)

∫ b

a
σ(x)ϕm(x)ϕn(x)dx = 0

and therefore – as long as λm 6= λn – we have∫ b

a
σ(x)ϕm(x)ϕn(x)dx = 0,

the claimed orthogonality. �

Remark
Note that Green’s formula significantly simplified this proof since we
never had to actually evaluate an integral.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

All eigenvalues are real

This was the claim of Property 1, and will now prove that it is true for
general regular SL problems.

Our strategy will be to assume that there is a complex eigenvalue and
show that this leads to a contradiction.

The SL differential equation is

Lϕ+ λσϕ = 0,

where ϕ (as well as λ) is allowed to be complex-valued, but σ and the
coefficients p and q in L are real.
We also assume that the coefficients βi of the BCs remain real.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

The complex conjugate of this equation is

Lϕ+ λσϕ = 0.

Since the coefficients p and q of L are real we have (see HW 5.5.7)
Lϕ = Lϕ and so

Lϕ+ λσϕ = 0,

i.e., ϕ satisfies the Sturm–Liouville equation (with complex conjugate
eigenvalue).
Since the βi are real, ϕ satisfies the BCs whenever ϕ does: e.g., at
x = a we have

β1ϕ(a) + β2ϕ
′(a) = 0

conjugate⇐⇒ β1ϕ(a) + β2ϕ′(a) = 0
βi real⇐⇒ β1ϕ(a) + β2ϕ′(a) = 0
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

So far we have established that both ϕ and ϕ satisfy the SL problem.

Their associated eigenvalues are λ and λ.

Note that λ 6= λ provided λ is complex as assumed.

Therefore, orthogonality of the associated eigenfunctions gives∫ b

a
ϕ(x)ϕ(x)σ(x)dx = 0.

However, σ(x) > 0 and ϕ(x)ϕ(x) = |ϕ(x)|2 ≥ 0.

Therefore we must have ϕ(x) ≡ 0, which contradicts that ϕ is an
eigenfunction, and so λ cannot be complex. �
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Uniqueness of Eigenfunctions

This was the claim of Property 3. We now prove this holds for general
regular SL problems.

As with any standard uniqueness proof we assume that ϕ1 and ϕ2 are
two different eigenfunctions, both associated with the same eigenvalue
λ.

We will show that ϕ1 = cϕ2, i.e., we have uniqueness up to a constant
factor.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

The SL differential equations for ϕ1 and ϕ2 are

Lϕ1 + λσϕ1 = 0 (12)
Lϕ2 + λσϕ2 = 0 (13)

Multiplying (12) by ϕ2 and (13) by ϕ1 and taking the difference yields

ϕ2Lϕ1 − ϕ1Lϕ2 = 0.

Lagrange’s identity with u = ϕ2 and v = ϕ1 gives

ϕ2Lϕ1 − ϕ1Lϕ2 =
d

dx
[
p
(
ϕ2ϕ

′
1 − ϕ1ϕ

′
2
)]

= 0.

Consequently,

p(x)
[
ϕ2(x)ϕ′1(x)− ϕ1(x)ϕ′2(x)

]
= const = C. (14)

To determine the constant C we use the boundary conditions.
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

We actually discuss three cases:
Case I: regular SL BCs, i.e., for i = 1,2

β1ϕi(a) + β2ϕ
′
i(a) = 0

β3ϕi(b) + β4ϕ
′
i(b) = 0

Case II: singularity-type BCs, e.g., for i = 1,2

|ϕi(a)| <∞

Case III: periodic BCs, e.g., for i = 1,2

ϕi(−L) = ϕi(L)
ϕ′i(−L) = ϕ′i(L)
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Case I: It actually suffices for the BCs to hold for both ϕ1 and ϕ2 at
only one end, say at x = a.
Then

β1ϕi(a) + β2ϕ
′
i(a) = 0

⇐⇒ ϕ′i(a) = −
β1
β2
ϕi(a), i = 1,2

This implies that (14) (at x = a) becomes

C = p(a)
[
ϕ2(a)ϕ′1(a)− ϕ1(a)ϕ′2(a)

]
= p(a)

[
ϕ2(a)

(
−β1

β2
ϕ1(a)

)
− ϕ1(a)

(
−β1

β2
ϕ2(a)

)]
= 0
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Since C = 0, equation (14) now reads

p(x)
[
ϕ2(x)ϕ′1(x)− ϕ1(x)ϕ′2(x)

]
= C = 0,

and since p(x) > 0 for any regular SL problem we have[
ϕ2(x)ϕ′1(x)− ϕ1(x)ϕ′2(x)

]
= 0. (15)

Now, we note that for ϕ2 6≡ 0 (an eigenfunction) the quotient rule gives

d
dx

(
ϕ1

ϕ2

)
=
ϕ′1ϕ2 − ϕ1ϕ

′
2

ϕ2
2

.

Thus, (15) is equivalent to

d
dx

(
ϕ1

ϕ2

)
= 0 =⇒ ϕ1

ϕ2
= const or ϕ1 = cϕ2,

which shows that the eigenfunctions of a regular SL problem are
unique up to a constant factor. �
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Case II: If we have singularity BCs, e.g., ϕ1(a) and ϕ2(a) are
bounded, then one can also show that (14)

p(x)
[
ϕ2(x)ϕ′1(x)− ϕ1(x)ϕ′2(x)

]
= C

implies
ϕ2(x)ϕ′1(x)− ϕ1(x)ϕ′2(x) = 0

and it follows that
ϕ1(x) = cϕ2(x)

just as before. �
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Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems

Case III: For periodic BCs the eigenfunctions are in general not
unique.
As an example we can consider the SL equation

ϕ′′(x) + λϕ(x) = 0

with BCs

ϕ(−L) = ϕ(L) = 0 and ϕ′(−L) = ϕ′(L) = 0

for which we know that the eigenvalues are λn =
(nπ

L

)2,
n = 0,1,2, . . . and, e.g.,

ϕ1(x) = cosπx or ϕ1(x) = sinπx ,

both associated with the eigenvalue λ1 =
(
π
L

)2.
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The Rayleigh Quotient

Property 6 was about the Rayleigh quotient

λ =

− p(x)ϕ(x)ϕ′(x)
∣∣b
a +

∫ b

a

(
p(x)

[
ϕ′(x)

]2 − q(x)ϕ2(x)
)

dx∫ b

a
ϕ2(x)σ(x)dx

which provides a useful relation between the eigenvalue λ and its
associated eigenfunction ϕ that goes beyond the SL differential
equation itself.

We will now prove that this relation holds for any regular SL problem.
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The Rayleigh Quotient

We start with the SL differential equation

d
dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x) + λσ(x)ϕ(x) = 0, x ∈ (a,b),

multiply by ϕ and integrate from a to b to get∫ b

a
ϕ(x)

[
d

dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x)

]
dx + λ

∫ b

a
σ(x)ϕ2(x)dx = 0.

Since ϕ is an eigenfunction and σ > 0 we have
∫ b

a
σ(x)ϕ2(x)dx > 0.

Therefore

λ =

−
∫ b

a
ϕ(x)

[
d

dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x)

]
dx∫ b

a
σ(x)ϕ2(x)dx

,

which has the correct denominator.
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The Rayleigh Quotient

We now consider the numerator

−
∫ b

a
ϕ(x)

[
d

dx
(
p(x)ϕ′(x)

)
+ q(x)ϕ(x)

]
dx

= −
∫ b

a
ϕ(x)︸︷︷︸
= u

du = ϕ′(x)dx

d
dx
(
p(x)ϕ′(x)

)
dx︸ ︷︷ ︸

= dv
v = p(x)ϕ′(x)

−
∫ b

a
q(x)ϕ2(x)dx

= − p(x)ϕ(x)ϕ′(x)
∣∣b
a +

∫ b

a
p(x)

[
ϕ′(x)

]2 dx −
∫ b

a
q(x)ϕ2(x)dx

Therefore

λ =

− p(x)ϕ(x)ϕ′(x)
∣∣b
a +

∫ b

a

(
p(x)

[
ϕ′(x)

]2 − q(x)ϕ2(x)
)

dx∫ b

a
ϕ2(x)σ(x)dx

,

the Rayleigh quotient. �

fasshauer@iit.edu MATH 461 – Chapter 5 75

http://math.iit.edu
http://math.iit.edu/~fass


The Rayleigh Quotient

We now show under what condition a regular SL problem can never
have negative eigenvalues.

Theorem

If −pϕϕ′|ba ≥ 0 and q ≤ 0 then all eigenvalues of a regular SL problem
are nonnegative.

Proof.
We use the Rayleigh quotient

λ =

− p(x)ϕ(x)ϕ′(x)
∣∣b
a +

∫ b

a

(
p(x)

[
ϕ′(x)

]2 − q(x)ϕ2(x)
)

dx∫ b

a
ϕ2(x)σ(x)dx

to show that λ ≥ 0.
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The Rayleigh Quotient

We look at each of the terms in the Rayleigh quotient separately:
−p(x)ϕ(x)ϕ′(x)|ba ≥ 0 by assumption,∫ b

a
p(x)

[
ϕ′(x)

]2 dx ≥ 0 since p(x) > 0 for any regular SL problem

and [ϕ′(x)]2 ≥ 0,

−
∫ b

a
q(x)ϕ2(x)dx ≥ 0 since q(x) ≤ 0 by assumption and

ϕ2(x) > 0,∫ b

a
ϕ2(x)σ(x)dx > 0 since σ(x) > 0 for any regular SL problem

and ϕ2(x) > 0.

Therefore the Rayleigh quotient is nonnegative �
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The Rayleigh Quotient

A Minimization Principle
If we define

RQ[u] =
− p(x)u(x)u′(x)

∣∣b
a +

∫ b

a

(
p(x)

[
u′(x)

]2 − q(x)u2(x)
)

dx∫ b

a
u2(x)σ(x)dx

,

the Rayleigh quotient of u, then we know that all SL
eigenvalue-eigenfunction pairs satisfy λ = RQ[ϕ].

Theorem
For any regular SL problem the smallest eigenvalue λ1 is given by

λ1 = min
u ∈ C(a, b)

u satisfies BCs

RQ[u].

Moreover, the minimum is attained only for u = ϕ1.
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The Rayleigh Quotient

Before we prove the theorem, let’s think about how it might be useful.

Recall that we showed earlier that the solution of the heat equation
for a nonuniform rod problem for large values of t is characterized
mostly by the smallest eigenvalue λ1 and its associated
eigenfunction ϕ1. This is typical, and therefore we want to find λ1.
Finding the minimum over all continuous functions satisfying the
BCs is a very challenging – often impossible – task.
Instead, we choose some continuous trial functions which satisfy
the BCs, but need not satisfy the differential equation, and
minimize over them.

If uT is such as trial function, then RQ[uT ] is an upper bound for λ1
since

λ1 = min
u ∈ C(a, b)

u satisfies BCs

RQ[u] ≤ RQ[uT ].

Ideally, we would like to find a “good” trial function uT that provides a
smallest possible upper bound.
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The Rayleigh Quotient

Example
Consider the SL problem

ϕ′′(x) + λϕ(x) = 0
ϕ(0) = ϕ(1) = 0

We know that λn =
(nπ

L

)2
= n2π2, so

λ1 = π2.

This will be our benchmark against which we will compare the trial
function approach that will give us an approximation to λ1.
Note that the trial function approach can just as easily be applied to
much more complicated problems.

Remark
In fact, many popular numerical methods (such as the Rayleigh-Ritz,
or finite element method) are based on such a minimization principle.
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The Rayleigh Quotient

Example (cont.)
The minimization principle says

λ1 = min
u ∈ C(a, b)

u satisfies BCs

− p(x)u(x)u′(x)|ba +
∫ b

a

(
p(x) [u′(x)]2 − q(x)u2(x)

)
dx∫ b

a u2(x)σ(x)dx
.

Here p(x) = σ(x) = 1, q(x) = 0 and u(0) = u(1) = 0. So

λ1 = min
u ∈ C(a, b)

u satisfies BCs

∫ b
a [u′(x)]2 dx∫ b

a u2(x)dx
.

Instead of minimizing over all continuous functions it will be much
easier to just look at ∫ b

a

[
u′T (x)

]2 dx∫ b
a u2

T (x)dx
(≥ λ1),

where uT is some trial function.
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The Rayleigh Quotient

Example (cont.)
Since the minimum is attained for uT = ϕ1 it is best to use as much
information about ϕ1 as is available.
We know that

uT needs to satisfy the BCs uT (0) = uT (1) = 0, and
ϕ1 (and therefore uT ) has no zeros in (0,1).

The simplest trial function with these two properties is the piecewise
linear function

uT (x) =

{
x , x ≤ 1

2

1− x , x ≥ 1
2

with

u′T (x) =

{
1, x < 1

2

−1, x > 1
2
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The Rayleigh Quotient

Example (cont.)
With this choice of uT we get

λ1 ≤

∫ 1

0

[
u′T (x)

]2 dx∫ 1

0
u2

T (x)dx
=

∫ 1
2

0
12dx +

∫ 1

1
2

(−1)2dx

∫ 1
2

0
x2dx +

∫ 1

1
2

(1− x)2dx

=
1
2 + 1

2

x3

3

∣∣∣ 1
2

0
− (1−x)3

3

∣∣∣1
1
2

=
1

1
24 + 1

24

= 12

As a benchmark we know λ1 = π2 ≈ 9.87.
Remark

Note that a different multiple of uT such as uT (x) =
{

2x , x ≤ 1
2

2− 2x , x ≥ 1
2

would not improve the estimate since eigenfunctions are unique up to
a constant multiple only.
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The Rayleigh Quotient

Example (cont.)
We can do better if we take a trial function that better resembles the
actual eigenfunction (which, of course, we wouldn’t know in general).

Figure: Plots of piecewise linear uT (left), actual eigenfunction ϕ1 (middle),
and quadratic uT (right).
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The Rayleigh Quotient

Example (cont.)
For example (a factor of 4 is not important),

uT (x) = x − x2 with u′T (x) = 1− 2x

gives us the much better (since smaller) upper bound

λ1 ≤
∫ 1

0

[
u′T (x)

]2 dx∫ 1
0 u2

T (x)dx
=

∫ 1
0 (1− 2x)2dx∫ 1
0 (x − x2)2dx

=

∫ 1
0 (1− 4x + 4x2)dx∫ 1
0 (x

2 − 2x3 + x4)dx
=

x − 2x2 + 4x3

3

∣∣∣1
0

x3

3 −
x4

2 + x5

5

∣∣∣1
0

=
1− 2 + 4

3
1
3 −

1
2 + 1

5

=
1
3

10−15+6
30

= 10
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The Rayleigh Quotient

Proof. (of the minimization principle)
According to the theorem we want to show

λ1 = min
u ∈ C(a, b)

u satisfies BCs

RQ[u]

= min
u ∈ C(a, b)

u satisfies BCs

− p(x)u(x)u′(x)|ba +
∫ b

a

(
p(x) [u′(x)]2 − q(x)u2(x)

)
dx∫ b

a u2(x)σ(x)dx
.

For the proof it is better to deal with an equivalent formulation of the
Rayleigh quotient (prior to the application of integration by parts):

RQ[u] =
−
∫ b

a

(
u(x) d

dx [p(x)u′(x)] + q(x)u2(x)
)

dx∫ b
a u2(x)σ(x)dx

=
−
∫ b

a u(x)(Lu)(x)dx∫ b
a u2(x)σ(x)dx

(16)
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The Rayleigh Quotient

The eigenfunction expansion for u is given by

u(x) =
∞∑

n=1

anϕn(x). (17)

If u is continuous and u and ϕ satisfy the same BCs, then linearity
allows us to write1

(Lu)(x) = L

( ∞∑
n=1

anϕn

)
(x) =

∞∑
n=1

an(Lϕn)(x).

Now, since the ϕn are eigenfunctions we know from the SL DE

Lϕn = −λnσϕn

and so we get an eigenfunction expansion for Lu

(Lu)(x) = −
∞∑

n=1

anλnσ(x)ϕn(x). (18)

1This isn’t actually proved until Chapter 7
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The Rayleigh Quotient

We now use the eigenfunction expansions (17) for u and (18) for Lu in
equation (16) for the Rayleigh quotient to get

RQ[u] =

−
∫ b

a
u(x)(Lu)(x)dx∫ b

a
u2(x)σ(x)dx

=

∫ b

a

∞∑
n=1

anϕn(x)
∞∑

n=1

anλnσ(x)ϕn(x)dx

∫ b

a
σ(x)

∞∑
n=1

anϕn(x)
∞∑

n=1

anϕn(x)dx

=

∫ b

a

∞∑
m=1

∞∑
n=1

amanϕm(x)ϕn(x)λnσ(x)dx

∫ b

a

∞∑
m=1

∞∑
n=1

amanϕm(x)ϕn(x)σ(x)dx

.
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The Rayleigh Quotient

Interchange of integration and infinite summation gives

RQ[u] =

∞∑
m=1

∞∑
n=1

amanλn

∫ b

a
ϕm(x)ϕn(x)σ(x)dx

∞∑
m=1

∞∑
n=1

aman

∫ b

a
ϕm(x)ϕn(x)σ(x)dx

and orthogonality of the eigenfunctions, i.e.,
∫ b

a ϕm(x)ϕn(x)σ(x)dx = 0
whenever m 6= n, reduces this to

RQ[u] =

∞∑
n=1

a2
nλn

∫ b

a
ϕ2

n(x)σ(x)dx

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx

.
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The Rayleigh Quotient

Since the eigenvalues are ordered, i.e., λ1 < λ2 < . . ., we can estimate

∞∑
n=1

a2
nλ1

∫ b

a
ϕ2

n(x)σ(x)dx

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx

≤

∞∑
n=1

a2
nλn

∫ b

a
ϕ2

n(x)σ(x)dx

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx

= RQ[u]

with “=” possible only if an = 0 for all n > 1, i.e., if the eigenfunction
expansion of u consisted only of a1ϕ1.
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The Rayleigh Quotient

Notice that
∞∑

n=1

a2
nλ1

∫ b

a
ϕ2

n(x)σ(x)dx

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx

= λ1

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx︸ ︷︷ ︸
=1

= λ1

and therefore
λ1 ≤ RQ[u]

with equality only if u = a1ϕ1.

Therefore, the Rayleigh quotient RQ[u] is minimized only if u is the
eigenfunction corresponding to λ1. �

fasshauer@iit.edu MATH 461 – Chapter 5 91

http://math.iit.edu
http://math.iit.edu/~fass


The Rayleigh Quotient

Remark
One can show that

λ2 = min
u ∈ C(a, b)

u satisfies BCs
u orthogonal to ϕ1

RQ[u]

and iteratively obtained analogous statements for further eigenvalues.
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Vibrations of a Nonuniform String

For a nonuniform string we use the PDE

ρ(x)
∂2u
∂t2 (x , t) = T0

∂2u
∂x2 (x , t)

with nonuniform density ρ, but constant tension T0 (and no external
forces).
Standard BCs and ICs are

u(0, t) = u(L, t) = 0
u(x ,0) = f (x) and ∂u

∂t (x ,0) = g(x).

We will now see how far we can take the separation of variables
approach for this problem.
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Vibrations of a Nonuniform String

The Ansatz u(x , t) = ϕ(x)T (t) gives us

ρ(x)ϕ(x)T ′′(t) = T0ϕ
′′(x)T (t)

or
T ′′(t)
T (t)

=
T0

ρ(x)
ϕ′′(x)
ϕ(x)

= −λ

resulting in the two ODEs

T ′′(t) = −λT (t) (19)
T0ϕ

′′(x) + λρ(x)ϕ(x) = 0 (20)
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Vibrations of a Nonuniform String

Notice that the second ODE (20)

T0ϕ
′′(x) + λρ(x)ϕ(x) = 0

is a Sturm–Liouville ODE with p(x) = T0, q(x) = 0 and σ(x) = ρ(x)
and BCs

ϕ(0) = ϕ(L) = 0.

Due to the variable coefficient ρ(x) we don’t know how to solve this
eigenvalue problem.

Therefore, we try to get as much insight as possible into the solution
using the general SL properties.
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Vibrations of a Nonuniform String

We use the Rayleigh quotient to study the eigenvalues:

λ =
− T0ϕ(x)ϕ′(x)|L0 +

∫ L
0 T0 [ϕ

′(x)]2 dx∫ L
0 ϕ

2(x)ρ(x)dx
.

From the BCs ϕ(0) = ϕ(L) = 0 we know that the first term in the
numerator is zero. Therefore

λ =
T0
∫ L

0 [ϕ′(x)]2 dx∫ L
0 ϕ

2(x)ρ(x)dx
≥ 0.

Moreover, we note that λ = 0 is not possible since ϕ′ 6≡ 0 (otherwise ϕ
would have to be constant, and due to the BCs equal to zero).

Therefore, λ > 0 and we know that the time-equation (19) has
oscillating solutions

Tn(t) = c1 cos
√
λnt + c2 sin

√
λnt , n = 1,2,3, . . .
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Vibrations of a Nonuniform String

By the superposition principle we get

u(x , t) =
∞∑

n=1

[
an cos

√
λnt + bn sin

√
λnt
]
ϕn(x).

In order to apply the ICs we need

∂u
∂t

(x , t) =
∞∑

n=1

[
−an

√
λn sin

√
λnt + bn

√
λn cos

√
λnt
]
ϕn(x)

and now we can enforce

u(x ,0) =
∞∑

n=1

anϕn(x)
!
= f (x)

∂u
∂t

(x ,0) =
∞∑

n=1

bn
√
λnϕn(x)

!
= g(x)
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Vibrations of a Nonuniform String

The generalized Fourier coefficients an and bn are obtained using the
orthogonality of the eigenfunctions (with respect to the weight function
ρ):

an =

∫ L
0 f (x)ϕn(x)ρ(x)dx∫ L

0 ϕ
2
n(x)ρ(x)dx

bn =
1√
λn

∫ L
0 g(x)ϕn(x)ρ(x)dx∫ L

0 ϕ
2
n(x)ρ(x)dx

However, since we don’t know the eigenfunctions ϕn we cannot make
any further use of this information.
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Vibrations of a Nonuniform String

What else can we say?
From the superposition solution

u(x , t) =
∞∑

n=1

[
an cos

√
λnt + bn sin

√
λnt
]
ϕn(x)

and the fact that the eigenvalues are ordered it is clear that
√
λ1 is the

lowest frequency of vibration (i.e., the basic mode).

What can we say about λ1?
The minimization principle tells us

λ1 = min RQ[u] = min
T0
∫ L

0 [u′(x)]2 dx∫ L
0 u2(x)ρ(x)dx

. (21)

Remark
For a specific problem with given density ρ(x) we could find
approximate numerical upper bounds for λ1 as we did earlier.
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Vibrations of a Nonuniform String

Alternatively, we can obtain upper and lower bounds for λ1 if we
assume that the density is bounded, i.e.,

0 ≤ ρmin ≤ ρ(x) ≤ ρmax.

Then we can bound the denominator of (21)

ρmin

∫ L

0
u2(x)dx ≤

∫ L

0
u2(x)ρ(x)dx ≤ ρmax

∫ L

0
u2(x)dx

and so (21) gives us

T0

ρmax

∫ L
0 [u′(x)]2 dx∫ L

0 u2(x)dx
≤ λ1 ≤

T0

ρmin

∫ L
0 [u′(x)]2 dx∫ L

0 u2(x)dx
. (22)

Remark
The advantage of this formulation is that we now have the Rayleigh
quotient for a uniform string problem.
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Vibrations of a Nonuniform String

The Rayleigh quotient characterization of the smallest eigenvalue λ̃1 of
the uniform string problem is

λ̃1 = min

∫ L
0 [u′(x)]2 dx∫ L

0 u2(x)dx
,

while the corresponding SL problem is

ϕ̃′′(x) + λ̃ϕ̃(x) = 0
ϕ̃(0) = ϕ̃(L) = 0

for which we know that
λ̃1 =

(π
L

)2
.
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Vibrations of a Nonuniform String

Therefore, going back to (22), we have

T0

ρmax

π2

L2 ≤ λ1 ≤
T0

ρmin

π2

L2

or √
T0

ρmax

π

L
≤
√
λ1 ≤

√
T0

ρmin

π

L
,

where the bounds for the frequency
√
λ1 are the lowest frequency for a

uniform string with constant density ρmax or ρmin, respectively.
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Boundary Conditions of the Third Kind

Since we now will mostly be interested in studying the spatial
Sturm–Liouville problem associated with third kind (or Robin)
boundary conditions, we can think of starting with a PDE that could be
either a heat equation or a wave equation, i.e.,

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t) or

∂2u
∂t2 (x , t) = c2∂

2u
∂x2 (x , t).

The initial conditions will be

u(x ,0) = f (x) or
u(x ,0) = f (x)
∂u
∂t (x ,0) = g(x)

and as boundary conditions we take

u(0, t) = 0
∂u
∂x

(L, t) = −hu(L, t).

fasshauer@iit.edu MATH 461 – Chapter 5 105

http://math.iit.edu
http://math.iit.edu/~fass


Boundary Conditions of the Third Kind

The right end BC
∂u
∂x

(L, t) = −hu(L, t)

corresponds to
Newton’s law of cooling with h = H/K0 (with heat transfer
coefficient H and thermal conductivity K0) for the heat equation, or
an elastic BC (such as a spring-mass system) with restoring force
h = k/T0 (where k is the spring constant and T0 the tension) for
the wave equation.

Remark
Note that

h > 0 suggests that heat leaves the rod or motion is stabilized at
x = L,
h < 0 implies that heat enters the rod or the motion is destabilized
at x = L, and
h = 0 corresponds to perfect insulation or free motion at x = L.
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Boundary Conditions of the Third Kind

Separation of variables with u(x , t) = ϕ(x)T (t) results in the time ODE
for the heat equation

T ′(t) = −λkT (t) =⇒ T (t) = c0e−λkt

for the wave equation

T ′′(t) = −λc2T (t) =⇒ T (t) = c1 cos
√
λct + c2 sin

√
λct

and the regular Sturm–Liouville problem

ϕ′′(x) + λϕ(x) = 0
ϕ(0) = 0 and ϕ′(L) + hϕ(L) = 0.

We now need to carefully study solutions of the SL problem in all three
possible cases λ > 0, λ = 0 and λ < 0 – especially since we have to
consider the role of the additional parameter h.
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Boundary Conditions of the Third Kind

Case I: λ > 0

In this case we get a general solution of the form

ϕ(x) = c1 cos
√
λx + c2 sin

√
λx

and the BC ϕ(0) = 0 immediately gives us

ϕ(0) = c1 cos 0 + c2 sin 0 !
= 0 =⇒ c1 = 0.

Therefore we need to consider only ϕ(x) = c2 sin
√
λx .

For the second BC we require the derivative ϕ′(x) = c2
√
λ cos

√
λx

and then

ϕ′(L) + hϕ(L) = c2
√
λ cos

√
λL + hc2 sin

√
λL !

= 0.

Assuming c2 6= 0 ( trivial solution) and h 6= 0 ( different BC) we get

sin
√
λL

cos
√
λL

= −
√
λ

h
⇐⇒ tan

√
λL = −

√
λ

h
.
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Boundary Conditions of the Third Kind

The equation

tan
√
λL = −

√
λ

h
characterizing the eigenvalues cannot be solved analytically.

We can attempt to get
a qualitative graphical solution for arbitrary h and L, or
a quantitative numerical solution, however only for specific values
of h and L.

Both approaches can be illustrated with the MATLAB script
RobinBCs.m.
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Boundary Conditions of the Third Kind

Let’s assume h > 0 and scale everything so that units on the x-axis
are units of

√
λL.

Then we plot the intersection of y = tan
√
λL and y = −

√
λ

h = −
√
λL

hL .

Figure: Plot of y = tan
√
λL and y = −

√
λL

hL .
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Boundary Conditions of the Third Kind

From the plot we can see that the (scaled square root of the)
eigenvalues satisfy

π
2 <
√
λ1L < π

3π
2 <

√
λ2L < 2π
...

(2n−1)π
2 <

√
λnL < nπ

In fact,
√
λnL approaches the left end (2n−1)π

2 as n→∞.
Therefore, we actually have a third option for large values of n and
h > 0:

λn ≈
(
(2n − 1)π

2L

)2

.

This formula describes the asymptotic behavior of the eigenvalues.
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Boundary Conditions of the Third Kind

If h < 0 (and still λ > 0) the line has a positive slope and the graphical
solution actually depends on the product of hL:

Figure: Plot of intersection of y = tan
√
λL and y = −

√
λL

hL for h < 0 and
h < − 1

L (left), h = − 1
L (middle), h > − 1

L (right).

Note that in the case h > −1
L we have an eigenvalue in

(
0, π2

)
which

we didn’t have before (there are, of course, still infinitely many
eigenvalues), and the eigenfunctions are still

ϕn(x) = sin
√
λnx .
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Boundary Conditions of the Third Kind

Case II: λ = 0
Now the general solution is of the form

ϕ(x) = c1 + c2x

and the BC ϕ(0) = 0 immediately gives us

ϕ(0) = c1
!
= 0.

Therefore we still need to consider ϕ(x) = c2x .
The second BC, ϕ′(L) + hϕ(L) = 0 implies

ϕ′(L) + hϕ(L) = c2 + hc2L !
= 0.

Assuming c2 6= 0, this equation will be satisfied for h = −1
L , and so

λ = 0 is an eigenvalue with associated eigenfunction ϕ(x) = x
provided h = −1

L .
For other values of h, λ = 0 is not and eigenvalue.
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Boundary Conditions of the Third Kind

Case III: λ < 0
In this case we can write the general solution in the form

ϕ(x) = c1 cosh
√
−λx + c2 sinh

√
−λx

and the BC ϕ(0) = 0 immediately gives us

ϕ(0) = c1 cosh 0︸ ︷︷ ︸
=1

+c2 sinh 0︸ ︷︷ ︸
=0

!
= 0 =⇒ c1 = 0.

Therefore we need to consider only ϕ(x) = c2 sinh
√
−λx .

For the second BC we use the derivative ϕ′(x) = c2
√
−λ cosh

√
−λx

and then

ϕ′(L) + hϕ(L) = c2
√
−λ cosh

√
−λL + hc2 sinh

√
−λL !

= 0.

Assuming c2 6= 0 and h 6= 0 we get

sinh
√
−λL

cosh
√
−λL

= −
√
−λ
h

⇐⇒ tanh
√
−λL = −

√
−λ
h

.
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Boundary Conditions of the Third Kind

Here we scale everything so that units on the x-axis are units of
√
−λL.

Figure: Plot of y = tanh
√
−λL together with lines y = −

√
−λL
hL for different h.

Since the hyperbolic tangent does not oscillate we can pick up at most
one negative eigenvalue λ0 (when h < −1

L ). Its eigenfunction is

ϕ0(x) = sinh
√
−λ0x
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Boundary Conditions of the Third Kind

The special case h = 0:

This case corresponds to perfect insulation (or free vibration) at the
end x = L and can easily be solved directly.

The eigenvalues in this case are

λn =

(
(2n − 1)π

2L

)2

, n = 1,2,3, . . . ,

and the corresponding eigenfunctions are

ϕn(x) = sin
√
λnx , n = 1,2,3, . . . .

fasshauer@iit.edu MATH 461 – Chapter 5 116

http://math.iit.edu
http://math.iit.edu/~fass


Boundary Conditions of the Third Kind

Altogether, we can summarize the eigenvalues and eigenfunctions for
this example in the following table:

λ > 0 λ = 0 λ < 0

h > −1
L sin

√
λx

h = −1
L sin

√
λx x

h < −1
L sin

√
λx sinh

√
−λ0x

Here λ0 is the one extra negative eigenvalue which will arise for
h < −1

L .

Remark
You can compare this with Table 5.8.1 in [Haberman], where an
additional split into “physical” (h ≥ 0) and “nonphysical” (h < 0)
situations was made.
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Approximation Properties

In this section we want to study how to “best” represent an (infinite)
generalized Fourier series by a finite linear combination of the
eigenfunctions.
We let

sM(x) =
M∑

n=1

αnϕn(x)

be an M-term approximation of the generalized Fourier series

f (x) ∼
∞∑

n=1

anϕn(x)

with eigenfunctions ϕn and generalized Fourier coefficients

an =

∫ b
a f (x)ϕn(x)σ(x)dx∫ b

a ϕ
2
n(x)σ(x)dx

.

How should we choose the unknown coefficients αn of sM?
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Approximation Properties

We decide to choose αn such that (for fixed M)

‖f − sM‖ = ‖f −
M∑

n=1

αnϕn‖ is minimized.

Here the norm ‖ · ‖ is some measure of “goodness” to be defined
below.

Remark
Since we will obtain that sM with minimal norm ‖f − sM‖ among all
possible M-term eigenfunction approximations sM we will have found
the “best” one.
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Approximation Properties

What kind of norm should we use?
Possible (standard) choices are

the one-norm

‖f − sM‖1 =

∫ b

a
|f (x)− sM(x)|dx ,

the weighted two-norm (or weighted least squares norm)

‖f − sM‖2 =

(∫ b

a
[f (x)− sM(x)]2 σ(x)dx

)1/2

,

the maximum norm (or infinity-norm)

‖f − sM‖∞ = max
x∈[a,b]

|f (x)− sM(x)|,

The one- and infinity-norms are not as practical as the two-norm.
Therefore, we use the weighted least squares norm.
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Approximation Properties

We will choose the coefficients αn to minimize the (square of the)
weighted least squares norm, i.e., we want to solve

min
αn

E = min
αn

∫ b

a
[f (x)− sM(x)]2 σ(x)dx

= min
αn

∫ b

a

[
f (x)−

M∑
n=1

αnϕn(x)

]2

σ(x)dx .

This problem is a multivariate optimization problem and can be solved
with standard methods from Calculus III.
A necessary condition for obtaining a minimum is

∂E
∂αi

= 0 i = 1,2, . . . ,M.

fasshauer@iit.edu MATH 461 – Chapter 5 122

http://math.iit.edu
http://math.iit.edu/~fass


Approximation Properties

The first thing we need are the partial derivatives

∂E
∂αi

=
∂

∂αi

∫ b

a

[
f (x)−

M∑
n=1

αnϕn(x)

]2

σ(x)dx

 , i = 1,2, . . . ,M.

By the chain rule we have

∂E
∂αi

= −2
∫ b

a

[
f (x)−

M∑
n=1

αnϕn(x)

]
ϕi(x)σ(x)dx , i = 1,2, . . . ,M.

(23)
We now need to set these equal to zero and solve for αi .
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Approximation Properties

Setting ∂E
∂αi

= 0 in (23) we get

∫ b

a
f (x)ϕi(x)σ(x)dx =

∫ b

a

M∑
n=1

αnϕn(x)ϕi(x)σ(x)dx

=
M∑

n=1

αn

∫ b

a
ϕn(x)ϕi(x)σ(x)dx︸ ︷︷ ︸

=0 if n 6=i

= αi

∫ b

a
ϕ2

i (x)σ(x)dx

and so

αi =

∫ b
a f (x)ϕi(x)σ(x)dx∫ b

a ϕ
2
i (x)σ(x)dx

= ai ,

i.e., truncating the generalized Fourier series might be the optimal
choice (this is only a necessary condition).
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Approximation Properties

We now show that αn = an indeed does minimize E . Consider

E =

∫ b

a
[f (x)− sM(x)]2 σ(x)dx =

∫ b

a

[
f 2(x)− 2f (x)sM(x) + s2

M(x)
]
σ(x)dx

=

∫ b

a

[
f 2(x)− 2f (x)

M∑
n=1

αnϕn(x) +
M∑

n=1

M∑
`=1

αnα`ϕn(x)ϕ`(x)

]
σ(x)dx

Interchanging integration and (finite) summation (no problem at all!) and
using orthogonality of the eigenfunctions we know that∫ b

a

M∑
n=1

M∑
`=1

αnα`ϕn(x)ϕ`(x)σ(x)dx =
M∑

n=1

M∑
`=1

αnα`

∫ b

a
ϕn(x)ϕ`(x)σ(x)dx

=
M∑

n=1

α2
n

∫ b

a
ϕ2

n(x)σ(x)dx

and therefore

E =

∫ b

a

[
f 2(x)− 2f (x)

M∑
n=1

αnϕn(x) +
M∑

n=1

α2
nϕ

2
n(x)

]
σ(x)dx .
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Approximation Properties

We can rearrange

E =

∫ b

a

[
f 2(x)− 2f (x)

M∑
n=1

αnϕn(x) +
M∑

n=1

α2
nϕ

2
n(x)

]
σ(x)dx

as

E =
M∑

n=1

[
α2

n

∫ b

a
ϕ2

n(x)σ(x)dx − 2αn

∫ b

a
f (x)ϕn(x)σ(x)dx

]
+

∫ b

a
f 2(x)σ(x)dx

and then further modify

E =
M∑

n=1

[
α2

n

∫ b

a
ϕ2

n(x)σ(x)dx − 2αn

∫ b

a
f (x)ϕn(x)σ(x)dx

∫ b
a ϕ

2
n(x)σ(x)dx∫ b

a ϕ
2
n(x)σ(x)dx︸ ︷︷ ︸

=1

]
+

∫ b

a
f 2(x)σ(x)dx

=
M∑

n=1

[
α2

n

∫ b

a
ϕ2

n(x)σ(x)dx − 2αn

∫ b
a f (x)ϕn(x)σ(x)dx∫ b

a ϕ
2
n(x)σ(x)dx︸ ︷︷ ︸

=an

∫ b

a
ϕ2

n(x)σ(x)dx

]
+

∫ b

a
f 2(x)σ(x)dx

=
M∑

n=1

[(
α2

n − 2αnan

)∫ b

a
ϕ2

n(x)σ(x)dx
]
+

∫ b

a
f 2(x)σ(x)dx
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Approximation Properties

Now we take

E =
M∑

n=1

[(
α2

n − 2αnan

)∫ b

a
ϕ2

n(x)σ(x)dx

]
+

∫ b

a
f 2(x)σ(x)dx

and complete the square to get

E =
M∑

n=1

[(
(αn − an)

2 − a2
n

)∫ b

a
ϕ2

n(x)σ(x)dx

]
+

∫ b

a
f 2(x)σ(x)dx

The only terms we can manipulate to reduce the value of E are the
nonnegative integrals

(αn − an)
2
∫ b

a
ϕ2

n(x)σ(x)dx .

The best we can do, i.e., the smallest we can make E , is to remove
these terms from the summation. This happens if αn = an.
Therefore, truncation of the generalized Fourier series is indeed
optimal.
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Approximation Properties

Remark
Note that the choice of the optimal coefficients αn = an was
independent of the particular value of M.

This means that if sM for a particular value M turns out not to be good
enough, then we can obtain the more accurate sM+1 by computing
only one additional coefficient αM+1 = aM+1.

This is not at all obvious. In many cases, allowing for one more term in
the expansion may require recomputation of all coefficients.
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Approximation Properties

If we let αn = an above, then we see that the actual minimum error is

E =

∫ b

a
f 2(x)σ(x)dx −

M∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx (24)

Example

Assume that the eigenfunctions are orthonormal with weight σ(x) = 1,
i.e., ∫ b

a
ϕn(x)ϕm(x)dx =

{
0 if m 6= n,
1 if m = n.

Then the least squares error when approximating f by its truncated
generalized Fourier series

∑M
n=1 anϕn on [a,b] is

E =

∫ b

a
f 2(x)dx −

M∑
n=1

a2
n.

Note that the error involves only the Fourier coefficients, but not the
eigenfunctions.
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Approximation Properties

Bessel’s Inequality

From formula (24) and the definition of E we have

0 ≤ E =

∫ b

a
f 2(x)σ(x)dx −

M∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx

and therefore ∫ b

a
f 2(x)σ(x)dx ≥

M∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx .

This is known as Bessel’s inequality.
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Approximation Properties

Parseval’s Identity

From the definition of the weighted least squares error

EM =

∫ b

a

[
f (x)−

M∑
n=1

anϕn(x)

]2

σ(x)dx

and the convergence properties of generalized Fourier series
(convergence of the series to a value different from f (x) at finitely
many points x does not affect the values of the integral!) we get that

lim
M→∞

EM = 0.

This shows that the generalized Fourier series of f converges to f in
the least squares sense on the entire interval [a,b].

fasshauer@iit.edu MATH 461 – Chapter 5 131

http://math.iit.edu
http://math.iit.edu/~fass


Approximation Properties

Moreover, formula (24) for M →∞ gives us∫ b

a
f 2(x)σ(x)dx =

∞∑
n=1

a2
n

∫ b

a
ϕ2

n(x)σ(x)dx .

This is known as Parseval’s identity, and can be viewed as a
generalization of the Pythagorean theorem to inner product spaces of
functions.

Remark
Inner product spaces – and in particular Hilbert spaces – are studied in
much more detail in functional analysis. They play a very important
role in many applications.
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Approximation Properties

Example
For orthonormal eigenfunctions with weight σ ≡ 1, Parseval’s identity
says ∫ b

a
f 2(x)dx =

∞∑
n=1

a2
n.

The analogy with the Pythagorean theorem perhaps becomes more
apparent if we use inner product notation and norms. Then we have

‖f‖22 = 〈f , f 〉 =
∞∑

n=1

a2
n =

∞∑
n=1

〈f , ϕn〉2.
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