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Introduction

We will briefly go over some ideas from Chapters 1, 2 and the first half
of Chapter 3 of the textbook [Mey00].

After that introduction we will start our real journey with Section 3.7
and the inverse of a matrix.
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Introduction

Linear algebra is an old subject

The origins are attributed to the solution of systems of linear
equations in China around 200 BC [NinBC, Chapter 8].

Look at Episode 2 (10:23–13:20) of The Story of Maths.
Look at [Yua12].

In the West, the same algorithm became known as Gaussian
elimination, named after Carl Friedrich Gauß (1755–1855).

“Modern” linear algebra is associated with Arthur Cayley
(1821–1895), and many others after him.
Recent developments have focused mostly on numerical linear
algebra.
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Applications of Linear Systems

Linear algebra appears in many fields and guises:
Numerical analysis: discretization of DEs [Mey00, Ch. 1.4]

Mechanical/structural engineering: plane trusses [Mol08]
Electrical engineering: electric circuits [Mey00, Ch. 2.6]

Data science and statistics: regression

min
x∈Rm

‖Ax − b‖2 =⇒ x = (AT A)−1AT b

Machine learning: regularization networks

min
x∈Rn

[L (b,Ax) + µ‖x‖] , e.g., min
x∈Rn

‖Ax − b‖2 + µxT Ax
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Matrix Multiplication

Different forms of matrix products

We all know how to multiply two matrices A and B:

But why do we do it this way?
Because Cayley said so.
Because it works for systems of linear equations and for linear
transformations, i.e., scalings, rotations, reflections and shear
maps can be expressed as a matrix product.
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Matrix Multiplication

Matrices as Linear Transformations

We illustrate properties of linear transformations (matrix multiplication
by A) with the following “data”:

X = house
dot2dot(X)
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Matrix Multiplication

Straight lines are always mapped to straight lines.

A = rand(2,2)
dot2dot(A*X)

Sample matrix

A =

[
0.9357 0.7283
0.8187 0.1758

]
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Matrix Multiplication

The transformation is orientation-preserving1 if det A > 0.

A = rand(2,2)
det(A)
dot2dot(A*X)

Sample matrix

A =

[
0.5694 0.4963
0.0614 0.6423

]

1The door always stays on the left.
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Matrix Multiplication

The angles between straight lines are preserved if the matrix is
orthogonal2.

A = orth(rand(2,2)); % creates orthogonal matrix
A = A(:,randperm(2)) % randomly permute columns of A
det(A)
dot2dot(A*X)

Sample matrix

A =

[
−0.7767 −0.6299
0.6299 −0.7767

]

2An orthogonal matrix A has det A ± 1 and represents either a rotation or a
reflection.
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Matrix Multiplication

A linear transformation is invertible3 only if det A 6= 0.

a22 = randi(3,1,1)-2 % creates random {-1,0,1}
A = triu(rand(2,2)); A(2,2) = a22
det(A)
dot2dot(A*X)

Sample matrix

A =

[
0.0903 0.8586

0 −1.0000

]
det A = −0.0903

3If the transformation is not invertible, then the 2D image collapses to a line or even
a point.
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Matrix Multiplication
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Matrix Multiplication

A diagonal matrix stretches the
image or reverses its orientation.

A =

[
1 0
0 1

2

]
, det A = 1

2

A anti-diagonal matrix in addition
interchanges coordinates.

A =

[
0 1
1
2 0

]
, det A = −1

2

The action of a diagonal matrix provides an interpretation of the effect
of eigenvalues. Note that these matrices have orthogonal columns, but
their determinant is not ±1, so they are not orthogonal matrices.
These matrices preserve right angles only.
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Matrix Multiplication

Any rotation matrix can be expressed in terms of trigonometric
functions:
The matrix

G(θ) =

[
cos θ − sin θ
sin θ cos θ

]
represents a counter-clockwise rotation by the angle θ (measured in
radians).

Look at wiggle.m.
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Matrix Multiplication

Matrix multiplication: Why we do it the way we do it
Because the most obvious way, i.e.,

[A ◦ B]ij = [A]ij [B]ij ,

known as Hadamard4 (or Schur) product, doesn’t work for linear
systems and linear transformations.

It’s also defined only for matrices of the same size.
But it does commute.

4Jacques Hadamard (1865–1963) and Issai Schur (1875–1941)
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Matrix Multiplication

Matrix multiplication: Why we do it the way we do it

Because the Frobenius5 (inner) product,

〈A,B〉F =
∑
i,j

[A]ij [B]ij ,

doesn’t work for linear systems or linear transformations either.

It is also requires size(A) = size(B).
It does, however, induce a useful matrix norm (see HW).

5Georg Frobenius (1849–1917)
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Matrix Multiplication

Matrix multiplication: Why we do it the way we do it

Because the Kronecker6 product,

A⊗ B =

 [A]11B · · · [A]1nB
...

...
[A]m1B · · · [A]mnB

 ,

doesn’t work for linear systems or linear transformations either.

Works for matrices of arbitrary size, i.e., A is m × n, B is p × q.
Ideal for working with tensor products multilinear algebra

6Leopold Kronecker (1823–1891)
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Matrix Multiplication

Modern research on matrix multiplication

How to do them fast!

Naive matrix multiplication of two n × n matrices
requires O(n3) operations (and must be at least O(n2), since each
element must be touched at least once)

Special algorithms for general matrices:
Strassen’s algorithm [Str69] O(n2.807),
Coppersmith–Winograd algorithm [CW90] O(n2.375),
Stothers’ algorithm [DS13] O(n2.374),
Williams’ algorithm [Wil14] O(n2.3729),
Le Gall’s algorithm [LG14] O(n2.3728639).
A bet: http://www.math.utah.edu/~pa/bet.html

Exploiting structure (banded, block, hierarchical) — often implied
by application
Using factorizations, into products of structured matrices
Exploiting sparsity
Exploiting new hardware
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Matrix Inverse

Definition (Matrix inverse)
For any n × n matrix A, the n × n matrix B that satisfies

AB = I and BA = I

is called the inverse of A.
We use the notation B = A−1 to denote the inverse of A.

Terminology: If A−1 exists, then A is called nonsingular or invertible.

Remark
1 The inverse of a matrix is unique. To verify, assume B1 and B2 are

both inverses of A. Then

B1 = B1I = B1(AB2) = (B1A)B2 = IB2 = B2.

2 Sometimes one can find the notion of a left- and right-inverse.
However, we consider only inverses of square matrices, so these
notions don’t apply (see also [Mey00, Ex. 3.7.2]).
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Matrix Inverse

How to compute A−1

If we do it by hand, we use Gauss–Jordan elimination on
(

A I
)
.

If we do it by computer, we solve AB = I for B = A−1.
In MATLAB: invA = A\eye(n)

Example
Compute the inverse of

A =

2 2 6
2 1 7
2 −6 −7

 .
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Matrix Inverse

Solution

 2 2 6 1 0 0
2 1 7 0 1 0
2 −6 −7 0 0 1



−→

 2 2 6 1 0 0
0 −1 1 −1 1 0
0 −8 −13 −1 0 1


 2 2 6 1 0 0

0 −1 1 −1 1 0
0 0 −21 7 −8 1

 −→

 1 1 3 1
2 0 0

0 −1 1 −1 1 0
0 0 1 −1

3
8

21 − 1
21


Up to here this is Gaussian elimination 1 1 0 3

2 −8
7

1
7

0 1 0 2
3 −13

21 − 1
21

0 0 1 −1
3

8
21 − 1

21

 −→

 1 0 0 5
6 −11

21
4

21
0 1 0 2

3 −13
21 − 1

21
0 0 1 −1

3
8

21 − 1
21



Gauss–Jordan elimination is not good for solving linear systems, but
useful for some theoretical purposes.
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Matrix Inverse

How to check if A is invertible

Theorem
For any n × n matrix A, the following statements are equivalent:

1 A−1 exists
2 rank(A) = n
3 Gauss–Jordan elimination reduces A to I
4 Ax = 0 has only the trivial solution x = 0
5 det(A) 6= 0
6 Zero is not an eigenvalue of A
7 Zero is not a singular value of A

Proof.
Items (1)–(4) are proved in [Mey00]. Items (5)–(7) are discussed later
(but should probably be familiar concepts).

fasshauer@iit.edu MATH 532 25

http://math.iit.edu/~fass


Matrix Inverse

How to check if A is invertible

Theorem
For any n × n matrix A, the following statements are equivalent:

1 A−1 exists
2 rank(A) = n
3 Gauss–Jordan elimination reduces A to I
4 Ax = 0 has only the trivial solution x = 0
5 det(A) 6= 0
6 Zero is not an eigenvalue of A
7 Zero is not a singular value of A

Proof.
Items (1)–(4) are proved in [Mey00]. Items (5)–(7) are discussed later
(but should probably be familiar concepts).

fasshauer@iit.edu MATH 532 25

http://math.iit.edu/~fass


Matrix Inverse

Inverse of a matrix product

Theorem
If A and B are invertible, then AB is also invertible and

(AB)−1 = B−1A−1.

Proof.
Just use the definition to verify invertibility:

Since the inverse is unique we are done.
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Matrix Inverse

Inverse of a matrix sum

A simple example shows that — just because A and B are invertible —
the inverse of A + B need not exist!

Example
Let

A =

(
1 0
0 1

)
and B =

(
−1 0
0 −1

)
Then A + B is the zero matrix, which is obviously not invertible.
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Matrix Inverse

Inverse of a matrix sum (cont.)

Moreover, the inverse is not a linear function.

Even in the scalar case we have (the breaking point in the education of
many a young “mathematician”?):

Example
Let a = 2 and b = 3. Then

a + b = 5, and so (a + b)−1 = 1
5 ;

a−1 = 1
2 and b−1 = 1

3 .
And now we see/know that

(a + b)−1 6= a−1 + b−1 since
1
5
6= 1

2
+

1
3
.

So, how do we compute the inverse of A + B?
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Matrix Inverse

It can be done if one assumes that A and B are such that the inverse
exists. The following theorem was proved only in 1981 [HS81].

Theorem (Henderson–Searle)
Suppose the n× n matrix A is invertible, and let C be n× p, B be p × q
and D be q × n. Also assume that (A + CBD)−1 exists. Then

1 (A + CBD)−1 = A−1 −
(

In + A−1CBD
)−1

A−1CBDA−1,

2 (A + CBD)−1 = A−1 − A−1
(

In + CBDA−1
)−1

CBDA−1,

3 (A + CBD)−1 = A−1 − A−1C
(

Ip + BDA−1C
)−1

BDA−1,

4 (A + CBD)−1 = A−1 − A−1CB
(

Iq + DA−1CB
)−1

DA−1,

5 (A + CBD)−1 = A−1 − A−1CBD
(

In + A−1CBD
)−1

A−1,

6 (A + CBD)−1 = A−1 − A−1CBDA−1
(

In + CBDA−1
)−1

.
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Matrix Inverse

Before we prove (part of) this theorem, let’s see what this says about
(A + B)−1.

Corollary
In the theorem, let all matrices be n × n and let C = D = I. Then

1 (A + B)−1 = A−1 −
(

I + A−1B
)−1

A−1BA−1,

2 (A + B)−1 = A−1 − A−1
(

I + BA−1
)−1

BA−1,

3 (A + B)−1 = A−1 − A−1B
(

I + A−1B
)−1

A−1,

4 (A + B)−1 = A−1 − A−1BA−1
(

I + BA−1
)−1

.

Note that only four formulas are left.
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Matrix Inverse

To prove this theorem one needs

Lemma
Suppose A is an n × n matrix such that I + A is invertible. Then

(I + A)−1 = I− A (I + A)−1 (1a)

= I− (I + A)−1 A. (1b)

In particular,
A (I + A)−1 = (I + A)−1 A. (2)

Proof.
(2) follows immediately from (1).
To prove (1), we start with

I = (I + A)− A.

Now multiply by (I + A)−1 from either the right (to get (1a)), or from the
left (to get (1b)).
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Matrix Inverse

Proof of the theorem.
We prove only the first identity.
We note that In + A−1CBD = A−1 (A + CBD), where both factors are
invertible by assumption. Therefore

(
In + A−1CBD

)−1 exists.

Then

(A + CBD)−1 =
(

A
(

In + A−1CBD
))−1

from above

=
(

In + A−1CBD
)−1

A−1 since (AB̃)−1 = B̃−1A−1

(1b)
=

(
In −

(
In + A−1CBD

)−1
A−1CBD

)
A−1 Ã = A−1CBD

= A−1 −
(

In + A−1CBD
)−1

A−1CBDA−1.

Note that the other identities are not proven analogously. They require
extra work.
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Matrix Inverse

Sherman–Morrison formula

The following formula is older (from 1949–50), but can also be derived
as a corollary from the Henderson–Searle theorem.

Corollary
Suppose that the n × n matrix A is invertible, and also suppose that
α ∈ R and the column n-vectors c and d are such that
1 + αdT A−1c 6= 0. Then A + αcdT is invertible and(

A + αcdT
)−1

= A−1 − αA−1cdT A−1

1 + αdT A−1c
.

Note that αcdT is a rank-1 update of A.

Remark
The Sherman–Morrison–Woodbury formula follows analogously and is
stated in [Mey00].
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Suppose that the n × n matrix A is invertible, and also suppose that
α ∈ R and the column n-vectors c and d are such that
1 + αdT A−1c 6= 0. Then A + αcdT is invertible and(

A + αcdT
)−1

= A−1 − αA−1cdT A−1

1 + αdT A−1c
.

Note that αcdT is a rank-1 update of A.

Remark
The Sherman–Morrison–Woodbury formula follows analogously and is
stated in [Mey00].
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Matrix Inverse

Proof.
We use the fourth identity of the Henderson–Searle theorem with
B = α, C = c and D = dT (so that p = q = 1).
Then

(A + CBD)−1 = A−1 − A−1CB
(

Iq + DA−1CB
)−1

DA−1

becomes

(
A + αcdT

)−1
= A−1 − αA−1c

(
1 + αdT A−1c

)−1
dT A−1

= A−1 − A−1cdT A−1

1 + αdT A−1c

since dT A−1c is a scalar.
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Matrix Inverse

If A = I, α = −1 and c,d such that dT c 6= 1 in the Sherman–Morrison
formula, then we get (

I− cdT
)−1

= I− cdT

dT c − 1
.

I− cdT is called an elementary matrix(
I− cdT

)−1
is also an elementary matrix, i.e.,

the inverse of an elementary matrix is an elementary matrix.

We will use such elementary matrices in the next section.
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Matrix Inverse

Example

Assume we have worked hard to calculate A−1, and now we change
one entry, [A]ij , of A. What is the new inverse?

Note that a change of α to [A]ij is given by αeieT
j .

We can apply the Sherman–Morrison formula with c = ei ,d = ej :

(
A + αeieT

j

)−1
= A−1 −

αA−1eieT
j A−1

1 + αeT
j A−1ei

= A−1 − α
[A−1]∗i [A−1]j∗
1 + α[A−1]ji

.

Note that there’s no need to recompute the entire inverse (an O(n3)
effort). All we need to compute is one outer product, two scalar
multiplications and a division (which is O(n2)).
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Elementary Matrices and Equivalence
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Elementary Matrices and Equivalence

Elementary Matrices and Equivalence

Our goals for the next two sections are to

obtain a matrix factorization of a nonsingular n × n matrix A into
elementary matrices,

obtain a representation of Gaussian elimination as a matrix
factorization.
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Elementary Matrices and Equivalence

The basic operations used in Gaussian elimination are

Type I: interchange of row i with row j ,
Type II: multiplication of row i by α 6= 0,

Type III: addition of α times row i to row j .

All of these are row operations and can be represented by
left-multiplication by an elementary matrix.

Remark
Right-multiplication will result in similar column operations.
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Elementary Matrices and Equivalence

Example: Let A be a 3× 3 matrix.
1 Interchange of row 2 with row 3 of A, accomplished as E1A,

where

E1 =

1 0 0
0 0 1
0 1 0


2 Multiplication of row 2 by α 6= 0, accomplished as E2A, where

E2 =

1 0 0
0 α 0
0 0 1


3 Addition of α times row 2 to row 3, accomplished as E3A, where

E3 =

1 0 0
0 1 0
0 α 1
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Elementary Matrices and Equivalence

Example (cont.)

Recall that elementary matrices are of the form I− cdT .

1 E1 can be written as

1 0 0
0 0 1
0 1 0

 = I−

0 0 0
0 1 −1
0 −1 1

 = I−

 0
1
−1

(0 1 −1
)

= I− (e2 − e3)(e2 − e3)
T

2 E2 can be written as1 0 0
0 α 0
0 0 1

 = I− (1− α)

0 0 0
0 1 0
0 0 0

 = I− (1− α)e2eT
2

3 E3 can be written as1 0 0
0 1 0
0 α 1

 = I + α

0 0 0
0 0 0
0 1 0

 = I + αe3eT
2
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Elementary Matrices and Equivalence

Example
Gaussian elimination with elementary matrices
Earlier we had2 2 6

2 1 7
2 −6 −7

 −R1+R2
−R1+R3−→

2 2 6
0 −1 1
0 −8 −13

 −8R2+R3−→

2 2 6
0 −1 1
0 0 −21



So2 2 6
0 −1 1
0 0 −21

 =

1 0 0
0 1 0
0 −8 1

 1 0 0
0 1 0
−1 0 1

 1 0 0
−1 1 0
0 0 1

2 2 6
2 1 7
2 −6 −7


=

 1 0 0
−1 1 0
7 −8 1

2 2 6
2 1 7
2 −6 −7


Note that this is of the form U = LA.
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Elementary Matrices and Equivalence

Theorem
A matrix A is nonsingular if and only if it is the product of elementary
matrices of types I–III.

Proof.
“=⇒”: If A is nonsingular, then Gauss–Jordan elimination produces

Ek · · ·E2E1A = I.

Now, since the inverse of an elementary matrix is an elementary matrix
(of the same type) we have

A = E−1
1 E−1

2 · · ·E
−1
k as desired.

“⇐=”: Assume A = E1E2 · · ·Ek . Then A is nonsingular since
elementary matrices are nonsingular, and so is their product.
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Elementary Matrices and Equivalence

Equivalent matrices

Definition
Two matrices A and B are called equivalent, i.e., A ∼ B, if

PAQ = B

for some nonsingular matrices P and Q.

Moreover, A and B are row equivalent, i.e., A row∼ B, if PA = B, and A
and B are column equivalent, i.e., A col∼ B, if AQ = B

Remark
Note that P performs row operations, and Q performs column
operations on A.
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Elementary Matrices and Equivalence

The following theorem ensures that row operations preserve column
relations (an analogous theorem holds for column operations).

Theorem

If A row∼ B, then

[B]∗k =
n∑

j=1

αj [B]∗j ⇐⇒ [A]∗k =
n∑

j=1

αj [A]∗j .

Before we prove the theorem, we state

Corollary

Since A row∼ EA
a, the nonbasic columns of A are the same linear

combinations of the basic columns of A as those of EA.
aHere EA is the unique row-reduced echelon form of A (produced via

Gauss–Jordan elimination). This equivalence is proved in [Mey00] with a
rather long and technical proof.
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Elementary Matrices and Equivalence

Example (for the corollary)

A =


1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3

 G–J−→ EA =


1 2 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0



Since columns 1, 3 and 5 of EA are basic columns, the same holds for
A and

[EA]∗2 = 2[EA]∗1 ⇐⇒ [A]∗2 = 2[A]∗1
[EA]∗4 = [EA]∗1 + [EA]∗3 ⇐⇒ [A]∗4 = [A]∗1 + [A]∗3
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Elementary Matrices and Equivalence

Proof of theorem.

The definition of A row∼ B implies the existence of a nonsingular P so
that PA = B.

Then,
[B]∗j = [PA]∗j = P[A]∗j . (3)

Therefore, if [A]∗k =
n∑

j=1

αj [A]∗j , then

P[A]∗k =
n∑

j=1

αjP[A]∗j

(3)⇐⇒ [B]∗k =
n∑

j=1

αj [B]∗j .

To prove the reverse implication we multiply the identity [B]∗k = . . . by
P−1.
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Elementary Matrices and Equivalence

We just saw that row operations reduce A to row-echelon form EA.

Row and column operations reduce A to rank-normal form.

Theorem
If A is an n × n matrix with rank(A) = r , then

A ∼ Nr =

(
Ir 0
0 0

)
.

Nr is called the rank-normal form of A.
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Elementary Matrices and Equivalence

Proof.

We already know A row∼ EA, so that PA = EA with P nonsingular.

Now, if rank(A) = r , then EA has r basic (unit) columns, and we can
reorder the columns of EA via an appropriate nonsingular Q1, so that

PAQ1 = EAQ1 =

(
Ir J
0 0

)
for an appropriate matrix J.

Finally, define Q2 =

(
Ir −J
0 I

)
so that

PAQ1Q2 = EAQ1Q2 =

(
Ir J
0 0

)(
Ir −J
0 I

)
=

(
Ir 0
0 0

)
and PA Q1Q2︸ ︷︷ ︸

=Q

= Nr , i.e., A ∼ Nr .
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Elementary Matrices and Equivalence

Block matrix version

Corollary

If rank(A) = r and rank(B) = s, then rank
(

A 0
0 B

)
= r + s.

Proof.
Just note that A ∼ Nr and B ∼ Ns so that(

A 0
0 B

)
∼
(

Nr 0
0 Ns

)
,

where P =

(
Pr 0
0 Ps

)
and Q =

(
Qr 0
0 Qs

)
.
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Elementary Matrices and Equivalence

Theorem
Let A and B be n × n matrices. Then

1 A ∼ B ⇐⇒ rank(A) = rank(B),
2 A row∼ B ⇐⇒ EA = EB,
3 A col∼ B ⇐⇒ EAT = EBT ,

so that multiplication by a nonsingular matrix does not change rank.

Proof of (1).

“=⇒”: Assume A ∼ B with rank(A) = r , rank(B) = s. Then

Nr ∼ A ∼ B ∼ Ns so that Nr ∼ Ns and r = s.

“⇐=”: Assume rank(A) = rank(B) = r . Then

A ∼ Nr and B ∼ Nr so that A ∼ Nr ∼ B.
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Elementary Matrices and Equivalence

Proof of (2).

“=⇒”: Assume A row∼ B.

We know

A row∼ EA so that B row∼ A row∼ EA.

However, we also have B row∼ EB and uniqueness of the row echelon
form gives us EA = EB.

“⇐=”: Assume EA = EB. Then

A row∼ EA = EB
row∼ B.
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Elementary Matrices and Equivalence

Proof of (3).
This follows from (2) using the transpose since

A col∼ B⇐⇒ AQ = B⇐⇒ (AQ)T = BT

⇐⇒ QT AT = BT ⇐⇒ AT row∼ BT .
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Elementary Matrices and Equivalence

Theorem (Row-rank = column rank = rank)

For any m × n matrix A we have rank(A) = rank(AT ).

Proof.
Let rank(A) = r and P, Q nonsingular such that

PAQ = Nr =

(
Ir 0r×n−r

0m−r×r 0m−r×n−r

)
.

Then
(PAQ)T = NT

r ⇐⇒ QT AT PT = NT
r

so that AT ∼ NT
r .

Finally,

rank(AT ) = rank(NT
r ) =

(
Ir 0r×m−r

0n−r×r 0n−r×m−r

)
= r .

fasshauer@iit.edu MATH 532 54

http://math.iit.edu/~fass


Elementary Matrices and Equivalence

Theorem (Row-rank = column rank = rank)

For any m × n matrix A we have rank(A) = rank(AT ).

Proof.
Let rank(A) = r and P, Q nonsingular such that

PAQ = Nr =

(
Ir 0r×n−r

0m−r×r 0m−r×n−r

)
.

Then
(PAQ)T = NT

r ⇐⇒ QT AT PT = NT
r

so that AT ∼ NT
r .

Finally,

rank(AT ) = rank(NT
r ) =

(
Ir 0r×m−r

0n−r×r 0n−r×m−r

)
= r .

fasshauer@iit.edu MATH 532 54

http://math.iit.edu/~fass


Elementary Matrices and Equivalence

Theorem (Row-rank = column rank = rank)

For any m × n matrix A we have rank(A) = rank(AT ).

Proof.
Let rank(A) = r and P, Q nonsingular such that

PAQ = Nr =

(
Ir 0r×n−r

0m−r×r 0m−r×n−r

)
.

Then
(PAQ)T = NT

r ⇐⇒ QT AT PT = NT
r

so that AT ∼ NT
r .

Finally,

rank(AT ) = rank(NT
r ) =

(
Ir 0r×m−r

0n−r×r 0n−r×m−r

)
= r .

fasshauer@iit.edu MATH 532 54

http://math.iit.edu/~fass


Elementary Matrices and Equivalence

Theorem (Row-rank = column rank = rank)

For any m × n matrix A we have rank(A) = rank(AT ).

Proof.
Let rank(A) = r and P, Q nonsingular such that

PAQ = Nr =

(
Ir 0r×n−r

0m−r×r 0m−r×n−r

)
.

Then
(PAQ)T = NT

r ⇐⇒ QT AT PT = NT
r

so that AT ∼ NT
r .

Finally,

rank(AT ) = rank(NT
r ) =

(
Ir 0r×m−r

0n−r×r 0n−r×m−r

)
= r .

fasshauer@iit.edu MATH 532 54

http://math.iit.edu/~fass


LU Factorization

Outline

1 Introduction

2 Applications of Linear Systems

3 Matrix Multiplication

4 Matrix Inverse

5 Elementary Matrices and Equivalence

6 LU Factorization

fasshauer@iit.edu MATH 532 55

http://math.iit.edu/~fass


LU Factorization

LU Factorization/Decomposition

Recall our earlier example with the matrix

A =

2 2 6
2 1 7
2 −6 −7



Gaussian elimination (with the multipliers as below) leads to

We would, however, like a factorization of the form A = LU.
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LU Factorization

What we need is the inverse of the lower triangular matrix 1 0 0
−1 1 0
7 −8 1

, i.e.,

 1 0 0
−1 1 0
7 −8 1

−1

=

1 0 0
1 1 0
1 8 1



= L.

Note that the entries below the diagonal in L correspond to the
negatives of the multipliers in E1,E2,E3.

If we remember that the inverse of a (lower) triangular matrix is (lower)
triangular then we can be optimistic about this approach working in
general.
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LU Factorization

General Discussion
Consider the n × n lower-triangular elementary matrix

Tk = I − ck eT
k ,

where

ck =



0
...
0

µk+1
...
µn


, i.e., ck eT

k =

0 · · · 0 ck 0 · · · 0


n×n

or

Tk =



1
. . . 0

1
−µk+1 1

0
...

. . .
−µn 1


.

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


LU Factorization

General Discussion
Consider the n × n lower-triangular elementary matrix

Tk = I − ck eT
k ,

where

ck =



0
...
0

µk+1
...
µn


, i.e., ck eT

k =

0 · · · 0 ck 0 · · · 0


n×n

or

Tk =



1
. . . 0

1
−µk+1 1

0
...

. . .
−µn 1


.

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


LU Factorization

General Discussion
Consider the n × n lower-triangular elementary matrix

Tk = I − ck eT
k ,

where

ck =



0
...
0

µk+1
...
µn


, i.e., ck eT

k =

0 · · · 0 ck 0 · · · 0


n×n

or

Tk =



1
. . . 0

1
−µk+1 1

0
...

. . .
−µn 1


.

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


LU Factorization

To compute the inverse of Tk we use

the Sherman–Morrison formula:

T−1
k =

(
I− ckeT

k

)−1

= I−
ckeT

k

eT
k ck − 1

This simplifies because eT
k ck = 0.

Thus,
T−1

k = I + ckeT
k

and we see that we always get the negatives of the multipliers
µk+1, . . . , µn below the diagonal in the k th column of Tk .
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LU Factorization

We now consider what happens during the k th step of Gaussian
elimination, i.e., we start with

Ak−1 =



? ? · · · α1 ? · · · ?
0 ? α2
...

. . . . . .
...

...
...

0 · · · 0 αk ? · · · ?
0 · · · 0 αk+1 ? · · · ?
...

...
...

...
...

. . .
...

0 · · · 0 αn ? · · · ?


and take the vector of multipliers to be

ck =



0
...
0

αk+1/αk
...

αn/αk
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LU Factorization

The next stage of Gaussian elimination produces

Ak = TkAk−1 =

(
I− ckeT

k

)
Ak−1

= Ak−1 − ck eT
k Ak−1︸ ︷︷ ︸

=(Ak−1)k∗

= Ak−1 −

0 · · · 0 αkck ? · · · ?


n×n

=



? ? · · · α1 ? · · · ?
0 ? α2
...

. . . . . .
...

...
...

0 · · · 0 αk ? · · · ?
0 · · · 0 0 ? · · · ?
...

...
...

...
...

. . .
...

0 · · · 0 0 ? · · · ?
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LU Factorization

If we assume that everything is nice enough so that no row
interchanges are required, then we end up with

Tn−1 · · ·Tk · · ·T2

T1A

= U

or
A = T−1

1 T−1
2 · · ·T

−1
k · · ·T

−1
n−1U.

From above we remember that

T−1
k = I + ckeT

k

fasshauer@iit.edu MATH 532 62

http://math.iit.edu/~fass


LU Factorization

If we assume that everything is nice enough so that no row
interchanges are required, then we end up with

Tn−1 · · ·Tk · · ·

T2T1A

= U

or
A = T−1

1 T−1
2 · · ·T

−1
k · · ·T

−1
n−1U.

From above we remember that

T−1
k = I + ckeT

k

fasshauer@iit.edu MATH 532 62

http://math.iit.edu/~fass


LU Factorization

If we assume that everything is nice enough so that no row
interchanges are required, then we end up with

Tn−1 · · ·

Tk · · ·T2T1A

= U

or
A = T−1

1 T−1
2 · · ·T

−1
k · · ·T

−1
n−1U.

From above we remember that

T−1
k = I + ckeT

k

fasshauer@iit.edu MATH 532 62

http://math.iit.edu/~fass


LU Factorization

If we assume that everything is nice enough so that no row
interchanges are required, then we end up with

Tn−1 · · ·Tk · · ·T2T1A = U

or
A = T−1

1 T−1
2 · · ·T

−1
k · · ·T

−1
n−1U.

From above we remember that

T−1
k = I + ckeT

k

fasshauer@iit.edu MATH 532 62

http://math.iit.edu/~fass


LU Factorization

If we assume that everything is nice enough so that no row
interchanges are required, then we end up with

Tn−1 · · ·Tk · · ·T2T1A = U

or
A = T−1

1 T−1
2 · · ·T

−1
k · · ·T

−1
n−1U.

From above we remember that

T−1
k = I + ckeT

k

fasshauer@iit.edu MATH 532 62

http://math.iit.edu/~fass


LU Factorization

If we assume that everything is nice enough so that no row
interchanges are required, then we end up with

Tn−1 · · ·Tk · · ·T2T1A = U

or
A = T−1

1 T−1
2 · · ·T

−1
k · · ·T

−1
n−1U.

From above we remember that

T−1
k = I + ckeT

k

fasshauer@iit.edu MATH 532 62

http://math.iit.edu/~fass


LU Factorization

Therefore, using T−1
k = I + ckeT

k , we have

T−1
1 T−1

2 · · ·T
−1
n−1 =

(
I + c1eT

1

)(
I + c2eT

2

)
· · ·
(

I + cn−1eT
n−1

)
=

I + c1eT
1 + c2eT

2 + c1 eT
1 c2︸ ︷︷ ︸

=0

eT
2

 · · ·(I + cn−1eT
n−1

)
and since in general eT

j ck = 0 whenever j ≤ k this yields

T−1
1 T−1

2 · · ·T
−1
n−1 = I + c1eT

1 + c2eT
2 + . . .+ cn−1eT

n−1

where

ck eT
k =

0 · · · 0 ck 0 · · · 0


n×n

=



0
...

0 · · · 0 0 0 · · · 0
αk+1/αk

...
αn/αk
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LU Factorization

Finally,

T−1
1 T−1

2 · · ·T
−1
n−1 = I + c1eT

1 + c2eT
2 + . . .+ cn−1eT

n−1

=


1

`2,1
. . . 0
`3,2 1

...
...

. . . . . .
`n,1 `n,2 · · · `n,n+1 1

 = L

with
`i,k = αi/αk , i = k + 1, . . . ,n,

due to the form of ckeT
k .
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LU Factorization

Remark
1 The LU factorization obtained in this way is unique.

2 By not keeping track of the (known) 1s on the diagonal of L we can
store — on a computer — the entries of both L and U in the space
previously allocated for A. Thus, no additional memory is required.
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LU Factorization

How to solve linear systems using the LU factorization

Consider the linear system
Ax = b.

To solve it we first compute the factorization A = LU, so that

Ax = b ⇐⇒ LUx = b.

Now we
1 let y = Ux and solve Ly = b (easy and cheap since it is a

lower-triangular system −→ forward substitution);
2 solve Ux = y (again easy and cheap since it is an

upper-triangular system −→ back substitution).
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LU Factorization

Solving multiple linear systems with the same A

The LU factorization is particular useful if only the right-hand side
changes — but not the matrix A.

This is the case in data fitting when the measurements change, but not
the basic model (i.e., the basis functions that are used and — if the
basis depends on the measurement locations — the measurement
locations).

The linear system can then be thought of as

AX = B,

and we compute the LU factorization of A only once, and then obtain
each column of X by the forward-back substitution procedure above
from the corresponding column in B.

This forward-back substitution procedure is embarrassingly parallel.
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LU Factorization

Remark
The multiple right-hand side approach is also the practical and efficient
way to compute A−1 — should we really have the need for this matrix.

Namely, we solve
Ax j = ej , j = 1, . . . ,n.

Since ej is the j th column of I this implies that x j is the j th column of
A−1, i.e.,

x j = (A−1):j ⇐⇒ X = A−1.
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LU Factorization

Major limitation of the basic LU factorization

So far we have assumed that Gaussian elimination does not require
any row interchanges. This assumption is, of course, in general not
realistic.

Even for a nonsingular matrix A, LU factorization will fail due to a
division by zero error if we encounter a zero pivot during Gaussian
elimination. This is not something that can immediately be predicted
by looking at A.

How do we overcome this problem?

We look for a row (below the current pivot row) to swap places with so
that there no longer is a zero pivot.

How do we do this in our matrix formulation?

We multiply (from the left) by an appropriate permutation matrix.
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LU Factorization

Partial Pivoting

Since the choice of pivot is not unique we declare that we always pick
that row that produces the largest pivot.

Example
Consider

A =


2 4 6 −2
1 2 1 2
0 2 4 2
−2 1 0 10


and use a permutation counter.
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LU Factorization

Permutation counter in rightmost column, multipliers in blue.
2 4 6 −2 1
1 2 1 2 2
0 2 4 2 3
−2 1 0 10 4



−→


2 4 6 −2 1
1
2 0 −2 3 2
0 2 4 2 3
−1 5 6 8 4



−→


2 4 6 −2 1
−1 5 6 8 4
0 2 4 2 3
1
2 0 −2 3 2

 −→


2 4 6 −2 1
−1 5 6 8 4
0 2

5
8
5 −6

5 3
1
2 0 −2 3 2



−→


2 4 6 −2 1
−1 5 6 8 4

1
2 0 −2 3 2
0 2

5
8
5 −6

5 3

 −→


2 4 6 −2 1
−1 5 6 8 4

1
2 0 −2 3 2
0 2

5 −4
5

6
5 3
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LU Factorization

Therefore, we end up with the pivoted LU factorization

PA = LU,

where

L =


1 0 0 0
−1 1 0 0

1
2 0 1 0
0 2

5 −4
5 1

 , U =


2 4 6 −2
0 5 6 8
0 0 −2 3
0 0 0 6

5

 , P =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0



Remark
The messy details of the general derivation can be found in the book.
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LU Factorization

Now we are ready to solve any nonsingular system Ax = b.

We just perform LU factorization with partial pivoting.

Since PA = LU we get

Ax = b ⇐⇒ PAx = Pb ⇐⇒ LUx = Pb

Therefore, we can use exactly the same two-step procedure as before,
but we must permute the right-hand side first.
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LU Factorization

Example
Solve Ax = b, where

A =


2 4 6 −2
1 2 1 2
0 2 4 2
−2 1 0 10

 , b =


0
1
2

10

 .

We computed the pivoted LU factorization of A above and obtained a

permutation vector p =


1
4
2
3

, so that Pb =


0

10
1
2

.

Now we just need to solve

L Ux︸︷︷︸
=y

= Pb.
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LU Factorization

Step 1: Solve Ly = Pb (using augmented matrix notation)
1 0 0 0 0
−1 1 0 0 10

1
2 0 1 0 1
0 2

5 −4
5 1 2



=⇒ y =


0

10
1
−6

5


Step 2: Solve Ux = y (using augmented matrix notation)

2 4 6 −2 0
0 5 6 8 10
0 0 −2 3 1
0 0 0 6

5 −6
5

 =⇒ x =


7
6
−2
−1
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LU Factorization

LU Factorization for Symmetric Matrices

We begin by creating a more symmetric version of the basic LU
factorization for an arbitrary nonsingular n × n matrix A.

The trick is to factor out the diagonal of U, i.e.,

A = LU =⇒ A = LDŨ

with

U = DŨ ⇐⇒


u11 u12 · · · u1n
0 u22
...

. . . . . .
0 · · · 0 unn

 =


u11

u22
. . .

unn




1 u12
u11

· · · u1n
u11

0 1 u23
u22

...
. . . . . .

0 · · · 0 1

 .
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with

U = DŨ ⇐⇒
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LU Factorization

Cholesky (see [BT14]) Factorization

If A is a symmetric matrix, then the LU factorization must be symmetric
as well, i.e., L = ŨT , so that

A = ŨT DŨ.

Moreover, if the entries of D are all positive (so that we can take
square roots), then we can split D =

√
D
√

D with

√
D =


√

u11 √
u22

. . . √
unn


This results in the Cholesky factorization of A

A = RT R, with R =
√

DŨ,

where R is upper-triangular.
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LU Factorization

Definition
A symmetric (nonsingular) matrix A whose LU factorization has only
positive pivot elements is called positive definite.

Theorem
A matrix A is positive definite if and only if it has a unique Cholesky
factorization A = RT R with R and upper-triangular matrix with positive
diagonal entries
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LU Factorization

Proof.
The implication

A positive definite =⇒ A = RT R

follows from the discussion above.

“⇐=”: Assume A = RT R with rii > 0.

Factoring out rii produces

R = DU, D = diag(r11, . . . , rnn).

So
A = (DU)T DU = UT D2U = LD2LT

and we have an LU factorization with positive pivots.

Uniqueness follows from the uniqueness of the LU factorization.
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