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Up to now we have looked only at interpolation.

However, many times it makes more sense to approximate the given
data by a least squares fit.

This is especially true
if the data are contaminated with noise,
or if there are so many data points that efficiency considerations
force us to approximate from a space spanned by fewer basis
functions than data points.
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Optimal Recovery Revisited

As we saw in Chapter 18 we can interpret kernel interpolation as a
constrained optimization problem, i.e., the kernel interpolant
automatically minimizes the native space norm among all interpolants
in the native space.

We now take this point of view again, but start with a more general
formulation.
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Optimal Recovery Revisited

Let us assume we are seeking a function Pf of the form

Pf (x) =
M∑

j=1

cjK (x ,x j), x ∈ Rs,

where the number M of basis functions is in general less than or equal
the number N of data sites.
We then want to determine the coefficients c = [c1, . . . , cM ]T so that
we minimize the quadratic form

1
2

cT Qc (1)

with some symmetric positive definite matrix Q subject to the linear
constraints

Ac = f (2)

where A is an N ×M matrix with full rank, and the right-hand side
f = [f1, . . . , fN ]T is given.
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Optimal Recovery Revisited

Such a constrained quadratic minimization problem can be converted
to a system of linear equations by introducing Lagrange multipliers
λ = [λ1, . . . , λN ]T .

Thus, we consider finding the minimum of

1
2

cT Qc − λT [Ac − f ] (3)

with respect to c and λ.

Since Q is assumed to be a positive definite matrix, it is well known
that

the functional to be minimized is convex,
and thus the minimization problem has a unique minimum.
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Optimal Recovery Revisited

Therefore, the standard necessary condition for such a minimum:
differentiate with respect to c and λ, and
find the zeros of those derivatives

is also sufficient.

This leads to

Qc − ATλ = 0
Ac − f = 0

or, in matrix form, [
Q −AT

A O

] [
c
λ

]
=

[
0
f

]
.

By applying (block) Gaussian elimination to this block matrix (Q is
invertible since it is assumed to be positive definite) we get

λ =
(

AQ−1AT
)−1

f (4)

c = Q−1AT
(

AQ−1AT
)−1

f . (5)
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Optimal Recovery Revisited

Example
If the quadratic form represents the native space norm of
Pf =

∑M
j=1 cjK (·,x j ), i.e.,

‖Pf‖2
NK (Ω) =

M∑
i=1

M∑
j=1

cicjK (x i ,x j ) = cT Qc

with Qij = K (x i ,x j ) and c = [c1, . . . , cM ]T , and the linear side conditions are
the interpolation conditions

Ac = f ⇐⇒ Pf (x i ) = fi , i = 1, . . . ,M,

with A = AT = Q (symmetric), the same c as above and data vector
f = [f1, . . . , fM ]T , then we see that the Lagrange multipliers (4) become

λ = A−1f

and (5) yields the coefficients
c = λ.

Therefore, as we saw earlier, the minimum norm interpolant is obtained by
solving the interpolation equations alone.
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Regularized Least Squares Approximation

Since we took the more general point of view that
Pf is generated by M basis functions,
and N linear constraints are specified,

the above formulation also covers both over- and under-determined
least squares fitting where the quadratic form cT Qc represents an
added smoothing (or regularization) term.

Remark
The smoothing term is not required to obtain a unique solution of the
system Ac = f in the over-determined case (N ≥ M), but in the
under-determined case such a constraint is needed (c.f. the solution of
under-determined linear systems via singular value decomposition in
the numerical linear algebra literature (e.g.,
[Trefethen and Bau (1997)])).
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Regularized Least Squares Approximation

Usually the regularized least squares approximation problem is
formulated as minimization of

1
2

cT Qc + ω

N∑
j=1

(
Pf (x j)− fj

)2

⇐⇒ 1
2cT Qc + ω(Ac − f )T (Ac − f ). (6)

The quadratic form cT Qc controls the smoothness of the fitting
function
and the least squares term measures the closeness to the data.
The parameter ω controls the tradeoff between these two terms
with

large value of ω: more pointwise accuracy,
small value of ω: more smoothness.

fasshauer@iit.edu MATH 590 – Chapter 19 12

http://math.iit.edu/~fass


Regularized Least Squares Approximation

Remark
The formulation (6) is used in

regularization theory ([Evgeniou et al. (2000), Girosi (1998)]),
penalized least squares fitting
([von Golitschek and Schumaker (1990)]),
smoothing splines [Reinsch (1967), Schoenberg (1964)],
and in papers by Wahba on thin plate splines (e.g.,
[Kimeldorf and Wahba (1971), Wahba (1979), Wahba (1990),
Wahba and Luo (1997), Wahba and Wendelberger (1980)]).

The idea of smoothing a data fitting process by this kind of
formulation seems to go back to at least [Whittaker (1923)].
In practice a penalized least squares formulation is especially
useful if the data fi cannot be completely trusted, i.e., they are
contaminated by noise.
The problem of minimizing (6) is also known as ridge regression in
the statistics literature.
ω is usually chosen using GCV or MLE.

fasshauer@iit.edu MATH 590 – Chapter 19 13

http://math.iit.edu/~fass


Regularized Least Squares Approximation

Example
If we restrict ourselves to working with square symmetric systems, i.e.,
A = AT , and assume the smoothness functional is given by the native
space norm, i.e., Q = A, then we obtain the minimizer of the
unconstrained quadratic functional (6) by solving the linear system(

A +
1

2ω
I
)

c = f (7)

which is the result of setting the derivative of (6) with respect to c equal
to zero.

Thus, ridge regression corresponds to a diagonal
stabilization/regularization of the usual interpolation system Ac = f .

This approach is especially useful for smoothing of noisy data.

We implement this method and give some numerical examples below.
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Least Squares When Centers Differ from Data Sites

Now more general setting:
still sample f on the set X = {x1, . . . ,xN} of data sites,
but now introduce a second set Ξ = {ξi}Mi=1 at which we center
the basis functions.

Remark
Usually we will have M ≤ N.
The case M = N with Ξ = X recovers the traditional interpolation
setting discussed in earlier chapters.
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Least Squares When Centers Differ from Data Sites

We let the kernel approximant be of the form

Qf (x) =
M∑

j=1

cjK (x , ξj), x ∈ Rs. (8)

The cj can be found as the least squares solution of Ac = f ,
i.e., by minimizing

‖Qf − f‖22,
where the `2-norm

‖f‖22 =
N∑

i=1

[f (x i)]2 , x i ∈ X ,

is induced by the discrete inner product

〈f ,g〉 =
N∑

i=1

f (x i)g(x i), x i ∈ X . (9)
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Least Squares When Centers Differ from Data Sites

This approximation problem has a unique solution if the (rectangular)
collocation matrix A with entries

Ajk = K (x j , ξk ), j = 1, . . . ,N, k = 1, . . . ,M,

has full rank.

If M ≤ N and Ξ ⊆ X , then A does have full rank provided we use
“standard” kernels.
This is true, since in this case A will have an M ×M square submatrix
which is non-singular (by virtue of being an interpolation matrix).
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Least Squares When Centers Differ from Data Sites

The over-determined (M > N) linear system Ac = f can be solved
using standard algorithms from numerical linear algebra such as QR or
SVD.

Remark
Therefore in MATLAB the solution of the least squares problem is
computed on line 10 using backslash which automatically produces a
least squares solution.
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Least Squares When Centers Differ from Data Sites

Program (RBFApproximation2D.m)
1 rbf = @(e,r) exp(-(e*r).^2); ep = 1;
2 M = 81; ctrs = CreatePoints(M,2,’u’);
3 N = 1089; dsites = CreatePoints(N,2,’h’);
4 neval = 40; epoints = CreatePoints(neval^2,2,’u’);
5 DM_data = DistanceMatrix(dsites,ctrs);
6 CM = rbf(ep,DM_data);
7 rhs = testfunctionsD(dsites);
8 DM_eval = DistanceMatrix(epoints,ctrs);
9 EM = rbf(ep,DM_eval);

10 Pf = EM * (CM\rhs);
11 exact = testfunctionsD(epoints);
12 maxerr = norm(Pf-exact,inf);
13 figure; fview = [100,30];
14a plot(dsites(:,1),dsites(:,2),’bo’,...
14b ctrs(:,1),ctrs(:,2),’r+’);
15 xe = reshape(epoints(:,1),neval,neval);
16 ye = reshape(epoints(:,2),neval,neval);
17 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
18 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);
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Least Squares When Centers Differ from Data Sites

Figure: 1089 Halton data sites (◦) and 81 uniformly gridded centers (+).
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Least Squares When Centers Differ from Data Sites

Figure: Least squares approximation (left) to 1089 data points sampled from 2D sinc
function with 81 Gaussian basis functions with ε = 1 and maximum error (right)
false-colored by magnitude of error.
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Least Squares When Centers Differ from Data Sites

Remark
If ε = 1, then the collocation matrix is rank deficient with MATLAB

reporting a numerical rank of 58.

In order to have a full numerical rank for this problem ε needs to
be at least 2.2 (in which case the maximum error deteriorates to
5.255591e-004 instead of 2.173460e-007 for ε = 1).

There is not much theory available for the case of differing centers
and data sites (see Chapter 20).

Some care needs to be taken when computing least squares
solutions based on sets of differing centers and data sites.
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Least Squares Smoothing of Noisy Data

We present two strategies for dealing with noisy data, i.e., data that we
consider to be not reliable due to, e.g., measurement or transmission
errors.

This situation arises frequently in practice.

We simulate a set of noisy data by sampling Franke’s test function at a
set X of data sites, and then adding uniformly distributed random
noise of various strengths.
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Least Squares Smoothing of Noisy Data

For this experiment we use thin plate splines since their native space
norm corresponds to the bending energy of a thin plate and thus they
have a tendency to produce “visually pleasing” smooth and tight
surfaces.

Since the thin plate splines have a singularity at the origin a little extra
care needs to be taken with their implementation:

Program (tps.m)
1 function rbf = tps(e,r)
2 nz = find(r~=0); % to find singularity at origin
3 rbf = zeros(size(r)); % limit at origin
4 rbf(nz) = (e*r(nz)).^2.*log(e*r(nz));
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Least Squares Smoothing of Noisy Data

Strategy I

Compute a straightforward least squares approximation to the (large)
set of data using a (small) set of basis functions as we did in the
previous section.

In the statistics literature this approach is known as regression splines.

Remark
We will not address the question of how to choose the centers for the
basis functions at this point.
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Least Squares Smoothing of Noisy Data

Program (RBFApproximation2Dlinear.m)
1 rbf = @tps; ep = 1;
2 M = 81; ctrs = CreatePoints(M,2,’u’);
3 N = 1089; dsites = CreatePoints(N,2,’h’);
4 neval = 40; epoints = CreatePoints(neval^2,2,’u’);
5 DM_data = DistanceMatrix(dsites,ctrs);
6 CM = rbf(ep,DM_data);
7 PM = [ones(N,1) dsites]; PtM = [ones(M,1) ctrs]’;
8 CM = [CM PM; [PtM zeros(3,3)]];
9 rhs = testfunctionsD(dsites);
10 rhs = rhs + 0.03*randn(size(rhs));
11 rhs = [rhs; zeros(3,1)];
12 DM_eval = DistanceMatrix(epoints,ctrs);
13 EM = rbf(ep,DM_eval);
14 PM = [ones(neval^2,1) epoints]; EM = [EM PM];
15 Pf = EM * (CM\rhs);
16 exact = testfunctionsD(epoints);
17 maxerr = norm(Pf-exact,inf);
18 figure; fview = [160,20];
19 xe = reshape(epoints(:,1),neval,neval);
20 ye = reshape(epoints(:,2),neval,neval);
21a plot(dsites(:,1),dsites(:,2),’bo’,...
21b ctrs(:,1),ctrs(:,2),’r+’);
22 PlotSurf(xe,ye,Pf,neval,exact,maxerr,fview);
23 PlotError2D(xe,ye,Pf,exact,maxerr,neval,fview);
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Least Squares Smoothing of Noisy Data

Figure: Thin plate spline interpolant (left) to 1089 noisy data points sampled from
Franke’s function, and least squares approximation with 81 uniformly spaced thin plate
spline basis functions (right) false-colored by magnitude of error.
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Least Squares Smoothing of Noisy Data

Method RMS-error max-error

Interpolation 2.482624e-002 9.914837e-002
LSQ approximation 9.665743e-003 5.490050e-002

Table: Errors and condition numbers for interpolation and least squares
approximation of noisy data.

Clearly, this simple least squares approach performs much better
than straightforward interpolation to the noisy data (see the left
plot of the figure and line 1 of the table).
Least squares approximation with M < N is much cheaper to
compute.
It is not clear how to choose the smaller set of RBF centers.
There is not much mathematical theory to guarantee if (or when)
this approach is well-posed, i.e., the collocation matrix has full
rank.
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Least Squares Smoothing of Noisy Data

Strategy II
We can smooth out noisy data by using the ridge regression method
(see (7)).

This method is popular in the statistics and neural network community.

Remark
In the MATLAB program we do ridge regression with thin plate
splines (including the linear term in the basis expansion) for
smoothing of noisy data.
The smoothing parameter ω of (7) is defined on line 7.
The diagonal stabilization of A is performed on line 17. Note that
the stabilization only affects the A part of the matrix, and not the
extra rows and columns added for polynomial precision.
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Least Squares Smoothing of Noisy Data

Program (TPS_RidgeRegression2D.m)
1 rbf = @tps; ep = 1; omega = 100;
2 N = 1089; dsites = CreatePoints(N,2,’h’);
3 ctrs = dsites;
4 neval = 40; epoints = CreatePoints(neval^2,2,’u’);
5 DM_data = DistanceMatrix(dsites,ctrs);
6 rhs = testfunctionsD(dsites);
7 randn(’state’,3); rhs = rhs + 0.03*randn(size(rhs));
8 rhs = [rhs; zeros(3,1)];
9 IM = rbf(ep,DM_data);

10 IM = IM + eye(size(IM))/(2*omega);
11 PM=[ones(N,1) dsites]; IM=[IM PM; [PM’ zeros(3,3)]];
12 fprintf(’Condition number estimate: %e\n’,condest(IM))
13 DM_eval = DistanceMatrix(epoints,ctrs);
14 EM = rbf(ep,DM_eval);
15 PM = [ones(neval^2,1) epoints]; EM = [EM PM];
16 Pf = EM * (IM\rhs);
17 exact = testfunctionsD(epoints);
18 maxerr = norm(Pf-exact,inf);
19 PlotSurf(xe,ye,Pf,neval,exact,maxerr,[160,20]);
20 PlotError2D(xe,ye,Pf,exact,maxerr,neval,[160,20]);
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Least Squares Smoothing of Noisy Data

Figure: Thin plate spline ridge regression to 1089 noisy data points sampled from
Franke’s function with ω = 1000 (top left), ω = 100 (top right), ω = 10 (bottom left),
and ω = 1 (bottom right).
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Least Squares Smoothing of Noisy Data

Method ω RMS-error max-error cond(A)

Interpolation ∞ 2.482624e-002 9.914837e-002 1.502900e+007
LSQ approximation NA 9.665743e-003 5.490050e-002 NA
Ridge regression 1000 1.713843e-002 7.580288e-002 2.537652e+006
Ridge regression 100 1.078358e-002 4.215865e-002 3.839384e+005
Ridge regression 10 9.173961e-003 3.349371e-002 4.571167e+004
Ridge regression 1 2.764272e-002 1.041350e-001 9.317936e+003

Table: Errors and condition numbers for various least squares approximants to noisy
data.
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Least Squares Smoothing of Noisy Data

Remark
The results illustrate very nicely the smoothing effect obtained by
varying ω.

A very large value of ω emphasizes the fitting component of the
functional to be minimized in (6) resulting in a rather rough surface,
A small value of ω gives preference to the smoothing term.
The “optimal” value of ω lies somewhere in the middle.

In practice one would usually use cross validation to obtain the
optimal value of ω.
Besides the visual smoothing of the approximating surface, a
small value of ω also has a stabilizing effect on the collocation
matrix.

The diagonal of the matrix becomes more and more dominant.
The condition estimates also verify this behavior.
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Least Squares Smoothing of Noisy Data

Some other strategies that might be used to fit noisy data using
kernel-based methods are

MLS approximation (see Chapters 22-25)
approximate MLS approximation (see Chapters 26-27)
Riley’s algorithm, also known as iterated Tikhonov regularization
(see [Fasshauer (2008)])

fasshauer@iit.edu MATH 590 – Chapter 19 36

http://math.iit.edu/~fass


Appendix References

References I

Buhmann, M. D. (2003).
Radial Basis Functions: Theory and Implementations.
Cambridge University Press.

Fasshauer, G. E. (2007).
Meshfree Approximation Methods with MATLAB.
World Scientific Publishers.

Higham, D. J. and Higham, N. J. (2005).
MATLAB Guide.
SIAM (2nd ed.), Philadelphia.

Iske, A. (2004).
Multiresolution Methods in Scattered Data Modelling.
Lecture Notes in Computational Science and Engineering 37, Springer Verlag
(Berlin).

Trefethen, L. N. and Bau, D. (1997).
Numerical Linear Algebra.
SIAM (Philadelphia, PA).

fasshauer@iit.edu MATH 590 – Chapter 19 37

http://math.iit.edu/~fass


Appendix References

References II

G. Wahba (1990).
Spline Models for Observational Data.
CBMS-NSF Regional Conference Series in Applied Mathematics 59, SIAM
(Philadelphia).

Wendland, H. (2005a).
Scattered Data Approximation.
Cambridge University Press (Cambridge).

Evgeniou, T., Pontil, M. and Poggio, T. (2000).
Regularization networks and support vector machines.
Adv. Comput. Math. 13 1, pp. 1–50.

Girosi, F. (1998).
An equivalence between sparse approximation and support vector machines.
Neural Computation 10, pp. 1455–1480.

fasshauer@iit.edu MATH 590 – Chapter 19 38

http://math.iit.edu/~fass


Appendix References

References III

von Golitschek, M. and Schumaker, L. L. (1990).
Data fitting by penalized least squares.
in Algorithms for Approximation II, M. G. Cox and J. C. Mason (eds.), Chapman &
Hall (London), pp. 210–227.

Kimeldorf, G. and Wahba, G. (1971).
Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic. 33, pp. 82–95.

Reinsch, C. H. (1967).
Smoothing by spline functions.
Numer. Math. 10, pp. 177–183.

Schoenberg, I. J. (1964).
Spline functions and the problem of graduation.
Proc. Nat. Acad. Sci. 52, pp. 947–950.

fasshauer@iit.edu MATH 590 – Chapter 19 39

http://math.iit.edu/~fass


Appendix References

References IV

Wahba, G. (1979).
Convergence rate of “thin plate” smoothing splines when the data are noisy
(preliminary report).
Springer Lecture Notes in Math. 757, pp. 233–245.

Wahba, G. and Luo, Z. (1997).
Smoothing spline ANOVA fits for very large, nearly regular data sets, with
application to historical global climate data.
in The Heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of
T. J. Rivlin, Ann. Numer. Math. 4 1–4, pp. 579–597.

Wahba, G. and Wendelberger, J. (1980).
Some new mathematical methods for variational objective analysis using splines
and cross validation.
Monthly Weather Review 108, pp. 1122–1143.

Whittaker, E. T. (1923).
On a new method of graduation.
Proc. Edinburgh Math. Soc. 41, pp. 63–75.

fasshauer@iit.edu MATH 590 – Chapter 19 40

http://math.iit.edu/~fass


Appendix References

References V

Fasshauer, G. E. (2008).
Tutorial on Meshfree Approximation Methods with MATLAB.
Dolomites Research Notes On Approximation 1, ISSN: 2035-6803.
http://drna.di.univr.it/.

fasshauer@iit.edu MATH 590 – Chapter 19 41

http://drna.di.univr.it/
http://math.iit.edu/~fass

	Optimal Recovery Revisited
	Regularized Least Squares Approximation
	Least Squares When Centers Differ from Data Sites
	Least Squares Smoothing of Noisy Data
	Appendix

