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Abstract

We show how the collocation framework that is prevalent in the radial ba-
sis function literature can be modified so that the methods can be interpreted in
the framework of standard pseudospectral methods. This implies that many of
the standard algorithms and strategies used for solving time-dependent as well as
time-independent partial differential equations with (polynomial) pseudospectral
methods can be readily adapted for the use with radial basis functions. The po-
tential advantage of radial basis functions is that they lend themselves to complex
geometries and non-uniform discretizations.
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1 Introduction

Pseudospectral (PS) methods are known as highly accurate solvers for partial differ-
ential equations (PDEs). The basic idea (see, e.g., [6] or [17]) is to use a set of (very
smooth and global) basis functions φj , j = 1, . . . , N , such as polynomials to represent
an unknown function (the approximate solution of the PDE) via

uh(x) =
N∑

j=1

λjφj(x), x ∈ R. (1)

Since most of our discussion will focus on a representation of the spatial part of the
solution we ignore the time variable in the formulas for uh. We will employ standard
time-stepping procedures to deal with the temporal part of the solution. Moreover,
since standard pseudospectral methods are designed for the univariate case we initially
limit ourselves to single-variable functions. Later we will generalize to multivariate
(spatial) problems by using radial basis functions.

An important feature of pseudospectral methods is the fact that one usually is
content with obtaining an approximation to the solution on a discrete set of grid points
xi, i = 1, . . . , N . One of several ways to implement the spectral method is via so-called
differentiation matrices, i.e., one finds a matrix D such that at the grid points xi we
have

u′ = Du, (2)
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where u = [uh(x1), . . . , uh(xN )]T is the vector of values of uh at the grid points. Fre-
quently, orthogonal polynomials such as Chebyshev polynomials are used as basis func-
tions, and the grid points are corresponding Chebyshev points. In this case the entries
of the differentiation matrix are explicitly known (see, e.g., [17]).

In this paper we are interested in using (infinitely smooth) radial basis functions
(RBFs) in the spectral expansion (1), i.e., φj(x) = Φ(‖x−xj‖), where Φ is some positive
definite univariate basic function. Popular choices for positive definite functions include
inverse multiquadrics

Φ(r) =
1√

1 + (εr)2
, (3)

Gaussians
Φ(r) = e−(εr)2 , (4)

Matérn functions (see, e.g., [1]) such as

Φ(r) = e−εr
(
(εr)3 + 6(εr)2 + 15(εr) + 15

)
, (5)

or compactly supported Wendland functions (which do not lend themselves to the task
at hand, i.e., as generalized PS methods, since they are of limited smoothness). With
some additional notational effort all that follows can also be formulated for conditionally
positive definite functions such as the popular multiquadric

Φ(r) =
√

1 + (εr)2. (6)

Above, the univariate variable r is a radial variable, i.e., r = ‖x‖, and the positive
parameter ε is equivalent to the well-known shape parameter used to scale the basic
functions. We have chosen the representations above since then ε → 0 always results
in “flat” basic functions for which we have the well-known trade-off principle, i.e., high
accuracy at the cost of low stability or vice versa (see, e.g., [15]).

2 Differentiation Matrices

We now begin with a general discussion of differentiation matrices. Consider expan-
sion (1) and let φj , j = 1, . . . , N , be an arbitrary linearly independent set of smooth
functions that will serve as the basis for our approximation space.

If we evaluate (1) at the grid points xi, i = 1, . . . , N , then we get

uh(xi) =
N∑

j=1

λjφj(xi), i = 1, . . . , N,

or in matrix-vector notation
u = Aλ, (7)

where λ = [λ1, . . . , λN ]T is the coefficient vector, the evaluation matrix A has entries
Aij = φj(xi), and u is as before.

By linearity we can also use the expansion (1) to compute the derivative of uh by
differentiating the basis functions

d

dx
uh(x) =

N∑
j=1

λj
d

dx
φj(x).
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If we again evaluate at the grid points xi then we get in matrix-vector notation

u′ = Axλ, (8)

where u and λ are as above, and the matrix Ax has entries d
dxφj(xi), or, in the case of

radial functions, d
dx Φ(‖x− xj‖)|x=xi

.
In order to obtain the differentiation matrix D we need to ensure invertibility of

the evaluation matrix A. This depends both on the basis functions chosen as well as
the location of the grid points xi. For univariate polynomials it is well-known that
the evaluation matrix is invertible for any set of distinct grid points. In particular, if
the polynomials are written in cardinal (or Lagrange) form, then the evaluation matrix
is the identity matrix. For positive definite radial basis functions (an extension of)
Bochner’s theorem guarantees the invertibility of the matrix A for any set of distinct
grid points (also non-uniformly spaced and in Rd, d > 1). Cardinal RBFs, on the other
hand, are rather difficult to obtain. For the special case of uniform one-dimensional
grids such formulas can be found in [13].

Thus we can use (7) to solve for the coefficient vector λ = A−1u, and then (8)
yields

u′ = AxA−1u,

so that the differentiation matrix D corresponding to (2) is given by

D = AxA−1.

For more complex linear differential operators L with constant coefficients we can
use the same argument as above to obtain a discretized differential operator (differen-
tiation matrix)

L = ALA−1, (9)

where the matrix AL has entries AL,ij = Lφj(xi). In the case of radial basis functions
these entries are of the form AL,ij = LΦ(‖x− xj‖)|x=xi

.
In the context of spectral methods the differentiation matrix L can now be used

to solve all kinds of PDEs (time-dependent as well as time-independent). Sometimes
only multiplication by L is required (e.g., for many time-stepping algorithms), and for
other problems one needs to be able to invert L. In the standard PS case it is known
that the Chebyshev differentiation matrix has an N -fold zero eigenvalue (see [3], p.70),
and thus is not invertible by itself. However, once boundary conditions are taken into
consideration the situation changes (see, e.g., [17], p.67).

To obtain a little more insight into the special properties of radial basis functions
let us pretend to solve the (ill-posed) linear PDE of the form Lu = f by ignoring
boundary conditions. An approximate solution at the grid points xi might be obtained
by solving the discrete linear system

Lu = f ,

where f contains the values of f at the grid points and L is as above. In other words,
the solution at the grid points is given (see (9)) by

u = L−1f = A(AL)−1f ,
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and we see that invertibility of L (and therefore AL) would be required.
As mentioned above, the differentiation matrix for pseudospectral methods based

on Chebyshev polynomials is singular. This is only natural since the problem of recon-
structing an unknown function from the values of its derivative alone is ill-posed.

However, if we use radial basis functions it is well known in the RBF literature
that the matrix AL is invertible provided a positive definite basic function is used, the
differential operator is elliptic and no boundary conditions are present. Therefore, the
basic differentiation matrix L for RBF-based pseudospectral methods is invertible.

The observation just made suggests that RBF methods are sometimes “too good
to be true”. They may deliver a “solution” even for ill-posed problems. This is a
consequence of the variational framework in which the RBF method can be formulated
(see, e.g., [18]), i.e., RBF methods possess a built-in regularization capability.

3 PDEs with Boundary Conditions via Pseudospectral
Methods

First we discuss how the linear elliptic PDE problem

Lu = f in Ω

with Dirichlet boundary condition

u = g on Γ = ∂Ω

can be solved using spectral methods if the basis functions do not already satisfy the
boundary conditions (see, e.g., [17], Program 36). Essentially, one starts with the
differentiation matrix L based on all grid points xi, and then replaces the diagonal
entries corresponding to boundary points with ones and the remainder of those rows
with zeros. This corresponds to enforcing the boundary condition u = g explicitly. By
reordering the rows and columns of the resulting matrix we obtain a block matrix of
the form

LΓ =
[

M P
0 I

]
, (10)

where the non-zero blocks M and I are of size (N −NB) × (N −NB) and NB ×NB,
respectively, and NB denotes the number of grid points on the boundary Γ.

The solution of the PDE with boundary conditions on the grid is then given by the
solution of the block linear system

LΓu =
[

f
g

]
, (11)

where the vectors f and g collect the values of f and g at the respective grid points.
We can decompose the vector of grid values of the solution into u = [uΩ,uΓ]T ,

where uΩ collects the values in the interior of the domain Ω and uΓ collects the values
on the boundary. Solving (11) for uΓ = g and substituting this back in we obtain

uΩ = M−1(f − Pg),
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or, for homogeneous boundary conditions,

uΩ = M−1f .

We now see that we need to be able to decide whether the matrix M is invertible. In the
case of Chebyshev polynomial basis functions and the second-derivative operator d2

dx2

coupled with different types of boundary conditions this question has been answered
affirmatively by Gottlieb and Lustman ([8], or, e.g., Section 11.4 of [3]). Program 15
of [17] also provides a discussion and an illustration of one such problem.

4 PDEs with Boundary Conditions via RBFs

Once boundary conditions are added to the PDE Lu = f then two collocation ap-
proaches are commonly used in the RBF community. For the sake of simplicity we
restrict our discussion to Dirichlet boundary conditions.

4.1 Kansa’s Non-symmetric Collocation Method

In Kansa’s non-symmetric method [11] one starts with the expansion

uh(x) =
N∑

j=1

λjφj(x), x ∈ Ω ⊆ Rd, (12)

just as before (cf. (1)). However, the coefficient vector λ is now determined by inserting
(12) into the PDE and boundary conditions and forcing these equations to be satisfied
at the grid points xi. The collocation solution is therefore obtained by solving the linear
system [

ÃL
Ã

]
λ =

[
f
g

]
, (13)

where f and g are as above, and the (rectangular) matrices ÃL and Ã are of the form

ÃL,ij = Lφj(xi) = LΦ(‖x− xj‖)|x=xi
, i = 1, . . . , N −NB, j = 1, . . . , N,

Ãij = φj(xi) = Φ(‖xi − xj‖), i = N −NB + 1, . . . , N, j = 1, . . . , N.

Assuming that the system matrix is invertible one then obtains the approximate so-
lution (at any point x) by using the coefficients λ in (12). However, it is known that
certain grids do not allow invertibility of the system matrix in (13) (see, e.g., the coun-
terexamples in [10]). In [12] an iterative algorithm is suggested that adaptively builds
grids for which the matrix is invertible.

4.2 An RBF-based Pseudospectral Method I

If we are interested in the solution at the grid points only, then (using λ from (13))

u = Aλ = A

[
ÃL
Ã

]−1 [
f
g

]
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with evaluation matrix A such that Aij = φj(xi) as above. This suggests that (accord-
ing to our discussion in Section 2) the discretized differential operator L based on the
grid points xi, i = 1, . . . , N , and basis functions φj , j = 1, . . . , N , is given by

LΓ =
[

ÃL
Ã

]
A−1.

Indeed, we have [
ÃL
Ã

]
A−1 =

[
M P
0 I

]
with the same blocks M , P , 0 and I as above. To see this we introduce the following
notation:

A =

 aT
1
...

aT
N

 and A−1 =
[

a−1
1 . . . a−1

N

]
with column vectors ai and a−1

j such that aT
i a−1

j = δij . For Kansa’s matrix from (13)
this notation implies

[
ÃL
Ã

]
=



aT
L,1
...

aT
L,N−NB

aT
N−NB+1

...
aT

N


,

where we have used an analogous notation to denote the rows of the block ÃL. Now
the discretized differential operator based on the non-symmetric collocation approach
is given by

[
ÃL
Ã

]
A−1 =



aT
L,1
...

aT
L,N−NB

aT
N−NB+1

...
aT

N


[

a−1
1 . . . a−1

N

]

=

 ÃLA−1
I ÃLA−1

B

ÃA−1
I︸ ︷︷ ︸

=0

ÃA−1
B︸ ︷︷ ︸

=I

 .

Here we partitioned A−1 into the blocks A−1
I with N −NB columns corresponding to

interior points, and A−1
B with NB columns corresponding to the remaining boundary

points. Also, we made use of the fact that aT
i a−1

j = δij .
This is clearly the same as (see (10)[

M P
0 I

]
= LΓ,
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where M and P were obtained from the discrete differential operator

L = ALA−1 =
[

ALA−1
I ALA−1

B

]
by replacing certain rows with unit vectors.

We have just seen that – provided we use the same basis functions φj and the same
grid of collocation points xi – the non-symmetric RBF collocation approach for the
solution of an elliptic PDE with Dirichlet boundary conditions followed by evaluation
at the grid points is identical to a pseudospectral approach. However, neither of the two
methods is well-defined in general since they both rely on the invertibility of Kansa’s
collocation matrix.

Above we showed that we can always form the discretized differential operator

LΓ =
[

ÃL
Ã

]
A−1 =

[
M P
0 I

]
– even if Kansa’s matrix is not invertible. This implies that we can safely use the
non-symmetric RBF pseudospectral approach whenever inversion of the discretized
differential operator is not required (e.g., in the context of explicit time-stepping for
parabolic PDEs).

Another interesting feature that we will illustrate below is the fact shown recently
by a number of authors (see, e.g., [2], [4], [16]) that in the limiting case of “flat” basis
functions (i.e., parameter ε → 0 in (3–6)) the one-dimensional RBF interpolant yields a
polynomial interpolant. Since we also mentioned earlier that the discretized differential
operator LΓ is invertible if a univariate polynomial basis is used we can conclude that
Kansa’s collocation matrix is invertible in the limiting case ε → 0.

4.3 A Symmetric Collocation Method

A second RBF collocation method has a symmetric system matrix that is known to
be invertible for all grid configurations and any positive definite basic function (see,
e.g., [5] and references therein). An interesting observation will be that Kansa’s matrix
(actually its transpose) is the evaluation matrix for a PS approach based on the same
set of basis functions used for this symmetric collocation approach.

For the symmetric collocation method one uses a different basis than in (12), i.e.,
a different function space than for the non-symmetric case. For the same elliptic PDE
and boundary conditions as above one now starts with

uh(x) =
N−NB∑

j=1

λjL∗jφ(x) +
N∑

j=N−NB+1

λjφj(x). (14)

Since the φj are radial functions, i.e., φj(x) = Φ(‖x − xj‖) the functionals L∗j can be
interpreted as an application of L to Φ viewed as a function of the second variable
followed by evaluation at xj . One obtains the coefficients λ = [λΩ,λΓ]T by solving the
linear system [

ÂLL∗ ÂL
ÂL∗ Â

] [
λΩ

λΓ

]
=

[
f
g

]
. (15)
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Here the blocks ÂLL∗ and Â, respectively, are square matrices corresponding to the
interaction of interior grid points with each other and boundary grid points with each
other. Their entries are given by

ÂLL∗,ij =
[
L [L∗Φ(‖x− ξ‖)]ξ=xj

]
x=xi

, i, j = 1, . . . , N −NB,

Âij = φj(xi) = Φ(‖xi − xj‖), i, j = N −NB + 1, . . . , N.

The other two blocks are rectangular, and correspond to interaction of interior points
with boundary points and vice versa. They are defined as

ÂL,ij = [LΦ(‖x− xj‖)]x=xi
, i = 1, . . . , N −NB, j = N −NB + 1, . . . , N,

ÂL∗,ij = [L∗Φ(‖xi − x‖)]x=xj
, i = N −NB + 1, . . . , N, j = 1, . . . , N −NB.

As already mentioned, it is well known that the system matrix in (15) is invertible
for positive definite radial functions. This implies that we can obtain the approximate
solution at any point x by using the computed coefficients λ in (14). Thus this col-
location method is very similar to Kansa’s non-symmetric method with the notable
difference that the collocation approach is well-defined.

4.4 An RBF-based Pseudospectral Method II

A nice connection between the symmetric and non-symmetric collocation methods ap-
pears if we consider the symmetric pseudospectral approach.

To this end we use the expansion (14) on which the symmetric collocation method
is based as starting point for a pseudospectral method, i.e.,

uh(x) =
N−NB∑

j=1

λjL∗jφ(x) +
N∑

j=N−NB+1

λjφj(x).

In vectorized notation this corresponds to

uh(x) =
[

aT
L∗(x) ãT (x)

] [
λΩ

λΓ

]
(16)

with appropriate row vectors aT
L∗(x) and ãT (x). Evaluated on the grid of collocation

points this becomes

u =
[

AL∗ ÃT
] [

λΩ

λΓ

]
.

Here the blocks AL∗ and ÃT of the evaluation matrix are rectangular matrices with
entries

AL∗,ij = [L∗Φ(‖xi − x‖)]x=xj
, i = 1, . . . , N, j = 1, . . . , N −NB,

ÃT
ij = φj(xi) = Φ(‖xi − xj‖), i = 1, . . . , N, j = N −NB + 1, . . . , N,

corresponding to evaluation of the basis functions used in (14) at the grid points. Note
that the second matrix with entries φj(xi) is in fact the transpose of the corresponding
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block of the system matrix in (13) for Kansa’s method (and thus use of the same
notation is justified).

Moreover, the radial symmetry of the basic functions implies that the first block of
the evaluation matrix for the symmetric collocation method is again the transpose of the
corresponding block in Kansa’s collocation method. To see this we consider differential
operators of even orders and odd orders separately. If L is a linear differential operator
of odd order, then L∗ will introduce a sign change (since it is acting on Φ as a function
of the second variable). In addition, odd order derivatives (evaluated at x = xj include
a factor of the form xi − xj . Now, transposition of this factor will again lead to a sign
change. The combination of these two effects ensures that AL∗ = ÃT

L. For even orders
the effects of the operators L and L∗ are indistinguishable.

Therefore, using symmetric RBF collocation we obtain the approximate solution of
the boundary value problem on the grid as

u =
[

ÃL
Ã

]T [
ÂLL∗ ÂL
ÂL∗ Â

]−1 [
f
g

]
.

We emphasize that this is not the solution of a pseudospectral method built on the same
function space (same basis functions and same collocation points) as the symmetric
RBF collocation method.

For a pseudospectral method we would require the discretized differential operator.
Formally (assuming invertibility of Kansa’s matrix) we would have

L̂Γ =
[

ÂLL∗ ÂL
ÂL∗ Â

] [
ÃL
Ã

]−T

,

where we already incorporated the boundary conditions in a way analogous to our
earlier discussion.

The problem with the second (symmetric) pseudospectral approach is that we can-
not be assured that the method itself (i.e., the discretized differential operator) is
well-defined. In fact, due to the Hon-Schaback counterexample [10] we know that there
exist grid configurations for which the “basis” used for the symmetric PS expansion is
not linearly independent.

Therefore, the symmetric RBF collocation approach is well-suited for problems
that require inversion of the differential operator (such as elliptic PDEs). Subsequent
evaluation on a grid makes the symmetric collocation look like a pseudospectral method
– but it may not be (since we may not be able to formulate the pseudospectral Ansatz).

5 A Unified Discussion

In both the symmetric and non-symmetric collocation approaches we can think of
the approximate solution as a linear combination of appropriate basis functions. In
vectorized notation this can be written as

uh(x) = p(x)λ, (17)

where the vector p(x) contains the basis functions at x. If we consider the non-
symmetric method these basis functions are just φj , j = 1, . . . , N , while for the sym-
metric method they are comprised of both functions of the type φj and L∗jφ (cf. (16)).
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We now let D denote the linear operator that combines both the differential oper-
ator L and the boundary operator (for Dirichlet boundary conditions this is just the
identity). Then we have

Duh(x) = Dp(x)λ = q(x)λ (18)

for an appropriately defined vector q(x). Therefore, the boundary value problem for
our approximate solution is given by

Duh(x) = f(x),

where f is a piecewise defined function that collects the forcing functions in both the
interior and on the boundary.

Now we evaluate the two representations (17) and (18) on the grid of collocation
points xi, i = 1, . . . , N , and obtain

u = Pλ and uD = Qλ

with matrices P and Q whose rows correspond to evaluation of the vectors p(x) and
q(x), respectively, at the collocation points xi. The discretized boundary value problem
is then

uD = Qλ = f , (19)

where f is the vector of values of f on the grid.
For the non-symmetric collocation approach P is the standard RBF interpolation

matrix, and Q is Kansa’s matrix, whereas for symmetric collocation P is the transpose
of Kansa’s matrix, and Q is the symmetric collocation matrix.

It is our goal to find the vector u, i.e., the values of the approximate solution on
the grid. There are two ways by which we can obtain this answer:

1. We solve Qλ = f for λ, i.e.,
λ = Q−1f .

Then we use the discretized version of (17) to get the desired vector u as

u = PQ−1f .

2. Alternatively, we first transform the coefficients, i.e., we rewrite u = Pλ as

λ = P−1u.

Then the discretized boundary value problem (19) becomes

QP−1u = f ,

and we can obtain the solution vector u by solving this system.

The first approach corresponds to RBF collocation, the second to the pseudospec-
tral approach. Both of these approaches are equivalent as long as all of the matrices
involved are invertible. Unfortunately, as mentioned earlier, there are configurations
of grid points for which Kansa’s matrix is not invertible. This means that for the
non-symmetric case (Q is Kansa’s matrix) Approach 1 cannot be assured to work in
general, and Approach 2 can only be used if the discretized differential operator is
applied directly (but not inverted). For the symmetric approach (P is Kansa), on the
other hand, Approach 1 is guaranteed to work in general, but Approach 2 may not be
well-defined.
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6 Numerical Experiments

In this section we illustrate how the RBF pseudospectral approach can be applied in a
way completely analogous to standard polynomial pseudospectral methods. Among our
numerical illustrations are two examples taken directly from the book [17] by Trefethen
(see Programs 35 and 36 there). We will also use a 1-D transport equation to compare
the RBF and polynomial pseudospectral methods. Plots of the spectra of the respective
differentiation matrices will support the theoretical results mentioned earlier which
state that RBF methods tend to polynomial methods in the limit ε → 0.

We begin by giving a brief explanation of how the Contour-Padé algorithm of Forn-
berg and Wright [7] can be used to compute the discretized differential operators (dif-
ferentiation matrices) mentioned in our earlier discussions.

6.1 Use of the Contour-Padé Algorithm with the PS Approach

In its original form the Contour-Padé algorithm of Fornberg and Wright [7] allows one
to stably evaluate radial basis function interpolants based on infinitely smooth RBFs for
extreme choices of the shape parameter ε (in particular ε → 0). More specifically, the
Contour-Padé algorithm uses FFTs and Padé approximations to evaluate the function

s(x, ε) = p(ε)(A(ε))−1f (20)

with p(ε)j = Φ(‖x − xj‖) and A(ε)j,k = Φ(‖xk − xj‖) at some evaluation point x
(cf. the discussion in the previous section). The parameter ε is used to denote the
dependence of p and A on the choice of that parameter in the basic function Φ.

If we evaluate s at all of the grid points xj for some fixed value of ε, then p(ε) turns
into the matrix A(ε). In the case of interpolation this exercise is, of course, pointless.
However, if the Contour-Padé algorithm is adapted to replace p(ε) with the matrix AL
based on the differential operator used earlier, then

p(ε)(A(ε))−1u = AL(ε)(A(ε))−1u

computes the values of the (spatial) derivative of u on the grid points xj . Boundary
conditions can then be incorporated later as in the standard pseudospectral approach
(see, e.g., [17] or our discussion in Section 3).

This means that we can take standard pseudospectral code (such as that presented
in [17]) and replace just one subroutine, namely that which provides the differentiation
matrix, by the appropriate one for radial basis functions. In the examples given below
we will use both Contour-Padé and straightforward (based on LU-factorization of the
collocation systems) implementations of these subroutines.

6.2 Example: 1-D Transport Equation

Consider

ut(x, t) + cux(x, t) = 0, x > −1, t > 0,
u(−1, t) = 0,
u(x, 0) = f(x),
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with solution
u(x, t) = f(x− ct).

The graph in Figure 1 shows the time profile of the solution for the time interval
[0, 1] with initial profile f(x) = 64(1 − x)3x3 and unit wave speed. For the computa-
tion we used Gaussian RBFs (4) and the Contour-Padé algorithm in the limiting case
ε → 0 together with an implicit Euler method with time step ∆t = 0.01 for the time
discretization. We point out that this, of course, requires an inversion of the differ-
entiation matrix. Recall that our earlier theoretical discussion suggested that this is
possible as long as we limit ourselves to the limiting case ε → 0 and one space di-
mension. Also, an implementation based on an explicit Euler method showed almost
identical behavior for a smaller time step so that we can be assured that the inversion
was indeed justified for this particular example. The explicit Euler method, on the
other hand, exhibited instabilities for the larger time step used in Figure 1. The exact
stability conditions (CFL conditions) for the RBF pseudospectral method are an open
problem. The spatial discretization for the solution displayed in Figure 1 was based on
19 Chebyshev points in [−1, 1].

Figure 1: Solution to transport equation based on Gaussian RBFs with Contour-Padé
(ε = 0), implicit Euler (∆t = 0.01), and 19 Chebyshev points.

In Figure 2 we plot the maximum errors at time t = 1 for two different time steps
(∆t = 0.01 and ∆t = 0.001) and spatial discretizations consisting of 5 up to 19 points.
If we use Chebyshev polynomials instead of Gaussian RBFs then the error plots look
identical (and are therefore omitted).

The spectra of the differentiation matrices for both the Gaussian and the Chebyshev
PS approaches are plotted in Figures 3 and 4, respectively. The subplots correspond
to the use of N = 5, 9, 13, 17 Chebyshev points for the spatial discretization. The plots
for the Gaussian and Chebyshev methods are almost identical. There is only a slight
difference in the location of the eigenvalues in the case N = 17. We point out that one
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Figure 2: Errors at t = 1 for transport equation. Gaussian RBFs (ε = 0), variable
spatial discretization N . Implicit Euler method with ∆t = 0.01 (left), ∆t = 0.001
(right).

of the (severe) limitations of the Contour-Padé algorithm is its guaranteed accuracy
for very small problems only. Thus, already for the case N = 17 this feature is slightly
visible.

6.3 Example: Allen-Cahn Equation

Next, we illustrate the solution of a nonlinear reaction-diffusion equation. To be specific
we adapt Program 35 of [17] involving the nonlinear Allen-Cahn equation

ut = µuxx + u− u3, x ∈ (−1, 1), t ≥ 0,

with parameter µ, initial condition

u(x, 0) = 0.53x + 0.47 sin
(
−3

2
πx

)
, x ∈ [−1, 1],

and non-homogeneous (time-dependent) boundary conditions u(−1, t) = −1 and u(1, t) =
sin2(t/5). This equation has three steady solutions (u = −1, 0, 1) with the two nonzero
solutions being stable. The transition between these states is governed by the parame-
ter µ. In our calculations below we use µ = 0.01, and the unstable state should vanish
around t = 30. Sample Matlab code to solve this problem using an explicit Euler
discretization for the time-derivative and a Chebyshev pseudospectral differentiation
matrix for the spatial derivative is listed in Table 1 (page 141 of [17]).

Essentially, one needs only to form the differentiation matrix for the second spatial
derivative (which can be taken as the square of the first derivative matrix, i.e., D2 =
D2, see line 2 of the algorithm) and use this within the time-stepping method that
incorporates the nonlinearity of the problem (see line 11).

We can apply the code from [17] almost verbatim for radial basis functions. In
[17] the differentiation matrix is obtained by a call to the subroutine cheb.m in line 2
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% p35.m - Allen-Cahn eq. as in p34.m, but with boundary condition
% imposed explicitly ("method (II)")

% Differentiation matrix and initial data:
1 figure(1);
2 N = 20; [D,x] = cheb(N); D2 = D^2;
3 eps = 0.01; dt = min([.01,50*N^(-4)/eps]);
4 t = 0; v = .53*x + .47*sin(-1.5*pi*x);

% Solve PDE by Euler formula and plot results:
5 tmax = 100; tplot = 2; nplots = round(tmax/tplot);
6 plotgap = round(tplot/dt); dt = tplot/plotgap;
7 xx = -1:.025:1; vv = polyval(polyfit(x,v,N),xx);
8 plotdata = [vv; zeros(nplots,length(xx))]; tdata = t;
9 for i = 1:nplots
10 for n = 1:plotgap
11 t = t+dt; v = v + dt*(eps*D2*v + v - v.^3); % Euler
12 v(1) = 1 + sin(t/5)^2; v(end) = -1; % BC
13 end
14 vv = polyval(polyfit(x,v,N),xx);
15 plotdata(i+1,:) = vv; tdata = [tdata; t];
16 end
17 clf, subplot(’position’,[.1 .4 .8 .5])
18 mesh(xx,tdata,plotdata), grid on, axis([-1 1 0 tmax -1 2]),
19 view(-60,55), colormap(1e-6*[1 1 1]); xlabel x, ylabel t, zlabel u

Table 1: Program 35 of [17]
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Figure 3: Spectra of differentiation matrices for Gaussian RBF (ε = 0). N = 5, 9, 13, 17
Chebyshev points.

which yields the matrix D for the discretization of the first derivative operation on
the Chebyshev points. The only difference is to replace this by a call to a subroutine
DRBF.m that generates the RBF differentiation matrix D = ALA−1 as explained earlier
(see (9)). Thus, we replace line 2 of the algorithm with

2’ N = 20; [D,x] = DRBF(N); D2 = D^2;

or by using second derivatives of the RBFs to generate the matrix AL, i.e.,

2’ N = 20; [D2,x] = D2RBF(N);

With the latter approach D2 will be a discretization of the second spatial derivative on
the grid points (which may be arbitrarily spaced for the use with RBFs).

The implementation of DRBF.m is accomplished either via the Contour-Padé algo-
rithm of Fornberg and Wright as explained above, or by explicitly setting up a first
derivative matrix AL and an evaluation matrix (i.e., interpolation matrix) A and com-
puting its inverse. Note that the majority of the matrix computations are required only
once outside the time-stepping procedure. Inside the time-stepping loop (lines 10–13)
we only require matrix-vector multiplication. We point out that this approach is much
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Figure 4: Spectra of differentiation matrices for Chebyshev pseudospectral method.
N = 5, 9, 13, 17 Chebyshev points.

more efficient than computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [9]).

Figures 5 and 6, respectively, show the solution obtained with the Gaussian RBF
(with ε = 0 via Contour-Padé) and with the Chebyshev pseudospectral method. Both
spatial discretizations are based on N = 10 Chebyshev points in [−1, 1]. Clearly, a
spatial discretization of only 10 points does not suffice. The metastable solution only
“survives” for t up to about t = 20 (instead of t ≈ 30 for an accuracte solution).
However, again, the RBF and polynomial PS solutions are identical.

In Figures 7 and 8, respectively, we show the solution obtained via the Chebyshev
pseudospectral method and via an RBF pseudospectral approach based on the Matérn
function (5) with ε = 2.0. These computations were based on 20 Chebyshev points,
and the differentiation matrix for the RBF was obtained directly (i.e., without the
Contour-Padé algorithm). We used this approach since for 20 points the Contour-Padé
algorithm no longer can be relied upon. Moreover, it is apparent from the figures
that reasonable solutions can also be obtained via this direct (and much simpler) RBF
approach. Spectral accuracy, however, will no longer be given if ε > 0.

The solution based on Chebyshev polynomials for N = 20 is the most accurate
since the transition occurs at the correct time (i.e., at t ≈ 30) and is a little “sharper”.
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Figure 5: Solution of the Allen-Cahn equation using Gaussian RBFs (ε = 0, N = 10).

6.4 Example: 2-D Laplace Equation

Our final example is an elliptic equation. For such a problem inversion of the differ-
entiation matrix is required. Even though this may not be warranted theoretically, we
compare an RBF pseudospectral method based on the non-symmetric Kansa Ansatz
with a Chebyshev pseudospectral method. As in the previous example, the Matérn
RBF (5) is used (this time with ε = 2.4), and the (inverse of the) differentiation matrix
is computed using standard Matlab routines.

We consider the 2-D Laplace equation

uxx + uyy = 0, x, y ∈ (−1, 1)2,

with boundary conditions

u(x, y) =


sin4(πx), y = 1 and −1 < x < 0,
1
5 sin(3πy), x = 1,

0, otherwise.

This is the same problem as used in Program 36 of [17].
Figures 9 and 10 show the solution obtained via the RBF and Chebyshev pseudospec-

tral methods, respectively. Now the spatial discretization consists of a tensor product
of N = 24× 24 Chebyshev points.

The qualitative behavior of the two solutions is very similar. While there is no ad-
vantage in going to arbitrarily irregular grid points for any of the problems presented
here, there is nothing that prevents us from doing so for the RBF approach. In par-
ticular, we are not limited to using tensor product grids for higher-dimensional spatial
discretizations. This is a potential advantage of the RBF pseudospectral approach over
the standard polynomial methods.
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Figure 6: Solution of the Allen-Cahn equation using the Chebyshev pseudospectral
method (N = 10).

7 Summary

In this paper we attempted to establish a connection between RBF collocation methods
and standard (polynomial) pseudospectral methods. Our discussion revealed that for
the non-symmetric (Kansa) Ansatz (12) we can always formulate the discrete differential
operator

LΓ =
[

ÃL
Ã

]
A−1.

However, we cannot ensure in general the invertibility of LΓ. This implies that the non-
symmetric RBF pseudospectral approach is justified for time-dependent PDEs (with
explicit time-stepping methods).

For the symmetric Ansatz (14), on the other hand, we can in general ensure the
solution of Lu = f . However, it is not possible in general to even formulate the discrete
differential operator

L̂Γ =
[

ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1
.

This suggests that we should use the symmetric approach for time-dependent PDEs
with implicit time-stepping as well as for time-independent PDEs.

The difficulties with both approaches can be attributed to the possible singularity of
Kansa’s matrix which appears as discretized differential operator for the non-symmetric
approach, and (via its transpose) as the evaluation matrix in the symmetric approach.

Since the non-symmetric approach is quite a bit easier to implement than the sym-
metric approach, and since the grid configurations for which the Kansa matrix is singu-
lar seem to be very rare (see [10]) many researchers (include ourselves) often prefer to
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Figure 7: Solution of the Allen-Cahn equation using the Chebyshev pseudospectral
method (N = 20).

use the non-symmetric approach – even under questionable circumstances (such as with
implicit time-stepping procedures, or for elliptic problems). However, the connection
to polynomials in the limiting case ε = 0 justifies this at least for 1-D problems.

Overall, the coupling of RBF collocation and pseudospectral methods obtained here
has provided a number of new insights. For example, it should now be clear that we
can apply many standard pseudospectral procedures to RBF solvers. However, with
RBF expansions we can also take advantage of scattered (multivariate) grids as well
as spatial domains with non-rectangular geometries. Thus, we now have “standard”
procedures for solving time-dependent PDEs with RBFs. Moreover, we have illustrated
that RBF pseudospectral methods for ε = 0 are identical to Chebyshev pseudospectral
methods.

Future challenges include the problem of dealing with larger problems in an efficient
and stable way. Thus, such issues as preconditioning and FFT-type algorithms need
to be studied in the context of RBF pseudospectral methods. Some first results in this
directions have been reported very recently in [14].

Another possible avenue opened up by the use of RBFs instead of polynomials
is the study of pseudospectral methods with moving (adaptive) grids. This will be
computationally much more involved, but the use of RBFs should imply that there is
no major restriction imposed by moving (scattered) grids.

Acknowledgement: I would like to thank Robert Schaback for discussing with me
at length the connection between the pseudospectral approach and RBF collocation,
and Grady Wright for providing me with a pre-beta version of his Matlab toolbox for
the Contour-Padé algorithm of [7].
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Figure 8: Solution of the Allen-Cahn equation using the Matérn RBF (5) (N = 20).
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Figure 10: Solution of the Laplace equation using the Chebyshev pseudospectral
method (N = 24× 24).
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