
Preconditioning of Radial Basis Function
Interpolation Systems via Accelerated Iterated
Approximate Moving Least Squares
Approximation

Gregory E. Fasshauer and Jack G. Zhang

Abstract The standard approach to the solution of the radial basis function interpo-
lation problem has been recognized as an ill-conditioned problem for many years.
This is especially true when infinitely smooth basic functions such as multiquadrics
or Gaussians are used with extreme values of their associated shape parameters.
Various approaches have been described to deal with this phenomenon. These tech-
niques include applying specialized preconditioners to the system matrix, changing
the basis of the approximation space or using techniques from complex analysis.
In this paper we present a preconditioning technique based on residual iteration of
an approximate moving least squares quasi-interpolant that can be interpreted as
a change of basis. In the limit our algorithm will produce the perfectly conditioned
cardinal basis of the underlying radial basis function approximation space. Although
our method is motivated by radial basis function interpolation problems, it can also
be adapted for similar problems when the solution of a linear system is involved
such as collocation methods for solving differential equations.

Keywords: Preconditioning methods · Radial Basis Functions · Accelerated
Iterated least squares

1 Motivation

The solution of ill-conditioned problems has been a major challenge throughout
the history of numerical analysis affecting computational accuracy, complexity and
stability. One should avoid dealing with ill-conditioning whenever possible. How-
ever, there are cases when finding a theoretically good solution may initially lead

G.E. Fasshauer
Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA,
e-mail: fasshauer@iit.edu

A.J.M. Ferreira et al. (eds.) Progress on Meshless Methods.
c© Springer Science + Business Media B.V. 2008

57

58 G.E. Fasshauer, J.G. Zhang

to an ill-conditioned situation. Radial basis function (RBF) methods have various
nice features such as a certain insensitivity to the dimension of the problem domain
and ease of implementation (see e.g. [7, 16, 31]). Therefore they have recently
gained a great deal of attention and have been implemented in various applications
such as multidimensional scattered data interpolation and the numerical solution
of differential equations by collocation (see, e.g. [6, 13, 15]). In their standard for-
mulation RBF methods often involve the solution of linear systems whose system
matrices usually are full and severely ill-conditioned – especially if certain popu-
lar radial basic functions such as Gaussians or inverse multiquadrics [3, 4, 21] are
used.

In this paper we extend our earlier work on iterated approximate moving least
squares (IAMLS) approximation [18] by providing an accelerated version of the
residual iteration algorithm that serves as a preconditioner for RBF systems and can
be interpreted as a change of basis procedure. In the limit our algorithm will pro-
duce the perfectly conditioned cardinal basis of the underlying radial basis function
approximation space. Although our method is motivated by radial basis function
interpolation problems, it can also be adapted to similar problems involving the
solution of a linear system such as collocation methods for solving differential
equations.

The paper is organized as follows. In the remainder of this section we will illus-
trate how ill-conditioning may happen for RBF interpolation systems by describing
the RBF interpolation problem and its solution approach. In Sect. 2 we provide a
quick review of some standard preconditioning techniques, and relate our method to
polynomial preconditioners. In Sect. 3 we go into the details of our iterated approxi-
mate MLS preconditioner including the acceleration procedure. Sect. 4 contains the
numerical algorithm we have implemented in MATLAB�. We end the paper with a
presentation and discussion of some numerical experiments in Sect. 5.

1.1 Conditioning of RBF Interpolation

Given {(x j, f j) : j = 1,2, . . . ,N}, with datasites x j ∈ R
s and values f j = f (x j) ∈ R

assumed to come from some unknown smooth function f , we are to construct a
continuous function P f such that

P f (x j) = f j, for j = 1,2, . . . ,N. (1)

Due to the Mairhuber-Curtis result for multi-dimensional interpolation problems
(details may be found in, e.g. [16] or [31]) the function P f is usually assumed to
be a linear expansion of shifts of a real-valued radial basic function φ , that is

P f (·) :=
N

∑
j=1

c jφ(·− x j). (2)

RBF Preconditioning via Iterated Approximate MLS Approximation 59

Thus, condition (1) leads to the following linear system

Ac = f, (3)

with the interpolation matrix Ai j := φ(xi − x j) for i, j = 1, . . . ,N, the coefficient
vector c := [c1, . . . ,cN]T , and the right-hand side f := [f1, . . . , fN]T . If φ is taken to
be an s-variate strictly positive definite function, then A is guaranteed to be invertible
and thus (3) has a unique solution c = A−1f.

The definition of φ will sometimes involve a shape or scaling factor ε , e.g.,
the Gaussian basic function is given by φ(·) = e−ε2‖·‖2

, where ‖ · ‖ is usually the
Euclidean norm. In this paper, we restrict our attention only to fixed constant ε > 0.
An important issue that researchers have been working on for some time is to opti-
mize the RBF interpolant with respect to the shape parameter ε of a certain chosen
radial basis (see e.g. [19, 22, 23, 30]). That is, to find εopt so that

εopt = argmin
ε>0

{‖ f −P f‖}.

Such an optimization usually involves both a theoretical and a numerical compo-
nent. Of these at least the latter is related to the conditioning of the problem. This
may be demonstrated by the following simple typical examples. The left part of
Fig. 1 shows an error plot for 1D interpolation problems with Gaussian RBFs (as
defined above), and the right part contains analogous results for the inverse multi-
quadrics φ(·) := 1

(1+ε2‖·‖2) . Both sets of results were obtained using the test function

f (x) = x(1− x) on [0,1] with 101 data points x j = 0.01(j−1), j = 1, . . . ,101. The
solution c = A−1f was computed by the default built-in solver in MATLAB�.

The main trend of the curves shows that the optimal ε value seems to fall in an
interval where the accuracy behavior of the interpolant is extremely unstable. If the
same experiment is performed with a slightly different data point resolution or dif-
ferent ε resolution, the main trend of the resulting curves remains similar, but the
oscillatory segments change unpredictably and nowhere match each other. This saw-
tooth instability has not yet been well understood although it has been recognized

Fig. 1 Errors for different ε values

60 G.E. Fasshauer, J.G. Zhang

Fig. 2 cond(A) by MATLAB�

that RBF interpolants in 1-D in general converge to the Lagrange interpolating poly-
nomial which in turn gives rise to the Runge phenomenon (see [11, 22]). However,
it is reasonable to believe that there may be some kind of connection between this
instability and the conditioning of the associated interpolation matrix A. When A is
ill-conditioned, i.e., its condition number κ(A) is large, then most of standard linear
system solvers may become unreliable because the solution c found by these solvers
loses a significant amount of accuracy. The next two figures (Fig. 2) are estimated
condition number curves corresponding to the set of results recorded in Fig. 1.

As we have seen in the examples above, the smallest error in RBF interpolation
is associated with the choice of a basic function that has a rather flat shape (i.e., ε
is small), and therefore the corresponding interpolation matrix is dense and close to
singular (due to almost parallel rows or columns of the interpolation matrix). This
does not necessarily mean that we have to give up on the solution space spanned by
such a basis because it is conceivable that there exists a “better” basis for the same
linear space. Various techniques have been proposed to deal with this (seemingly)
ill-conditioned problem. One obvious strategy is to apply specialized precondition-
ers to the system matrix. A number of papers exist on this subject starting from
work of Dyn and co-workers in the mid 1980s (see, e.g. [13,14]) or the more recent
papers [2, 3, 6, 25, 26]. Another approach is to introduce a new – hopefully better –
basis of the approximation space (see, e.g. [4]). Complex analysis techniques in
the form of a Contour-Padé algorithm were suggested in [21], and numerical lin-
ear techniques based on the QR or singular value decompositions have also been
proposed [9, 20, 24, 27].

Our approach to dealing with the ill-conditioned standard RBF basis is via a
preconditioning algorithms based on our earlier work on iterated approximate mov-
ing least-squares (AMLS) approximation [18]. We will show that iteration on the
AMLS residuals can effectively reduce the condition number of the linear sys-
tem of the RBF interpolant. In fact, it reflects a change of basis which generates
approximate cardinal functions. A partial theoretical justification for this change-of-
basis approach (at least for RBFs with finite smoothness) is provided by the recent
paper [10] where the authors show the stability of the radial basis function space –
even if the standard basis may be ill-conditioned. As a result of our algorithm the

RBF Preconditioning via Iterated Approximate MLS Approximation 61

eigenvalues of the preconditioned system are tightly clustered around unity, and it
is known that such well conditioned linear system allow most Krylov solvers to
converge quickly and also yield accurate and reliable solutions.

2 A Short Review of Preconditioning Techniques

A classical approach to overcome the difficulties associated with the ill-conditioning
of systems of linear algebraic equations is to find an appropriate preconditioning
matrix P so that κ(PA) � κ(A) or κ(AP) � κ(A). The ideal preconditioner is
given by A−1 itself. Of course, use of P = A−1 is impractical.

As indicated by the two different notations used above, there are different ways
to apply the preconditioning. One is to left-multiply P to the original linear system,
i.e., to consider

PAc = Pf. (4)

Then, the solution is given as c = (PA)−1(Pf) which is theoretically equal to the
solution c = A−1f given by (3) but expected to be numerically more accurate since
PA is better conditioned than A. However, an undesired phenomenon may occur.

The relative residual ‖PAc−Pf‖
‖Pf‖ may be small partially because ‖P‖ is very large

in magnitude. Thus, the absolute residual ‖Ac− f‖ may not be guaranteed to be
small. Moreover, if we use the coefficient vector c thus obtained to construct the
approximant P f and then evaluate it at a new set of points yi ∈ R

s, i = 1, . . . ,M,
then the resulting values of P f (yi) are often inaccurate. This phenomenon was
observed in some of our numerical examples.

A second preconditioning strategy is to change the original linear system to

APc = f, (5)

that is
c = (AP)−1f. (6)

Use of the right-preconditioned system (5) is equivalent to reformulating the RBF
interpolant P f in (2) as

P f (·) :=
N

∑
j=1

c jγ j(·), (7)

where the set
{

γ j(·)
}

represents a new basis (since P is usually non-singular) of the
space spanned by the original basis set

{

φ(·− x j)
}

. This change of basis is provided
by the transformation

Γ(·) :=

⎡

⎢

⎣

γ j(·)
...

γN(·)

⎤

⎥

⎦
= PT

⎡

⎢

⎣

φ(·− x1)
...

φ(·− xN)

⎤

⎥

⎦
=: PT Φ(·). (8)

62 G.E. Fasshauer, J.G. Zhang

As noted earlier, when P = A−1, Γ(·) becomes the cardinal basis of span{Φ(·)},
i.e., γ j(xi) = δi j. In that case the two basis sets are related as

Φ(·)T = Γ(·)T A or Φ(·)T A−1 = Γ(·)T , (since P = A−1).

Note that the notation used here may appear to be a less natural one. However, we
feel compelled to use it since we are working with right preconditioning defined
via (4).

The evaluation of the resulting interpolant P f formulated in (7) can be put in the
following matrix-vector notation. Define an evaluation matrix

Bi j := φ(yi − x j), i = 1, . . . ,M, j = 1, . . . ,N.

Then the evaluation vector

y =
[

P f (y1), . . . ,P f (yM)
]T

is given as
y = BPc. (9)

Note that the two linear systems defined in (4) and (5) are different in general,
meaning that their coefficient vectors are not equal. However, we use the same nota-
tion c for convenience. In the next section we start our discussion of the construction
of the preconditioner P.

As an additional reason for using the right-preconditioning scheme we mention a
classic preconditioning technique known as polynomial preconditioning. This tech-
nique is related to the method we are going to describe. According to Benzi [5]
the idea to precondition a linear system goes back to Cesari in 1937 [8]. In fact,
Cesari used a low degree polynomial p(A) in A. However, Benzi also states that
polynomial preconditioners for Krylov subspace methods came into vogue in the
late 1970s but are currently out of favor because of their limited effectiveness and
robustness, especially for nonsymmetric problems. In the classic formulation only
polynomial preconditioners of low degree (2–16) were suggested for practical use
(see [1]). As we will see later, our method can stably lift the polynomial to a much
higher degree.

3 Preconditioning by Iterated AMLS

Iterated approximate MLS approximation is based on the concept of approximate
approximation first suggested by Maz’ya in the early 1990s [28]. The iterated
AMLS approximation starts with the definition of a quasi-interpolant. Then, a
sequence of approximants is constructed by adding residuals computed on the data
sites to the previous approximant [18].

RBF Preconditioning via Iterated Approximate MLS Approximation 63

3.1 Iterated AMLS

The formulation of this approach can be summarized as

Q
(n)
f (·) :=

[

Φ(·)T
n

∑
k=0

(I−A)k

]

f, n = 0,1,2, . . . , (10)

where Φ(·) is the vector of original basis functions as defined in (8). Denote

Γ(·)T = Φ(·)T
n

∑
k=0

(I−A)k .

Clearly, Γ(·) is also a vector of functions. Moreover, its entries are linear combina-
tions of φ(· − x j) so that it corresponds to a change of basis for span{φ(· − x j)}.
This follows since it can be shown that the transformation matrix ∑n

k=0 (I−A)k has
full rank.

It is known that the truncated Neumann series ∑n
k=0 (I−A)k converges to A−1 if

and only if ‖I−A‖< 1. Thus Q
(n)
f → P f and Γ(·) converges to a cardinal basis as

n → ∞. If we denote the truncated Neumann series by P(n) then P(n)A = AP(n) → I
as n → ∞ (the equality holds because P(n) is a polynomial of A).

We summarize some of the main properties of the iterated AMLS method, while
more details are presented in [18]. Iterated AMLS can be used to compute

• An approximate inverse of A
A−1 ≈ P(n)

• Approximate expansion coefficients for the standard RBF interpolation problem
(3)

c ≈ P(n)f

• An approximate cardinal basis Γ(·) by

Γ(·)T = Φ(·)T P(n)

In all of these formulations

P(n) =
n

∑
k=0

(I−A)k (11)

and A denotes the original interpolation matrix with entries φ(xi − x j). Note that A
is symmetric.

We formalize and prove the last of these statements.

Theorem 1. The n-th iterated quasi-interpolant can be written as

Q
(n)
f (·) = Φ(·)T

n

∑
k=0

(I−A)k f =: Γ(·)T f,

64 G.E. Fasshauer, J.G. Zhang

i.e., {γ1(·), . . . ,γN(·)} provides a new — approximately cardinal — basis for
span{φ(·− x1), . . . ,φ(·− xN)}.

Proof. We use induction on n. By definition we have

Q
(n+1)
f (·) = Q

(n)
f (·)+

N

∑
j=1

[

f (x j)−Q
(n)
f (x j)

]

φ(·− x j).

Next, using the induction hypothesis yields

Q
(n+1)
f (·) = Φ(·)T

n

∑
k=0

(I−A)k f +
N

∑
j=1

[

f (x j)−Φ(x j)T
n

∑
k=0

(I−A)k f

]

φ(·− x j)

= Φ(·)T
n

∑
k=0

(I−A)k f + Φ(·)T

[

I−A
n

∑
k=0

(I−A)k

]

f.

If we simplify further we obtain

Q
(n+1)
f (·) = Φ(·)T

[

I−
n

∑
k=0

(I−A)k+1

]

f

= Φ(·)T

[

n+1

∑
k=0

(I−A)k

]

f = Γ(·)T f

which completes the proof. ��
Clearly, P(n) can be used as a preconditioner for the interpolation problem

discussed in previous section.

3.2 Accelerating Convergence of the Iterations

As described earlier, preconditioning by iterated AMLS requires both the coefficient
vector c and the preconditioning matrix P(n) to be explicitly computed. This requires
expensive matrix-matrix multiplication. So, it is desirable to find a computational
algorithm that can reduce the operation count and thus increase numerical accuracy.

Writing out (10) for n = 0 and n = 1, we can see

Q
(0)
f (·) = Φ(·)T f, (12)

Q
(1)
f (·) = Φ(·)T (I+(I−A)) f = Φ(·)T (2I−A)f, (13)

where the matrix Ai j = φ(xi − x j) arises from the evaluation of the approximant

Q
(0)
f at the data sites as required for the residual calculation.

RBF Preconditioning via Iterated Approximate MLS Approximation 65

The iterative process (10) can be accelerated via the following scheme. Take

Q̃
(0)
f := Q

(n)
f =

[

Φ(·)T
n

∑
k=0

(I−A)k

]

f, (14)

and perform one iteration following the pattern (12–13). Then we have

Q̃
(1)
f (·) =

[

Φ(·)T
n

∑
k=0

(I−A)k

][

2I−A
n

∑
k=0

(I−A)k

]

f

= Φ(·)T

[

2n+1

∑
k=0

(I−A)k

]

f

= Q
(2n+1)
f (·). (15)

Surely, the acceleration (14) and (15) can be performed continuously and con-
secutively starting as early as from the beginning of the original iteration.

This is formalized in

Theorem 2. Acceleration of the iterated approximate MLS method (10) is achieved
with

Q̃
(n)
f (·) = Φ(·)T

[

2n−1

∑
k=0

(I−A)k

]

f, n = 0,1,2, (16)

Proof. As in Theorem 1 we get

Q
(n+1)
f (·) = Φ(·)T

n

∑
k=0

(I−A)k f + Φ(·)T

[

I−A
n

∑
k=0

(I−A)k

]

f.

According to the acceleration strategy explained above we now replace Φ(·)T by its
iterated version Φ(n)(·)T . That yields

Q̃
(n+1)
f (·) = Φ(·)T

n

∑
k=0

(I−A)k f + Φ(n)(·)T

[

I−A
n

∑
k=0

(I−A)k

]

f

= Φ(n)(·)T

[

2I−A
n

∑
k=0

(I−A)k

]

f

= Φ(·)T
n

∑
k=0

(I−A)k

[

2I−A
n

∑
k=0

(I−A)k

]

f

= Φ(·)T

[

2n+1

∑
k=0

(I−A)k

]

f = Φ(2n+1)(·)T f = Q
(2n+1)
f (·).

We are done by observing that the upper index of summation satisfies ãn+1 =
2ãn + 1, ã0 = 0, i.e., ãn = 2n −1. ��

66 G.E. Fasshauer, J.G. Zhang

Clearly,
{

Q̃
(n)
f

}

inherits all convergence properties of
{

Q
(n)
f

}

but with a faster

speed of convergence.
Now, we update the notation for the preconditioner (11) to the accelerated version

P(n) :=
2n−1

∑
k=0

(I−A)k . (17)

In the next section we will describe how this reduction of operations may be carried
out and moreover how matrix-matrix multiplications can actually be avoided during
the iterations.

4 Computational Algorithm

According to the general preconditioning strategies outlined in Section 1 we have:

1. For the system (4), i.e., PAc = Pf we can proceed as follows:

• P(0) = I
• For k = 1,2, . . . ,n, P(k) =

(

2I−P(k−1)A
)

P(k−1)

• Use a standard linear solver to compute c =
(

P(n)A
)−1(

P(n)f
)

• Evaluate y = Bc

2. For the system (5), i.e., APc = f we can proceed as:

• P(0) = I
• For k = 1,2, . . . ,n, P(k) = P(k−1)

(

2I−AP(k−1)
)

• Use a standard linear solver to compute c =
(

AP(n)
)−1

f

• Evaluate y =
(

BP(n)
)

f

For the reasons stated in Sect. 1.1 we use only the second preconditioning strat-

egy. Note that we use
(

BP(n)
)

to indicate that this quantity will be computed first

since it will give a better accuracy based on our experimental observation. The spe-
cific computational algorithm is listed below. Note that this algorithm needs only
one matrix diagonal decomposition. No further matrix-matrix multiplications are
needed during the iterations.

Algorithm 1

• Perform the eigen-decomposition A = XΛΛΛ(0)X−1 and initialize P(0) = I

• For k = 1,2, . . . ,n, P(k) = P(k−1)
(

I−ΛΛΛP(k−1)
)

• Update the preconditioner P(n) ← XP(n)X−1

RBF Preconditioning via Iterated Approximate MLS Approximation 67

• Compute c =
(

AP(n)
)−1

f

• Evaluate y =
(

BP(n)
)

c

Note that the diagonalization of A provides theoretical equivalences for order-
ing or arranging the computation in Algorithm 1. For example, it is not necessary

to actually compute
(

AP(n)
)−1

since
(

AP(n)
)

was already given in the form of

a diagonal decomposition. Thus its inverse may be easily obtained via its diag-
onal decomposition. However, these different arrangements may yield different
computational accuracies and it is not clear which arrangement is best.

Finally, it should be clear that this preconditioning method is not necessarily
restricted to RBF interpolation. Indeed, it could be applied to generic linear systems
as long as the system matrix satisfies the convergence requirements stated in [18].

5 Numerical Experiments and Discussion

5.1 The Basic Functions Used in Our Experiments

The experiments presented in this section use shifts of normalized radial func-
tions such as Laguerre-Gaussians and generalized inverse multiquadrics defined on
[0,1]2. The following is proved in [32]:

Theorem 3.

1. Let

ψ(t) =
1√
π s

e−tLs/2
d (t),

where Ls/2
d (·) are generalized Laguerre polynomials of order s/2 and degree d.

This will yield the family of Laguerre-Gaussians.
2. Let

ψ(t) =
1

π s/2

1
(1 + t)2d+s

d

∑
j=0

(−1) j(2d + s− j−1)!(1 + t) j

(d − j)! j!Γ(d + s/2− j)
,

which gives rise to generalized inverse multiquadrics.

In either case the function φ(x) = ψ
(‖x‖2

)

is strictly positive definite in R
s and

satisfies the continuous moment conditions
∫

Rs
xα φ(x)dx = δα ,0, 0 ≤ |α| ≤ 2d + 1

of order 2d + 1.

The specific examples of Laguerre-Gaussians and generalized inverse multi-
quadrics for space dimension s = 1,2,3 and degree d = 0,1,2 used in some of our
numerical experiments are listed in Tables 1 and 2.

68 G.E. Fasshauer, J.G. Zhang

Table 1 Examples of Laguerre-Gaussians: φ(x) = e−‖x‖2× table entry

s�d 0 1 2

1
1√
π

1√
π

(

3
2
−‖x‖2

)

1√
π

(

15
8

− 5
2
‖x‖2 +

1
2
‖x‖4

)

2
1
π

1
π
(

2−‖x‖2) 1
π

(

3−3‖x‖2 +
1
2
‖x‖4

)

3
1

π3/2

1

π3/2

(

5
2
−‖x‖2

)

1

π3/2

(

35
8

− 7
2
‖x‖2 +

1
2
‖x‖4

)

Table 2 Examples of generalized inverse multiquadrics

s�d 0 1 2

1
1
π

1
1+‖x‖2

1
π

(

3−‖x‖2
)

(1+‖x‖2)3

1
π

(

5−10‖x‖2 +‖x‖4
)

(1+‖x‖2)5

2
1
π

1

(1+‖x‖2)2

2
π

(

2−‖x‖2
)

(1+‖x‖2)4

3
π

(

3−6‖x‖2 +‖x‖4
)

(1+‖x‖2)6

3
4

π2

1

(1+‖x‖2)3

4
π2

(

5−3‖x‖2
)

(1+‖x‖2)5

8
π2

(

7−14‖x‖2 +3‖x‖4
)

(1+‖x‖2)7

In our experiments we combine the basic functions with a shape scaling factor ε
which has a strong influence on the condition number of A (as already illustrated in
Sect. 1.1 and Fig. 1). Also, a multivariate spacing factor h is used in our experiments
which is taken to be the average of the data point spacing, i.e., for 2D experiments
with N points in [0,1]2 we have h = 1√

N−1
. As a result we end up with, e.g., a scaled

Gaussian basis function of the form

φ(·− x j) =
ε2

π
e−ε2‖(·−x j)/h‖2

.

The use of h in the definition of the basis functions usually appears in the con-
text of stationary (with h) and non-stationary (without h) approximation. When the
domain of the problem is taken to be the unit cube [0, 1]s, the standard approximate
MLS formulation must be in stationary form which will then lead to a convergence
scenario with a so-called saturation error [28, 29]. A similar phenomenon is also
observed in standard RBF interpolation [16, 31]. Although standard RBF interpola-
tion can be formulated in the non-stationary setting, it is observed that as the number
of data points gets denser, the interpolation matrix becomes more ill-conditioned
and therefore the solution becomes increasingly inaccurate and unstable [16]. In
light of such numerical difficulties, the use of h reduces the effect on the condi-
tioning of the interpolation matrix caused by the number of data points since then
φ(xi−x j) is (approximately, if the x j are not evenly spaced) invariant. Hence, condi-
tioning of the interpolation matrix will roughly only depend on the shape parameter

RBF Preconditioning via Iterated Approximate MLS Approximation 69

ε as long as the distribution of data points is reasonably even. We use the word
“roughly” because condition numbers for far apart numbers of data points are still
significantly different based on our experiments even with fixed ε and in the station-
ary setting. Certainly, h may be combined with ε and associated with the data points
x j (see [12]). In such a case distinguishing the two scaling factors becomes trivial.

5.2 Effects of the Preconditioner

As mentioned earlier, the standard (left) preconditioning method defined in (4) is
often unreliable. Thus, we only present results for the right preconditioning method
defined in (5) and carried out by Algorithm 1.

Figure 3 demonstrates how the condition number of the system matrix changes
during the preconditioning iterations. The right plot is a zoom-in of the left one.
As described earlier, the preconditioner P(n) is a truncated Neumann series which
can be viewed as a polynomial preconditioner. This technique is simple and easy
to implement. However, when the interpolation matrix A is rather ill-conditioned
(which is often true), direct computation with products of A will rapidly lose its
accuracy. Hence, the polynomial preconditioner is likely to become useless (cf. the
earlier insights reported in the literature [1]). We reach a similar conclusion based
on our experiments. Direct computation of AP(n) is extremely inaccurate and unsta-
ble especially in the beginning of the iterations (i.e., with low-degree polynomial
preconditioners). In a striking contrast to this, the accelerated computation is stable
and yields a satisfactory condition number drop. However, as n increases (corre-
sponding to polynomial degrees of 2n − 1), the accelerated computation may still
gather enough numerical error so that the convergence of the Neumann series (i.e.,
convergence of the iterated AMLS algorithm) are destroyed.

A more comprehensive series of condition number drops is presented in Fig. 4.
The left plot uses Laguerre-Gaussians (with ε = 0.2,0.3,0.4,d = 0,1,2) and the
right one uses the generalized inverse multiquadrics (with ε = 0.008,0.08,0.25,
d = 0,1,2). It can be observed that corresponding functions behave similarly.

Fig. 3 Condition numbers with accelerated (black/dashed) and with standard polynomial
(red/solid) preconditioning for N = 289 Halton points in [0,1]2

70 G.E. Fasshauer, J.G. Zhang

Fig. 4 Condition numbers with accelerated preconditioning, N = 289 Halton points

Fig. 5 Eigenvalue distribution and GMRES convergence, N = 256 uniform points

Generalized inverse multiquadrics and Laguerre-Gaussians seem to behave sim-
ilarly with generalized inverse multiquadrics being slightly better conditioned over-
all.

Figure 5 shows an example of the eigenvalue clustering achieved by the accel-
erated preconditioning (left plot), and an example of the improvements in GMRES
convergence (right figure) for the solution of a test problem based on data sampled
from the 2D modified Franke function g defined on [0,1]2 via

f (x1,x2) =
3
4

[

exp

(

− (9x1 −2)2

4
− (9x2 −2)2

4

)

+exp

(

− (9x1 + 1)2

49
− (9x2 + 1)2

10

)]

+
1
2

exp

(

− (9x1 −7)2

4
− (9x2 −3)2

)

−1
5

exp
(−(9x1 −4)2 − (9x2 −7)2)

g(x1,x2) = 15 f (x1,x2)exp

(−1
1−4(x1−1/2)2

)

exp

(−1
1−4(x2−1/2)2

)

.

RBF Preconditioning via Iterated Approximate MLS Approximation 71

Table 3 Condition number comparison with [3]

Cond. no. 289 1,089 4,225
No pre Pre No pre Pre No pre Pre

MQ [3] 1.506(8) 5.742(1) 2.154(9) 2.995(3) 3.734(10) 4.369(4)
TPS [3] 4.005(6) 3.330(0) 2.753(8) 1.411(2) 2.605(9) 2.025(3)
Gauss 8.796(9) 1.000(0) 6.849(10) 1.000(0) 7.632(10) 1.000(0)
IQ 1.186(8) 1.000(0) 4.284(8) 1.000(0) 1.082(9) 1.000(0)

Table 4 GMRES iteration counts as compared with [3]

No. 289 1,089 4,225
GMRES iter. No pre Pre No pre Pre No pre Pre

MQ [3] 145 8 >150 15 >150 28
TPS [3] 103 5 145 6 >150 9
Gauss >150 2 >150 2 >150 2
IQ >150 2 >150 2 >150 2

In Table 3 we list a set of comparisons to results of the local cardinal basis method
presented in [3]. Our experiments listed in Tables 3 and 4 employ 2D Halton points,
a value of n = 40 for the accelerated preconditioner and shape parameters of ε = 0.4
for the Gaussian and ε = 0.2 for the inverse quadratic basis. Results for higher-order
Laguerre-Gaussians and higher-order generalized inverse multiquadrics are similar
and therefore omitted.

5.3 A Stopping Criterion

Now it is time to ask the question how to determine the number of iterations (or
polynomial degree) n (or 2n −1) used with the preconditioner. It is clear that, as the
iteration goes on, the preconditioner P(n) changes from I to A−1, that is, κ(P(0)) = 1
and κ(P(∞)) = κ(A), while κ(AP(0)) = κ(A) and κ(AP(∞)) = 1. Thus, considering
only solution of the linear system, we would like to have κ(AP(n)) as small as
possible.

However, since P(n) will also be used for the evaluation of the interpolant P f

at the point set {y j} it is desired that κ(P(n)) should be kept small so as to obtain
evaluation accuracy. Hence, we suggest that the iteration stops when

κ
(

P(n)
)

= κ
(

AP(n)
)

. (18)

Let σmax and σmin be the largest and smallest singular values of A. Recall that φ is
strictly positive definite, that is, A is positive definite and symmetric and ‖I−A‖2 <
1. Thus, 0 < σmin < σmax < 1. It can be verified via singular value decomposition

72 G.E. Fasshauer, J.G. Zhang

for A that

κ
(

P(n)
)

=

2n−1

∑
k=0

(1−σmin)k

2n−1

∑
k=0

(1−σmax)k

=
1− (1−σmin)2n

1− (1−σmax)2n

σmax

σmin
, (19)

and

κ
(

AP(n)
)

=
1− (1−σmax)2n

1− (1−σmin)2n . (20)

Thus, the ideal number of iterations can be estimated by solving the nonlinear
equation

1− (1−σmax)2n

1− (1−σmin)2n =
√

σmax

σmin
(21)

for n. Note that for a symmetric positive definite A its eigen-decomposition in Algo-
rithm 1 is identical to its singular value decomposition. Thus, there is no extra
computation needed for finding σmax and σmin. If Shepard’s method is used, then
A is just a product of a symmetric positive definite matrix and a diagonal matrix
(performing row or column scaling). Thus, with a little adaption the formulation
that we have discussed will still be applicable.

In Fig. 6 and Table 5 we present a set of error comparisons obtained with this
optimally stopped preconditioning algorithm. Both the original system and the
iteratively preconditioned system (computed by Algorithm 1 with the suggested
optimal number of iterations) are solved by a MATLAB� GMRES method with

Fig. 6 Error drop compari-
son with automatic stopping
criterion. N uniform points
in 2D

Table 5 “Optimal” number of preconditioning iterations, n, for the results shown in Fig. 6

N 289 1,089 4,225
κ(A) 1.4e+11 2.1e+12 4.8e+12

RMSerr GMRES n RMSerr GRMES n RMSerr GMRES n

No pre 7.2e−2 >10 2.4e−2 >10 5.5e−3 >10
pre 1.8e−1 >10 20 4.3e−3 6 20 3.8e−4 1 21

RBF Preconditioning via Iterated Approximate MLS Approximation 73

default settings, that is, c = gmres(A,b) in MATLAB� syntax for Ac = b, and
c = gmres(AP,b) for APc = b. When N = 4,225 the condition number κ(A)≈ 1012,
i.e., κ(AP)≈ κ(P)≈ 106, and the preconditioning algorithm terminates after n = 21
iterations. With our preconditioning the GMRES method converges within the
default maximum number of iterations for a default tolerance while it does not con-
verge without preconditioning. Note that the error drop without preconditioning is
also reasonably stable although it is larger than that achieved with preconditioning.
This happens because that lack of exactness at data sites is not necessarily reflected
in the global accuracy of the solution.

5.4 Concluding Remarks

We have demonstrated that the proposed accelerated preconditioning method is
effective and easy to implement. The diagonalization performed in the accelera-
tion Algorithm 1 improves the speed of computation without contributing any extra
numerical inaccuracy. The accuracy of P(n) as a preconditioner is actually immate-

rial as long as κ
(

AP(n)
)

� κ(A). However, since the accuracy of the evaluation

(via BP(n) or BP(n)c) also depends highly on κ
(

P(n)
)

it is clear that for extremely

ill-conditioned problems (with κ(A) > 1020) this preconditioning method will not
work very well.

Based on the numerical experiments we performed in MATLAB�, our precondi-

tioning method works efficiently and accurately when κ
(

AP(n)
)

is in the order of

1012 ∼ 1014. Thus it has certain advantages over most of the standard MATLAB�

solvers.
When κ(A) exceeds 1020, κ

(

AP(n)
)

can still be significantly reduced, but then

P(n) becomes very ill-conditioned. Also, in such a case, a non-linear solver with
higher precision is required to solve (21) for n.

Finally, recall that our preconditioning process starts with a well-formulated
quasi-interpolant. Thus, the method can also give good performance in situations
where interpolation is not required or preferred, such as, for example, optimized
smooth approximation of noisy data (see [17]).

References

1. S. F. Ashby, T. A. Manteuffel, and J. S. Otto, “A comparison of adaptive Chebyshev and least
squares polynomial preconditioning for Hermitian positive definite linear systems”, SIAM J.
Sci. Statist. Comput. Vol. 13, pp. 1–29, 1992.

2. B. J. C. Baxter, “Preconditioned conjugate gradients, radial basis functions, and Toeplitz
matrices”, Comput. Math. Appl. Vol. 43, pp. 305–318, 2002.

74 G.E. Fasshauer, J.G. Zhang

3. R. K. Beatson, J. B. Cherrie, and C. T. Mouat, “Fast fitting of radial basis functions: methods
based on preconditioned GMRES iteration”, Adv. Comput. Math. Vol. 11, pp. 253–270, 1999.

4. R. K. Beatson, W. A. Light, and S. Billings, “Fast solution of the radial basis function
interpolation equations: domain decomposition methods”, SIAM J. Sci. Comput. Vol. 22,
pp. 1717–1740, 2000.

5. M. Benzi, “Preconditioning techniques for large linear systems: a survey”, J. Comput. Phys.
Vol. 182, pp. 418–477, 2002.

6. D. Brown, L. Ling, E. Kansa, and J. Levesley, “On approximate cardinal preconditioning
methods for solving PDEs with radial basis functions”, Eng. Anal. Bound. Elem. Vol. 29,
pp. 343–353, 2005.

7. M. D. Buhmann, “Radial Basis Functions”, Cambridge University Press, New York, 2003.
8. L. Cesari, “Sulla risoluzione dei sistemi di equazioni lineari per approssimazioni successive”,

Ricerca Sci., Roma Vol. 2 8I, pp. 512–522, 1937.
9. C. S. Chen, H. A. Cho and M. A. Golberg, “Some comments on the ill-conditioning of the

method of fundamental solutions”, Eng. Anal. Bound. Elem. Vol. 30, pp. 405–410, 2006.
10. S. De Marchi and R. Schaback, “Stability of Kernel-Based Interpolation”, preprint, 2007.
11. T. A. Driscoll and B. Fornberg, “Interpolation in the limit of increasingly flat radial basis

functions”, Comput. Math. Appl., Vol. 43, pp. 413–422, 2002.
12. T. A. Driscoll and A. R. H. Heryudono, “Adaptive residual subsampling methods for radial

basis function interpolation and collocation problems”, Comput. Math. Appl., Vol. 53, pp. 927–
939, 2007.

13. N. Dyn, “Interpolation of scattered data by radial functions”, in Topics in Multivariate Approx-
imation, C. K. Chui, L. L. Schumaker, and F. Utreras (eds.), Academic New York, pp. 47–61,
1987.

14. N. Dyn, D. Levin, and S. Rippa, “Numerical procedures for surface fitting of scattered data by
radial functions”, SIAM J. Sci. Statist. Comput. Vol. 7, pp. 639–659, 1986.

15. G. E. Fasshauer, “Solving partial differential equations by collocation with radial basis
functions”, in Surface Fitting and Multiresolution Methods, A. Le Mehaute, C. Rabut, and
L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, TN, pp. 131–138, 1997.

16. G. E. Fasshauer, “Meshfree approximation methods with MATLAB”, Interdisciplinary Math-
ematical Sciences, Vol. 6, World Scientific Publishers, New York, 2007.

17. G. E. Fasshauer and J. G. Zhang, “Scattered data approximation of noisy data via iterated
moving least squares”, in Curve and Surface Fitting: Avignon 2006, T. Lyche, J. L. Merrien
and L. L. Schumaker (eds.), Nashboro Press, Brentwood, TN, pp. 150–159, 2007.

18. G. E. Fasshauer and J. G. Zhang, “Iterated approximate moving least squares approxima-
tion”, in Advances in Meshfree Techniques, V. M. A. Leitao, C. Alves and C. A. Duarte (eds.),
Springer, Singapore, pp. 221–240, 2007.

19. G. E. Fasshauer and J. G. Zhang, “On choosing “optimal” shape parameters for RBF
approximation”, Numer. Algorithms Vol. 45, pp. 345–368, 2007.

20. B. Fornberg and C. Piret, “A stable algorithm for flat radial basis functions on a sphere”, SIAM
J. Sci. Comp. Vol. 30, pp. 60–80, 2007.

21. B. Fornberg and G. Wright, “Stable computation of multiquadric interpolants for all values of
the shape parameter”, Comput. Math. Appl. Vol. 47, pp. 497–523, 2004.

22. B. Fornberg and J. Zuev, “The Runge phenomenon and spatially variable shape parameters in
RBF interpolation”, Comput. Math. Appl. Vol. 54, pp. 379–398, 2007.

23. E. J. Kansa and R. E. Carlson. “Improved accuracy of multiquadric interpolation using variable
shape parameters”, Comput. Math. Applic. Vol. 24, pp. 99–120, 1992.

24. C.-F. Lee, L. Ling and R. Schaback, “On convergent numerical algorithms for unsymmetric
collocation”, Adv. Comp. Math, to appear.

25. L. Ling and E. J. Kansa, “Preconditioning for radial basis functions with domain decomposi-
tion methods”, Math. Comput. Model. Vol. 40, pp. 1413–1427, 2004.

26. L. Ling and E. J. Kansa, “A least-squares preconditioner for radial basis functions collocation
methods”, Adv. Comp. Math. Vol. 23, pp. 31–54, 2005.

27. L. Ling and R. Schaback, “Stable and convergent unsymmetric meshless collocation meth-
ods”, SIAM J. Numer. Anal., to appear.

RBF Preconditioning via Iterated Approximate MLS Approximation 75

28. V. Maz’ya, “A new approximation method and its applications to the calculation of volume
potentials. Boundary point method”, in DFG-Kolloquium des DFG-Forschungsschwerpunktes
“Randelementmethoden”, 1991.

29. V. Maz’ya and G. Schmidt, “On quasi-interpolation with non-uniformly distributed centers on
domains and manifolds”, J. Approx. Theory, Vol. 110, pp. 125–145, 2001.

30. S. Rippa, “Algorithm for selecting a good value for the parameter c in radial basis function
interpolation”, Adv. Comput. Math. Vol. 11, pp. 193–210, 1999.

31. H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
32. J. G. Zhang, “Iterated Approximate Moving Least-Squares: Theory and Applications”, Ph.D.

Dissertation, Illinois Institute of Technology, 2007.

