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Abstract

In this paper we solve support vector machines in reproducing kernel Banach
spaces with reproducing kernels defined on nonsymmetric domains instead of the
traditional methods in reproducing kernel Hilbert spaces. Using the orthogonal-
ity of semi-inner-products, we can obtain the explicit representations of the dual
(normalized-duality-mapping) elements of support vector machine solutions. In
addition, we can introduce the reproduction property in a generalized native space
by Fourier transform techniques such that it becomes a reproducing kernel Banach
space, which can be even embedded into Sobolev spaces, and its reproducing ker-
nel is set up by the related positive definite function. The representations of the
optimal solutions of support vector machines (regularized empirical risks) in these
reproducing kernel Banach spaces are formulated explicitly in terms of positive
definite functions, and their finite numbers of coefficients can be computed by
fixed point iteration. We also give some typical examples of reproducing kernel
Banach spaces induced by Matérn functions (Sobolev splines) so that their support
vector machine solutions are well computable as the classical algorithms. More-
over, each of their reproducing bases includes information from multiple training
data points. The concept of reproducing kernel Banach spaces offers us a new
numerical tool for solving support vector machines.

Keywords: support vector machine, regularized empirical risk, reproducing
kernel, reproducing kernel Banach space, positive definite function, Matérn
function, Sobolev spline.

∗Corresponding author
Email addresses: fasshauer@iit.edu (Gregory E. Fasshauer), hickernell@iit.edu

(Fred J. Hickernell), qiye@syr.edu (Qi Ye)

Preprint submitted to Applied and Computational Harmonic Analysis April 21, 2013



1. Introduction

The theory and practice of kernel-based methods is a fast growing research
area. They have been used for both scattered data approximation and machine
learning. Applications come from such different fields as physics, biology, geol-
ogy, meteorology and finance. The books [4, 7, 20, 21] show how to use (con-
ditionally) positive definite kernels to construct interpolants for observation data
sampled from some unknown functions in the native spaces induced by the ker-
nel functions. In the books [2, 18], the optimal support vector machine solutions
are obtained in reproducing kernel Hilbert spaces (RKHSs), and these solutions
are formulated in terms of the related reproducing kernels and given data values.
Actually, as long as the same inner product is used, the concepts of native spaces
and RKHSs are interchangeable. It is just that researchers in numerical analy-
sis and statistical learning use different terminology and techniques to introduce
those spaces. Moreover, the recent contributions [9, 10, 22] develop a clear and
detailed framework for generalized Sobolev spaces and RKHSs by establishing a
connection between Green functions and reproducing kernels.

Related to the current research work, [5, 6, 23] all generalize classical native
spaces (RKHSs) to Banach spaces in different ways. However, the reproducing
property in generalized native spaces is not discussed in [5, 6], and [23] does
not mention how to use reproducing kernels to introduce the explicit forms of
their reproducing kernel Banach spaces (RKBSs) analogous to the typical cases
of RKHSs induced by Gaussian kernels and Sobolev-spline kernels, etc. Using
[23] it is therefore difficult to obtain explicit and simple support vector machine
(SVM) solutions and perform practical computations. Following the results of
these earlier authors, [22, Section 6] tries to combine both of these ideas, and uses
Fourier transform techniques to construct RKBSs.

In this paper we want to complete and extend the theoretical results in [22,
Section 6]. In addition, the RKBS given in Definition 4.1 is different from that
of [23]. Our RKBS can be one-sided or two-sided and its reproducing kernel K
can be defined on nonsymmetric domains, i.e., K : Ω2 × Ω1 → C, where Ω1

and Ω2 can be various subsets of Rd1 and Rd2 , respectively (see Definition 4.1).
Our RKBS is an extension of the RKHS and it does not require the reflexivity
condition. The RKBS defined in [23] can be seen as a special case of the RKBS
defined in this paper. According to Lemma 4.1, we can still obtain the optimal
solution in the one-sided RKBS using the techniques of semi-inner-products.

It is well known that for given training data D :=
{
(x j, y j)

}N

j=1
the classical
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SVM (regularized empirical risk) in the RKHSH has the form

min
f∈H

N∑
j=1

L
(
x j, y j, f (x j)

)
+ R

(
‖ f ‖H

)
,

where L is a loss function and R is a regularization function (see Theorem 3.1). In
the same way we are able to apply an optimal recovery of RKBSs to solve SVMs
in RKBSs. Theorem 4.2 establishes that the SVM in the right-sided RKBS B with
the reproducing kernel K : Ω2 × Ω1 → C based on the training data D ⊆ Ω1 × C
satisfies

min
f∈B

N∑
j=1

L
(
x j, y j, f (x j)

)
+ R

(
‖ f ‖B

)
.

Moreover, this problem has a unique optimal solution sD,L,R and its dual (normalized-
duality-mapping) element s∗D,L,R is a linear combination of the reproducing kernel
centered at the training data points {x1, . . . , xN} ⊆ Ω1, i.e.,

s∗D,L,R(x) =

N∑
k=1

ckK(x, xk), x ∈ Ω2.

According to Corollary 4.3, the coefficient vector c := (c1, · · · , cN)T of s∗D,L,R is
a fixed point of the function F∗D,L,R : RN → RN dependent of the differential loss
function L and the differential regularization function R, i.e., F∗D,L,R(c) = c. From
this it is obvious that the SVM in the RKBS is the generalization of the classical
method in the RKHS.

In Section 5, we show how to use a positive definite function Φ to set up dif-
ferent RKBSs Bp

Φ
(Rd) and Bp

Φ
(Ω) with p > 1 whose two-sided reproducing kernel

is given by K(x, y) = Φ(x − y) (see Theorems 5.1 and 5.6). We can observe that
B

p
Φ

(Rd) is a kind of generalized native space. Furthermore, Bp
Φ

(Rd) and Bp
Φ

(Ω)
coincide with the definition of RKBSs given in [23]. The SVM solution sD,L,R

in Bp
Φ

(Rd) can be represented by the positive definite function Φ, which means
that we can obtain an explicit formula for the SVM solution sD,L,R in Bp

Φ
(Rd) (see

Theorem 5.4). Corollary 5.5 shows that the finite dimensional coefficients of the
SVM solution sD,L,R can even be obtained by solving a fixed point iteration prob-
lem for differentiable loss functions and regularization functions. Theorem 5.6
and Corollary 5.7 give some examples of reproducing kernels defined on nonsym-
metric domains. Corollary 5.3 and 5.8 provide that RKBSs can be embedded into
Sobolev spaces for some special reproducing kernels, e.g., Sobolev-spline kernels
(Matérn functions).
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The Matérn functions represent a fast growing research area which has fre-
quent applications in approximation theory and statistical learning, and more-
over, they are positive definite functions and (full-space) Green functions (see
[7, 9, 14, 22]). In Section 6, we solve the SVMs in the RKBSs of Matérn func-
tions. If Gθ,n is the Matérn function with parameter θ > 0 and degree n > 3d/2
then, according to our theoretical results, B2

Gθ,n
(Rd) is an RKHS, while B4

Gθ,n
(Rd)

is only an RKBS. Their reproducing kernels, however, are the same Sobolev-
spline kernel Kθ,n(x, y) := Gθ,n(x − y). It is well known that the SVM solution in
B2

Gθ,n
(Rd) ≡ HGθ,n(R

d) has the explicit expression

sD,L,R(x) :=
N∑

k=1

ckKθ,n(x, xk), x ∈ Rd,

(see Theorem 3.1). In this paper we discover a new fact that the SVM solution in
B4

Gθ,n
(Rd) also has an explicit form, namely

sD,L,R(x) =

N,N,N∑
k1,k2,k3=1

ck1ck2ck3Kθ,3n
(
x, xk1 , xk2 , xk3

)
, x ∈ Rd,

where Kθ,3n(x, y1, y2, y3) := Gθ,3n(x − y1 + y2 − y3). Section 6 shows that several
other explicit representations of SVM solutions in the RKBS Bp

Gθ,n
(Rd) are eas-

ily computable when p is an even number. This discovery could lead to a new
numerical tool for SVMs.

For the binary classification problems, it is well-known that the classical hinge
loss is designed to maximize the 2-norm margins by using the linear functions.
However, we can not employ the hinge loss to set up the SVMs in order to max-
imize other p-norm margins. We guess that for applications to the problems that
arise in current practice it will be necessary to construct loss functions depending
on different kinds of RKBSs.

Remark 1.1. In this paper, the third author hopes to correct a mistake concerning
the optimal recovery of RKBS Bp

Φ
(Rd) mentioned in [22, Section 6.2]. Theo-

rem 5.4 is the correction of [22, Theorem 6.5], which was the result of a mis-
conception that the normalized duality mapping is linear. The main ideas and
techniques used in the corrected version below are still the same as in [22]. An
updated version of [22] has been posted on Ye’s webpage.
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2. Banach Spaces

In this section, we review some classical theoretical results for Banach spaces
from [11, 13, 15, 16]. We denote the dual space (the collection of all bounded
linear functionals) of a Banach space B by B′ and its dual bilinear product as
〈·, ·〉B, i.e.,

〈 f ,T 〉B := T ( f ), for all T ∈ B′ and all f ∈ B.

[16, Theorem 1.10.7] states that B′ is also a Banach space.
If the Banach spaces B1 and B2 are isometrically isomorphic (equivalent), i.e.,

B1 ≡ B2, then we can think of both spaces as being identical in the sense that
their norms and their elements can be seen to be the same in both spaces (see [16,
Definition 1.4.13]). We say that B1 is embedded into B2 if there exists a positive
constant C such that ‖ f ‖B2

≤ C ‖ f ‖B1
for all f ∈ B1 ⊆ B2 (see [1, Section 1.25]).

If the Banach space B is reflexive (see [16, Definition 1.11.6]), then we have
B′′ ≡ B and 〈 f , g〉B = 〈g, f 〉B′ for all f ∈ B and all g ∈ B′. For example, the func-
tion space Lp(Ω; µ) defined on the positive measure space (Ω,BΩ, µ) is a reflexive
Banach space and its dual space is isometrically equivalent to Lq(Ω; µ) where
p, q > 1 and p−1 + q−1 = 1 (see [16, Example 1.10.2 and Theorem 1.11.10]). For
the complex situation, the isometric isomorphism from Lp(Ω; µ)′ onto Lq(Ω; µ) is
antilinear.

We say that B is uniformly convex if, for every ε > 0, there is δ > 0 such that∥∥∥∥∥ f + g
2

∥∥∥∥∥
B

≤ 1 − δ, whenever ‖ f ‖B = ‖g‖B = 1 and ‖ f − g‖B ≥ ε

(see [16, Definition 5.2.1]). According to [16, Definition 5.4.1, 5.4.15 and Corol-
lary 5.4.18], B is said to be smooth or Gâteaux differentiable if

lim
λ→0

‖ f + λg‖B − ‖ f ‖B
λ

exists , for all f , g ∈ B.

A typical case is that Lp(Ω; µ) is uniformly convex and smooth if 1 < p < ∞.
It is well known that we can discuss the orthogonality in Banach spaces with

a more general axiom system than that in Hilbert spaces. The papers [11, 13, 15]
show that every Banach space can be represented as a semi-inner-product space
in order that the theories of Banach space can be penetrated by Hilbert space type
arguments. A semi-inner-product [·, ·]B : B × B → C defined on a Banach space
B is given by

(i) [ f + g, h]B = [ f , h]B + [g, h]B, (ii) [ f , f ]B = ‖ f ‖2B ,

(iii) [λ f , g]B = λ[ f , g]B, [ f , λg]B = λ[ f , g]B, (iv) |[ f , g]B| ≤ [ f , f ]B[g, g]B,
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for all f , g, h ∈ B and all λ ∈ C. However, Hermitian symmetry of the semi-inner-
product may not hold, i.e., [ f , g]B , [g, f ]B. This indicates that the generality of
the semi-inner-product in Banach space is a serious limitation for any extensive
development that parallels the inner product of Hilbert space.

For example, a semi-inner-product of Lp(Ω; µ) with 1 < p < ∞ is given by

[g, f ]Lp(Ω;µ) =
1

‖ f ‖p−2
Lp(Ω;µ)

∫
Ω

g(x) f (x) | f (x)|p−2 dµ(x), for all f , g ∈ Lp(Ω; µ),

(see examples in [11, 13]).
We say that f is orthogonal to g in a Banach space B if

‖ f + λg‖B ≥ ‖ f ‖B , for all λ ∈ C,

(see the definitions in [11, 13]). Suppose that the Banach space B is smooth.
Using [11, Theorem 2], we can determine that f is orthogonal to g if and only if
f is normal to g, i.e.,

[g, f ]B = 0.

We can also obtain a representation theorem in Banach space by an adaptation
of the representation theorem in Hilbert space. Suppose that the Banach space B
is uniformly convex and smooth. According to [11, Theorem 3 and 6], for every
bounded linear functional T ∈ B′, there exists a unique f ∈ B such that

T (g) = 〈g,T 〉B = [g, f ]B, for all g ∈ B,

and ‖T‖B′ = ‖ f ‖B. This mapping is also surjective. We call T the normalized-
duality-mapping element of f and rewrite it as f ∗ := T . For convenience we
simplify normalized-duality-mapping element to dual element in this paper. The
normalized duality mapping is a one-to-one and norm-preserving mapping from
B onto B′. Note that this mapping is usually nonlinear. According to [11, The-
orem 7], the semi-inner-product of B′ has the form [ f ∗, g∗]B′ = [g, f ]B for all
f ∗, g∗ ∈ B′. For example, the dual element of f ∈ Lp(Ω; µ) with 1 < p < ∞ is
given by

f ∗ =
f (x) | f (x)|p−2

‖ f ‖p−2
Lp(Ω;µ)

∈ Lq(Ω; µ),

where q is the conjugate exponent of p. Let N be a subset of B. We can
check that f is orthogonal to N if and only if its dual element f ∗ ∈ N⊥ =

{η ∈ B′ : 〈h, η〉B = 0, for all h ∈ N}, i.e.,

[h, f ]B = 〈h, f ∗〉B = 0, for all h ∈ N .
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3. Reproducing Kernels and Reproducing Kernel Hilbert Spaces

Most of the material presented in this section can be found in the mono-
graphs [7, 18, 21]. For the reader’s convenience we repeat here what is essential
to our discussion later on.

Definition 3.1 ([21, Definition 10.1]). Let Ω ⊆ Rd and H be a Hilbert space
consisting of functions f : Ω → C. H is called a reproducing kernel Hilbert
space (RKHS) and a kernel function K : Ω × Ω → C is called a reproducing
kernel forH if

(i) K(·, y) ∈ H and (ii) f (y) = ( f ,K(·, y))H , for all f ∈ H and all y ∈ Ω,

where (·, ·)H is used to denote the inner product ofH .

Remark 3.1. In order to simplify our discussion and proofs, we let all kernel func-
tions be complex-valued and all function spaces be composed of complex-valued
functions in this paper. According to [16, Proposition 1.9.3], it is not difficult for
us to restrict the theoretical results to real kernel functions and function spaces.

3.1. Optimal Recovery in Reproducing Kernel Hilbert Spaces
Theorem 3.1 (Representer theorem [18, Theorem 5.5]). Let H be a reproducing
kernel Hilbert space with a reproducing kernel K defined on Ω ⊆ Rd, and a
regularization function R : [0,∞) → [0,∞) be convex and strictly increasing.
We choose the loss function L : Ω × C × C → [0,∞) such that L(x, y, ·) is a
convex map for any fixed x ∈ Ω and any fixed y ∈ C. Given the data D :=
{(x1, y1) , . . . , (xN , yN)}, with pairwise distinct data points X = {x1, . . . , xN} ⊆ Ω

and associated data values Y = {y1, . . . , yN} ⊂ C, the optimal solution (support
vector machine solution) sD,L,R of

min
f∈H

N∑
j=1

L
(
x j, y j, f (x j)

)
+ R

(
‖ f ‖H

)
,

has the explicit representation

sD,L,R(x) =

N∑
k=1

ckK(x, xk), x ∈ Ω,

for some coefficients c1, . . . , cN ∈ C.
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3.2. Constructing Reproducing Kernel Hilbert Spaces by Positive Definite Func-
tions

Definition 3.2 ([21, Definition 6.1]). A continuous even function Φ : Rd → C is
called positive definite if, for all N ∈ N and all sets of pairwise distinct centers
X = {x1, . . . , xN} ⊂ R

d, the quadratic form

N∑
j=1

N∑
k=1

c jckΦ(x j − xk) = c∗AΦ,X c > 0, for all c ∈ CN\{0}.

Here the interpolation matrix AΦ,X :=
(
Φ(x j − xk)

)N,N

j,k=1
∈ CN×N and c∗ = cT .

We say Φ is even if Φ(x) = Φ(−x). This shows that Φ is a positive definite
function if and only if AΦ,X is a positive definite matrix for any pairwise distinct
finite set X of data points in Rd. The application and history of positive definite
functions can be seen in the review paper [8]. [21, Section 10.2] shows how to use
positive definite functions to construct RKHSs.

Theorem 3.2 ([21, Theorem 6.11]). Suppose that Φ ∈ C(Rd) ∩ L1(Rd). Then
Φ is positive definite if and only if Φ is bounded and its Fourier transform Φ̂ is
nonnegative and nonvanishing (nonzero everywhere).

Remark 3.2. In this paper, the Fourier transform of f ∈ L1(Rd) is defined by

f̂ (x) := (2π)−d/2
∫
Rd

f (y)e−ixT ydy,

where i is the imaginary unit, i.e., i2 = −1.

Theorem 3.3 ([21, Theorem 10.12]). Suppose that Φ ∈ C(Rd) ∩ L1(Rd) is a posi-
tive definite function. Then the space

HΦ(Rd) :=
{
f ∈ L2(Rd) ∩ C(Rd) : f̂

/
Φ̂1/2 ∈ L2(Rd)

}
,

equipped with the norm

‖ f ‖HΦ(Rd) :=

(2π)−d/2
∫
Rd

∣∣∣ f̂ (x)
∣∣∣2

Φ̂(x)
dx


1/2

is a reproducing kernel Hilbert space (native space) with reproducing kernel given
by

K(x, y) := Φ(x − y), x, y ∈ Rd,
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where Φ̂ and f̂ are the Fourier transforms of Φ and f , respectively. The inner
product inHΦ(Rd) has the form

( f , g)H = (2π)−d/2
∫
R

f̂ (x)ĝ(x)
Φ̂(x)

dx, f , g ∈ HΦ(Rd).

Using Fourier transform techniques similar to those in Theorem 3.3, we can
employ positive definite functions to set up RKBSs (see Section 5).

4. Reproducing Kernels and Reproducing Kernel Banach Spaces

Now we give the definition of RKBSs as a natural generalization of RKHSs
by viewing the inner product as a dual bilinear product.

Definition 4.1. Let Ω1 and Ω2 be two subsets of Rd1 and Rd2 respectively, and B
be a Banach space composed of functions f : Ω1 → C, whose dual space B′ is
isometrically equivalent to a function space F with g : Ω2 → C. Denote that
K : Ω2 ×Ω1 → C is a kernel function.

We call B a reproducing kernel Banach space (RKBS) and K its right-sided
reproducing kernel if

(i) K(·, y) ∈ F ≡ B′ and (ii) f (y) = 〈 f ,K(·, y)〉B, for all f ∈ B and all y ∈ Ω1.

If the Banach space B reproduces from the other side, i.e.,

(iii) K(x, ·) ∈ B and (iv) g(x) = 〈K(x, ·), g〉B, for all g ∈ F ≡ B′ and all x ∈ Ω2,

then B is called a reproducing kernel Banach space and K its left-sided reproduc-
ing kernel.

For two-sided reproduction as above we say that B is a reproducing kernel
Banach space with the two-sided reproducing kernel K.

Remark 4.1. We know that the Riesz representer map on complex Hilbert space
H is antilinear, i.e.,

Tλg( f ) = 〈 f , λg〉H = λ( f , g)H = λ〈 f , g〉H = λTg( f ),

for all f , g ∈ H and all λ ∈ C. Here we also let the isometrical isomorphism from
the dual space B′ onto the related function space F be antilinear. Thus, the format
of two-sided RKBSs coincides with complex RKHSs, i.e.,

〈K(y, ·), f 〉H = (K(y, ·), f )H = ( f ,K(·, y))H = f (y), for all f ∈ H and all y ∈ Ω,

which indicates that the RKHS is a special case of a two-sided RKBS.
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Why do we define our RKBSs differently from [23, Definition 1]? The reason
is that we can show the optimal recovery in an RKBS even if it is only one-
sided. We do not require a reflexivity condition for the definition of our RKBS.
Moreover, since the dual space of a Hilbert space is isometrically equivalent to
itself, we can choose the equivalent function space F ≡ H such that the domain
of the reproducing kernel K is symmetric, i.e., Ω2 = Ω1. Actually, the Banach
space B is usually not equal to any equivalent function space F of its dual B′

even though we only require them to be isomorphic. We naturally do not need any
symmetry conditions in the Banach space. Therefore the nonsymmetric domain
is used to define the RKBS B and its reproducing kernel K, i.e., Ω2 , Ω1. The
domain of K is related to both B and F ≡ B′. If we choose a different F which is
isometrically equivalent to the dual B′, then we can obtain a different reproducing
kernel K of the RKBS B dependent on its equivalent dual space F .

The functional K(·, y) can be seen as a point evaluation function δy defined
on B. This implies that δy is a bounded linear functional on B, i.e., δy ∈ B

′. If
the Banach space B is further uniformly convex and smooth, then its semi-inner-
product and its normalized duality mapping are well-defined, which can be used
to set up the equivalent conditions of right-sided RKBSs, i.e.,

δy ∈ B
′ ≡ F which indicates that f (y) = 〈 f , δy〉B = [ f , δ∗y]B,

for all f ∈ B and all y ∈ Ω1 (see the discussions of the semi-inner products in
Section 2).

If B is a reflexive two-sided RKBS, then the equivalent dual space F of B is
also a reflexive two-sided RKBS. All RKBSs and reproducing kernels set up in
Section 5 satisfy the two-sided definition but their domains can be symmetric or
nonsymmetric.

If a sequence { fn}
∞
n=1 ⊂ B and f ∈ B such that ‖ f − fn‖B → 0 when n → ∞,

then

| f (y) − fn(y)| = |〈 f − fn,K(·, y)〉B| ≤ ‖K(·, y)‖B′ ‖ f − fn‖B → 0, y ∈ Ω1,

when n → ∞. This means that convergence in the right-sided RKBS B implies
pointwise convergence.

Suppose thatB is a reflexive right-sided RKBS. We show that {K(·, y) : y ∈ Ω1}

is a linear vector space basis of F and span {K(·, y) : y ∈ Ω1} is dense in F . Let
N be a completion (closure) of span {K(·, y) : y ∈ Ω1} ⊆ F ≡ B

′ with its dual
norm. Now we prove that N ≡ F ≡ B′. Since [16, Theorem 1.10.7] provides
that F is also a Banach space, we have N ⊆ F . Assume that N $ F . According
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to [16, Corollary 1.9.7] (application of Hahn-Banach extension theorems) there is
an element f ∈ B ≡ B′′ ≡ F ′ such that ‖ f ‖B = 1 and f (y) = 〈 f ,K(·, y)〉B = 0 for
all y ∈ Ω1. We find the contradiction between ‖ f ‖B = 1 and f = 0. Thus the first
assumption is not true and then we can conclude that N ≡ F ≡ B′, which indi-
cates that {K(·, y) : y ∈ Ω1} is a linear vector space basis of F and

{
δy : y ∈ Ω1

}
is a linear vector space basis of B′.

Example 4.1. We give a simple example of a two-sided RKBS. Let Ω2 = Ω1 :=
{1, · · · , n} and A ∈ Cn×n be a symmetric positive definite matrix. It can be decom-
posed into A = VDV∗, where D is a positive diagonal matrix and V is an orthogonal
matrix. We choose p, q > 1 such that p−1 + q−1 = 1. Define B := { f : Ω1 → C}
equipped with the norm

‖ f ‖B :=
∥∥∥D−1/qV∗ f

∥∥∥
q
, where f := ( f (1), · · · , f (n))T .

We can check that B is a Banach space and its dual space B′ is isometrically
equivalent to F := {g : Ω2 → C} equipped with the norm

‖g‖B′ :=
∥∥∥D−1/pV∗g

∥∥∥
p
, where g := (g(1), · · · , g(n))T .

Moreover, its dual bilinear form is given by

〈 f , g〉B = g∗A−1 f , for all f ∈ B and all g ∈ B′.

If the kernel function is defined by

K( j, k) := A jk, j ∈ Ω2, k ∈ Ω1,

then the reproduction can easily be verified, i.e.,

〈 f ,K(·, k)〉B = f (k), k ∈ Ω1, and 〈K( j, ·), g〉B = g( j), j ∈ Ω2.

Therefore B is indeed a two-sided RKBS.
(In the same way, we can also employ the singular value decomposition of a

nonsymmetric and nonsingular square matrix A to introduce the two-sided RKBS.)

4.1. Optimal Recovery in Reproducing Kernel Banach Spaces
It is well-known that any Hilbert space is uniformly convex and smooth. It

is natural for us to assume the right-sided RKBS is further uniformly convex and
smooth to discuss optimal recovery in it. The definitions of uniform convexity and
smoothness of Banach spaces are given in Section 2.
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Given the pairwise distinct data points X = {x1, . . . , xN} ⊆ Ω1 and the associ-
ated data values Y = {y1, . . . , yN} ⊂ C, we define a subset of the right-sided RKBS
B by

NB(X,Y) :=
{
f ∈ B : f (x j) = y j, for all j = 1, . . . ,N

}
.

If NB(X,Y) is the null set, then there is no meaning for the SVMs. So we need to
assume that NB(X,Y) is always non-null for the given data sites. Actually we can
show thatNB(X,Y) is non-null for any data values Y if and only if δx1 , . . . , δxN are
linearly independent on B because

∑N
k=1 ckδxk = 0 if and only if

∑N
k=1 ck f (xk) = 0

for all f ∈ B, and moreover, c = (c1, · · · , cN)T = 0 if and only if b∗c = 0 for all
b ∈ CN .

In this section, we suppose that δx1 , . . . , δxN are always linearly independent
on B for the given pairwise distinct data points X, which is equivalent to the fact
that K(·, x1), . . . ,K(·, xN) are linearly independent. We use the techniques of [23,
Theorem 19] to verify the following lemma.

Lemma 4.1. Let B be a reproducing kernel Banach space with a right-sided re-
producing kernel K defined on Ω2 × Ω1 ⊆ R

d2 × Rd1 . Suppose that B is uni-
formly convex and smooth. Given the data D := {(x1, y1) , . . . , (xN , yN)} with
pairwise distinct data points X = {x1, . . . , xN} ⊆ Ω1 and associated data values
Y = {y1, . . . , yN} ⊂ C, the dual element s∗D of the unique optimal solution

sD := argmin
f∈B

{
‖ f ‖B : f (x j) = y j, for all j = 1, . . . ,N

}
, (4.1)

is the linear combination of K(·, x1), . . . ,K(·, xN), i.e.,

s∗D(x) =

N∑
k=1

ckK(x, xk), x ∈ Ω2.

Proof. We first prove the uniqueness of the optimal solution of the minimization
problem (4.1). Let us assume that the minimization problem (4.1) has two opti-
mal solutions s1, s2 ∈ B with s1 , s2. Since B is uniformly convex, [16, Corol-
lary 5.1.12] provides that

∥∥∥ 1
2 (s1 + s2)

∥∥∥
B
< 1

2 ‖s1‖B + 1
2 ‖s2‖B. Then ‖s1‖B = ‖s2‖B

shows for s3 := 1
2 (s1 + s2) that ‖s3‖B < ‖s1‖B and s3 ∈ NB(X,Y), i.e., s1 is not

an optimal solution of the minimization problem (4.1). The assumption that there
are two minimizers is false.

Next we show the existence of the minimizer. The minimization problem (4.1)
is equivalent to min f∈NB(X,Y) ‖ f ‖B. Since convergence in a one-sided RKBS B im-
plies pointwise convergence, we can check that NB(X,Y) is a closed convex sub-
set of B. Combining this with the uniform convexity of B, [16, Corollary 5.2.17]
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shows that NB(X,Y) is a Chebyshev set (see [16, Definition 5.1.17]). Thus an
optimal solution min f∈NB(X,Y) ‖ f ‖B exists.

BecauseNB(X,Y)+NB(X, {0}) = NB(X,Y) andNB(X, {0}) is a closed subspace
of B we can determine that the optimal solution sD is orthogonal to NB(X, {0}),
i.e., ‖sD + h‖B ≥ ‖sD‖B for all h ∈ NB(X, {0}). Since B is uniformly convex and
smooth, the dual element s∗D of sD is well-defined and

[h, sD]B = 〈h, s∗D〉B = 0, for all h ∈ NB(X, {0}),

which implies that

s∗D ∈ NB(X, {0})⊥ = {g ∈ F ≡ B′ : 〈h, g〉B = 0, for all h ∈ NB(X, {0})} .

It is obvious that

NB(X, {0}) =
{
f ∈ B : f (x j) = 〈 f ,K(·, x j)〉B = 0, j = 1, . . . ,N

}
=

{
f ∈ B : 〈 f , h〉B = 0, for all h ∈ span {K(·, xk)}Nk=1

}
= ⊥span {K(·, xk)}Nk=1 .

According to [16, Proposition 1.10.15], we have

s∗D ∈
(
⊥span {K(·, xk)}Nk=1

)⊥
= span {K(·, x1), . . . ,K(·, xN)} .

Here N⊥1 and ⊥N2 denote the annihilator of N1 in B′ and the annihilator of N2 in
B, respectively, where N1 ⊆ B and N2 ⊆ B

′ (see [16, Definition 1.10.14]). �

Now we verify the representer theorem for SVMs in a right-sided RKBS.

Theorem 4.2. Let B be a reproducing kernel Banach space with a right-sided
reproducing kernel K defined on Ω2×Ω1 ⊆ R

d2×Rd1 , and a regularization function
R : [0,∞)→ [0,∞) be convex and strictly increasing. Suppose thatB is uniformly
convex and smooth. We choose the loss function L : Ω1×C×C→ [0,∞) such that
L(x, y, ·) is a convex map for any fixed x ∈ Ω1 and any fixed y ∈ C. Given the data
D := {(x1, y1) , . . . , (xN , yN)} with pairwise distinct data points X = {x1, . . . , xN} ⊆

Ω1 and associated data values Y = {y1, . . . , yN} ⊂ C, the dual element of the
unique optimal solution (support vector machine solution) sD,L,R of

min
f∈B

N∑
j=1

L
(
x j, y j, f (x j)

)
+ R

(
‖ f ‖B

)
, (4.2)

13



has the explicit representation

s∗D,L,R(x) =

N∑
k=1

ckK(x, xk), x ∈ Ω2,

for some coefficients c1, . . . , cN ∈ C.

Proof. Let

TD,L,R( f ) :=
N∑

j=1

L
(
x j, y j, f (x j)

)
+ R

(
‖ f ‖B

)
, f ∈ B.

The minimization problem (4.2) is equivalent to min f∈B TD,L,R( f ). Since B is uni-
formly convex and R is convex and strictly increasing, the regularization f 7→
R

(
‖ f ‖B

)
is continuous and strictly convex. Because the B-norm convergence im-

plies the pointwise convergence and L
(
x j, y j, ·

)
is convex for all j = 1, . . . ,N,

the mapping f 7→
∑N

j=1 L
(
x j, y j, f (x j)

)
is also continuous and convex. This indi-

cates the continuity and strict convexity of TD,L,R. Using the increasing property
of R, we can check that the set

{
f ∈ B : TD,L,R( f ) ≤ TD,L,R(0)

}
is nonempty and

bounded. Moreover, the uniformly convex norm implies its reflexivity by the
Milman-Pettis Theorem [16, Theorem 5.2.15]. Thus the existence of minimizers
theorem [18, Theorem A.6.9] gives the existence of the unique solution sD,L,R to
minimize TD,L,R over B.

We fix any f ∈ B and let D f := {(xk, f (xk))}Nk=1. According to Lemma 4.1,
there exists an element sD f whose dual element s∗D f

∈ span {K(·, xk)}Nk=1 such that
sD f interpolates the data values { f (xk)}Nk=1 at the centers points X = {xk}

N
k=1 and∥∥∥sD f

∥∥∥
B
≤ ‖ f ‖B. This indicates that

TD,L,R(sD f ) ≤ TD,L,R( f ).

Therefore the dual element s∗D,L,R of the optimal solution sD,L,R of the minimization
problem (4.2) belongs to span {K(·, xk)}Nk=1.

�

Remark 4.2. Since K(·, x j) can be seen as a point evaluation functional δx j defined
on B, it indicates that the dual element of sD,L,R can be also written as a linear
combination of δx1 , . . . , δxN , i.e., s∗D,L,R =

∑N
j=1 c jδx j .

The uniform convexity and smoothness of B imply the uniform convexity and
smoothness of its dual B′ ≡ F . If B is a left-sided RKBS satisfying uniform
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convexity and smoothness conditions, then we can further perform optimal recov-
ery in F in the same way, i.e., the dual element of the optimal solution (SVM
solution) of

min
g∈F≡B′

N∑
j=1

L̃
(
x j, y j, g(x j)

)
+ R

(
‖g‖B′

)
,

is a linear combination of K(x1, ·), . . . ,K(xN , ·), where X = {x1, . . . , xN} ⊆ Ω2 and
L̃ : Ω2 × C × C→ [0,∞).

Moreover, since the normalized duality mapping is an identity mapping on
the Hilbert space and the reproducing kernel of an RKHS is symmetric, optimal
recovery in RKBSs as in Theorem 4.2 can be seen as a generalization of optimal
recovery in RKHSs as in Theorem 3.1.

Since the normalized duality mapping is one-to-one, for any fixed c ∈ CN ,
there exists an unique sc ∈ B such that its dual element has the form s∗c =∑N

k=1 ckK(·, xk) = kT
X c, where kX := (K(·, x1), · · · ,K(·, xN))T and c := (c1, · · · , cN)T .

According to Theorem 4.2, the SVM (4.2) can be transformed to solve a finite-
dimensional optimization problem, i.e.,

copt := argmin
c∈CN

N∑
j=1

L
(
x j, y j, sc(x j)

)
+ R

(
‖sc‖B

)
,

and the dual element of the SVM solution has the form s∗D,L,R = kT
X copt.

Now we want to show that these optimal coefficients copt can be computed by
a fixed point iteration method similar as in [17]. Suppose that L(x, y, ·) ∈ C1(C)
for all x ∈ Ω1 and all y ∈ C, and R ∈ C1([0,∞)). Let

φ∗j(c) := [K(·, x j), kT
X c]B′ = [K(·, x j), s∗c]B′ , c ∈ CN , j = 1, . . . ,N,

and
L′(x, y, t) :=

d
dt

L(x, y, t), x ∈ Ω1, y ∈ C,

where d
dt represents the Wirtinger derivative defined by

d
dt

:=
1
2

(
d
du
− i

d
dv

)
, where t = u + iv with i2 = −1 and u, v ∈ R.

Thus we have

sc(x j) = 〈sc,K(·, x j)〉B = [sc,K(·, x j)∗]B = [K(·, x j), s∗c]B′ = φ∗j(c), j = 1, . . . ,N,
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and

‖sc‖
2
B = [sc, sc]B = 〈sc, s∗c〉B =

N∑
j=1

c j〈sc,K(·, x j)〉B =

N∑
j=1

c jφ
∗
j(c) = c∗φ∗(c),

where φ∗ :=
(
φ∗1, · · · , φ

∗
N

)T
. Denote that

T ∗D,L,R(c) :=
N∑

j=1

L
(
x j, y j, φ

∗
j(c)

)
+R

( √
c∗φ∗(c)

)
=

N∑
j=1

L
(
x j, y j, sc(x j)

)
+R

(
‖sc‖B

)
.

Since copt is the global minimizer of T ∗D,L,R over CN , copt is a stationary point of
T ∗D,L,R, i.e., ∇T ∗D,L,R(copt) = 0. We compute the gradient of T ∗D,L,R by Wirtinger
partial derivatives, i.e.,

∇T ∗D,L,R(c)T = l′D (φ∗(c))T
∇φ∗(c) +

R′
( √

c∗φ∗(c)
)

4
√

c∗φ∗(c)
c∗∇φ∗(c),

where l′D (φ∗) :=
(
L′(x1, y1, φ

∗
1), · · · , L′(xN , yN , φ

∗
N)

)T
and ∇φ∗ :=

(
∂
∂ck
φ∗j

)N,N

j,k=1
is the

Jacobian (gradient) matrix of φ∗ by Wirtinger partial derivatives. The optimal
solution copt is also a fixed point of the function F∗D,L,R, i.e.,

F∗D,L,R(copt) = copt,

where
F∗D,L,R(c) := c + ∇T ∗D,L,R(c), c ∈ CN\{0}. (4.3)

Corollary 4.3. Suppose that the loss function L(x, y, ·) ∈ C1(C) for all x ∈ Ω1 and
all y ∈ C, and the regularization function R ∈ C1([0,∞)). Then the coefficients
c of the dual element s∗D,L,R of the support vector machine solution sD,L,R given in
Theorem 4.2 is a fixed point of the function F∗D,L,R defined in Equation (4.3), i.e.,
F∗D,L,R(c) = c.

Remark 4.3. Even though we can obtain the coefficients of s∗D,L,R by the fixed point
iteration method, it is still difficult for us to recover the explicit form sD,L,R in many
cases. In Section 5 we discuss how to obtain the SVM solutions in RKBSs induced
by positive definite functions (see Theorem 5.4). In that setting the coefficients
of the explicit form are also computable by a fixed point iteration method for
differentiable loss functions and regularization functions.

16



5. Constructing Reproducing Kernel Banach Spaces by Positive Definite Func-
tions

Now we construct RKBSs based on positive definite functions in a way similar
to the construction of RKHSs in Theorem 3.3. Let 1 < p, q < ∞ and p−1 +q−1 = 1.
Suppose that Φ ∈ C(Rd) ∩ L1(Rd) is a positive definite function. According to
Theorem 3.2, we know that Φ̂ ∈ L1(Rd)∩C(Rd) is nonnegative and nonvanishing.
We define

B
p
Φ

(Rd) :=
{
f ∈ C(Rd) ∩ SI : the distributional Fourier transform f̂ of f is

a measurable function defined on Rd such that f̂
/
Φ̂1/q ∈ Lq(Rd)

}
,

(5.1)

equipped with the norm

‖ f ‖Bp
Φ

(Rd) :=

(2π)−d/2
∫
Rd

∣∣∣ f̂ (x)
∣∣∣q

Φ̂(x)
dx

1/q

,

where SI is the collection of all slowly increasing functions (see [21, Defini-
tion 5.19]). We define Bq

Φ
(Rd) in an analogous way as above.

Remark 5.1. Following the theoretical results of [12, Section 7.1] and [19, Sec-
tion 1.3] we can define the distributional Fourier transform T̂ ∈ S ′ of the tem-
pered distribution T ∈ S ′ by

〈γ, T̂ 〉S := 〈γ̂,T 〉S , for all γ ∈ S ,

where S is the Schwartz space (see [21, Definition 5.17]) and S ′ is its dual
space with the dual bilinear form 〈·, ·〉S . We can also verify that C(Rd) ∩ SI ⊂
Lloc

1 (Rd) ∩ SI is embedded into S ′.

When p ≥ q, then Φ̂ ∈ L1(Rd)∩C(Rd) implies that Φ̂p/q ∈ L1(Rd) which will be
used in the proof of the following theorem. We also need to impose an additional
symmetry condition on Φ̂q/p ∈ L1(Rd) which is needed in the proof. Since p/q =

p − 1 and q/p = q − 1, this condition can be represented as Φ̂min{p,q}−1 ∈ L1(Rd).
Since we can denote the positive measure µ on Rd as

µ(A) := (2π)−d/2
∫

A

dx
Φ̂(x)

, for any open set A of Rd.
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[16, Example 1.2.6] provides that the space Lq(Rd; µ) is well-defined on the posi-
tive measure space (Rd,BRd , µ), i.e.,

Lq(Rd; µ) :=
{

f : Rd → C : f is measurable and
∫
Rd
| f (x)|q dµ(x) < ∞

}
,

equipped with the norm

‖ f ‖Lq(Rd;µ) :=
(∫
Rd
| f (x)|q dµ(x)

)1/q

.

Lp(Rd; µ) is also defined in an analogous way. [16, Example 1.10.2 and Theo-
rem 1.10.7] show that Lq(Rd; µ) is a Banach space and its dual space Lq(Rd; µ)′

is isometrically equivalent to Lp(Rd; µ). In analogy to the representation theorem
on Hilbert space, the bounded linear functional Tg ∈ Lq(Rd; µ)′ associated with
g ∈ Lp(Rd; µ) is given by

Tg( f ) :=
∫
Rd

f (x)g(x)dµ(x), for all f ∈ Lq(Rd; µ).

Here, this isometric isomorphism from Lq(Rd; µ)′ onto Lp(Rd; µ) is antilinear, just
as the dual of complex Hilbert spaces, i.e.,

Tλg( f ) =

∫
Rd

f (x)λg(x)dµ(x) = λTg( f ), for all f ∈ Lq(Rd; µ) and all λ ∈ C.

If we can show that Bp
Φ

(Rd) and Lq(Rd; µ) are isometrically isomorphic, then
B

p
Φ

(Rd) is a Banach space and its dual space Bp
Φ

(Rd)′ is isometrically equivalent to
Lp(Rd; µ). One can argue analogously for Bq

Φ
(Rd) ≡ Lp(Rd; µ). If we can further

verify the two-sided reproduction of Bp
Φ

(Rd), then Bp
Φ

(Rd) is a two-sided RKBS.

Theorem 5.1. Let 1 < p, q < ∞ and p−1 + q−1 = 1. Suppose that Φ ∈ L1(Rd) ∩
C(Rd) is a positive definite function on Rd and that Φ̂min{p,q}−1 ∈ L1(Rd). Then
B

p
Φ

(Rd) given in Equation (5.1) is a reproducing kernel Banach space with the
two-sided reproducing kernel

K(x, y) := Φ(x − y), x, y ∈ Rd.

Its dual spaceBp
Φ

(Rd)′ andBq
Φ

(Rd) are isometrically isomorphic. Moreover,Bp
Φ

(Rd)
is uniformly convex and smooth.

In particular, when p = 2 then B2
Φ

(Rd) = HΦ(Rd) is a reproducing kernel
Hilbert space as in Theorem 3.3.
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Proof. For convenience, we assume that p ≥ q. We first prove that Bp
Φ

(Rd) and
Lq(Rd; µ) are isometrically isomorphic. The Fourier transform map can be seen as
a one-to-one map from Bp

Φ
(Rd) into Lq(Rd; µ). We can check the equality of their

norm

‖ f ‖Bp
Φ

(Rd) =

(2π)−d/2
∫
Rd

∣∣∣ f̂ (x)
∣∣∣q

Φ̂(x)
dx

1/q

=

(∫
Rd

∣∣∣ f̂ (x)
∣∣∣q dµ(x)

)1/q

=
∥∥∥ f̂

∥∥∥
Lq(Rd;µ)

.

So the Fourier transform map is an isometric isomorphism. Now we verify that
the Fourier transform map is surjective. Fix any h ∈ Lq(Rd; µ). We want to find
an element in Bp

Φ
(Rd) whose Fourier transform is equal to h. We conclude that

h ∈ L1(Rd) because∫
Rd
|h(x)| dx ≤

(∫
Rd

|h(x)|q

Φ̂(x)
dx

)1/q (∫
Rd

Φ̂(x)p/qdx
)1/p

< ∞.

Thus, the inverse Fourier transform of h given as ȟ(x) = (2π)−d/2
∫
Rd h(y)eixT ydy

is well-defined and an element of C(Rd) ∩ SI. This indicates that ˆ̌h = h and
ȟ ∈ Bp

Φ
(Rd) because 〈 ˆ̌h, γ〉S = 〈h, ˇ̂γ〉S = 〈h, γ〉S for all γ ∈ S . Therefore

B
p
Φ

(Rd) is isometrically equivalent to Lq(Rd; µ).
Using Φ̂q/p = Φ̂q−1 ∈ L1(Rd) we can also prove that Bq

Φ
(Rd) ≡ Lp(Rd; µ) in an

analogous way. Therefore Bq
Φ

(Rd) is isometrically equivalent to the dual space of
B

p
Φ

(Rd).
We fix any y ∈ Rd. The Fourier transform of K(·, y) is equal to k̂y(x) :=

Φ̂(x)e−ixT y. Since Φ̂p−1 ∈ L1(Rd) we have k̂y ∈ Lp(Rd; µ). Thus K(·, y) can be seen
as an element of Bq

Φ
(Rd) ≡ Bp

Φ
(Rd)′. In addition, K(x, ·) ∈ Bp

Φ
(Rd) for any x ∈ Rd

because Φ̂q−1 ∈ L1(Rd) and
(
K(x, ·)

)
ˆ= k̂x ∈ Lq(Rd; µ) by Φ = Φ(−·).

Finally, we verify the right-sided reproduction. Fix any f ∈ Bp
Φ

(Rd) and y ∈
Rd. We can verify that f̂ ∈ L1(Rd) as in the above proof. Moreover, the continuity
of f and ˇ̂f allows us to recover f pointwise from its Fourier transform via

f (x) = ˇ̂f (x) = (2π)−d/2
∫
Rd

f̂ (y)eixT ydy.

Thus, we have

〈 f ,K(·, y)〉Bp
Φ

(Rd) = 〈 f̂ , k̂y〉Lq(Rd;µ) =

∫
Rd

f̂ (x)k̂y(x)dµ(x)

=(2π)−d/2
∫
Rd

f̂ (x)Φ̂(x)e−ixT y

Φ̂(x)
dx = (2π)−d/2

∫
Rd

f̂ (x)eixT ydx = f (y).
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In the same way, we can also verify that Bp
Φ

(Rd) satisfies the left-sided reproduc-
tion property, i.e.,

〈K(x, ·), g〉Bp
Φ

(Rd) = 〈k̂x, ĝ〉Lq(Rd;µ) =

∫
Rd

ĝ(y)k̂x(y)dµ(y) = g(x),

for all g ∈ Bq
Φ

(Rd) ≡ Bp
Φ

(Rd)′ and all x ∈ Rd. Therefore Bp
Φ

(Rd) is an RKBS with
the two-sided reproducing kernel K.

Since Bp
Φ

(Rd) ≡ Lq(Rd; µ) is reflexive and K is even, the dual space Bp
Φ

(Rd)′ ≡
B

q
Φ

(Rd) is also an RKBS with the two-sided reproducing kernel K.
Because Lq(Rd; µ) and Lp(Rd; µ) are uniformly convex and smooth by [16,

Theorem 5.2.11 and Example 5.4.8]. Bp
Φ

(Rd) and Bq
Φ

(Rd) are also uniformly con-
vex and smooth. �

Remark 5.2. We can combine our result with [16, Proposition 1.9.3] to conclude
that the restriction of Bp

Φ
(Rd) to the reals is also an RKBS with the two-sided

reproducing kernel K and its dual is isometrically equivalent to the restriction of
B

q
Φ

(Rd) to the reals. It is well-known that the RKHS of a given reproducing kernel
is unique. Theorem 5.1, however, shows that different RKBSs may have the same
reproducing kernel. We will provide an example for this in Section 6. Moreover,
the proof of Theorem 5.1 provides that Bp

Φ
(Rd) with p ≥ 2 is still a right-sided

RKBS without the additional condition Φ̂q−1 ∈ L1(Rd).
According to [21, Theorem 10.10] any positive definite kernel can be used to

construct an RKHS. We may extend the positive definite kernel into an RKBS.

Corollary 5.2. Let Bp
Φ

(Rd) with p ≥ 2 be defined in Theorem 5.1. Then Bp
Φ

(Rd) ⊆
Lp(Rd).

Proof. We fix any f ∈ Bp
Φ

(Rd). According to the proof of Theorem 5.1, we have
f̂ ∈ Lq(Rd) because∫

Rd

∣∣∣ f̂ (x)
∣∣∣q dx ≤ (2π)qd/2

∫
Rd

∣∣∣ f̂ (x)
∣∣∣q

Φ̂(x)
dx

 (sup
x∈Rd

Φ̂(x)
)
< ∞.

The Hausdorff-Young inequality [12, Theorem 7.1.13] provides that f = ˇ̂f ∈
Lp(Rd) because 1 < q ≤ 2. �

Remark 5.3. The RKBS Bp
Φ

(Rd) with p ≥ 2 can be precisely written as

B
p
Φ

(Rd) :=
{
f ∈ Lp(Rd) ∩ C(Rd) : the distributional Fourier transform f̂ of f

is a measurable function defined on Rd such that f̂
/
Φ̂1/q ∈ Lq(Rd)

}
.
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However, Bp
Φ

(Rd) * Lp(Rd) with 1 < p < 2 because the Hausdorff-Young in-
equality does not work for q > 2.

We fix any positive number m > d/2. According to [21, Corollary 10.13], if
there are two positive constants C1,C2 such that

C1

(
1 + ‖x‖22

)−m/2
≤ Φ̂(x)1/2 ≤ C2

(
1 + ‖x‖22

)−m/2
, x ∈ Rd,

then the RKHS B2
Φ

(Rd) ≡ HΦ(Rd) and the classical L2-based Sobolev space
Wm

2 (Rd) ≡ Hm(Rd) of order m are isomorphic, i.e.,HΦ(Rd) � Hm(Rd).
Following the ideas of RKHSs, we can also find a relationship between RKBSs

and Sobolev spaces. Let fm(x) :=
(
1 + ‖x‖22

)m/2
f̂ (x) with p ≥ 2. The theory of

singular integrals then shows that f belongs to the classical Lp-based Sobolev
space Wm

p (Rd) of order m if any only if the function fm is the Fourier transform
of some function in Lp(Rd), and the Lp-norm of the inverse Fourier transform fm

is equivalent to the Wm
p -norm of f (much more detail is mentioned in [1, Sec-

tion 7.63] and [12, Section 7.9]). Using the Hausdorff-Young inequality, we can
get ‖ f ‖Wm

p (Rd) ≤ C
∥∥∥ f̌m

∥∥∥
Lp(Rd)

≤ C ‖ fm‖Lq(Rd) for some positive constant C indepen-
dent of f . Following these statements, we can introduce the following corollary.

Corollary 5.3. Let the positive definite function Φ be as in Theorem 5.1 and
Wm

p (Rd) be the classical Lp-based Sobolev space of order m > pd/q−d/q. Here q
is the conjugate exponent of p ≥ 2. If there are two positive constants C1,C2 such
that

C1

(
1 + ‖x‖22

)−m/2
≤ Φ̂(x)1/q ≤ C2

(
1 + ‖x‖22

)−m/2
, x ∈ Rd,

then Bp
Φ

(Rd) is embedded into Wm
p (Rd), i.e.,

‖ f ‖Wm
p (Rd) ≤ C ‖ f ‖Bp

Φ
(Rd) , f ∈ Bp

Φ
(Rd) ⊆ Wm

p (Rd),

for some positive constant C independent on f .

Remark 5.4. Here the lower bound for m is induced by the condition that Φ̂q/p ∈

L1(Rd). According to Corollary 5.3, the dual space W−m
q (Rd) of the Sobolev space

Wm
p (Rd) is embedded into the dual space Bp

Φ
(Rd)′ of the RKBS Bp

Φ
(Rd). It is

well-known that the point evaluation functional δx belongs to W−m
q (Rd) (see [1,

Section 3.25]) which coincides with δx ∈ B
p
Φ

(Rd)′.
Since K(·, x1), . . . ,K(·, xN) are linearly independent in Bq

Φ
(Rd) ≡ Bp

Φ
(Rd)′ for

any pairwise distinct data points X = {x1, . . . , xN} ⊆ R
d, δx1 , . . . , δxN are linearly

independent on Bp
Φ

(Rd). Combining Theorems 4.2 and 5.1, we can solve the em-
pirical SVM solution in Bp

Φ
(Rd) with p > 1.
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Theorem 5.4. Let Bp
Φ

(Rd) with p > 1 be defined as in Theorem 5.1 and the
regularization function R : [0,∞) → [0,∞) be convex and strictly increasing.
We choose the loss function L : Rd × C × C → [0,∞) such that L(x, y, ·) is a
convex map for any fixed x ∈ Rd and any fixed y ∈ C. Given the data D :=
{(x1, y1) , . . . , (xN , yN)} with pairwise distinct data points X = {x1, . . . , xN} ⊆ R

d

and associated data values Y = {y1, . . . , yN} ⊂ C, the unique optimal solution
(support vector machine solution) sD,L,R of

min
f∈Bp

Φ
(Rd)

N∑
j=1

L
(
x j, y j, f (x j)

)
+ R

(
‖ f ‖Bp

Φ
(Rd)

)
, (5.2)

has the explicit representation

sD,L,R(x) = (2π)−d/2
∫
Rd

Φ̂(y)p−1
N∑

k=1

ckei(x−xk)T y

∣∣∣∣∣∣∣
N∑

l=1

cle−ixT
l y

∣∣∣∣∣∣∣
p−2

dy, x ∈ Rd,

(5.3)
for some coefficients c1, . . . , cN ∈ C and i2 = −1.

Proof. Using Theorems 4.2 and 5.1, the dual element of the SVM solution sD,L,R

of the SVM (5.2) is a linear combination of K(·, x1), . . . ,K(·, xN), i.e.,

s∗D,L,R(x) =

N∑
k=1

bkK(x, xk) =

N∑
k=1

bkΦ(x − xk), x ∈ Rd, b := (b1, · · · , bN)T
∈ CN .

Suppose that sD,L,R is not trivial. According to the proof of Theorem 5.1, the
identity element of s∗D,L,R ∈ B

q
Φ

(Rd) in Lp(Rd; µ) is the Fourier transform of s∗D,L,R,
i.e.,

fs(x) := F
(
s∗D,L,R

)
(x) =

N∑
k=1

bkΦ̂(x)e−ixT xk , x ∈ Rd.

The dual element of fs ∈ Lp(Rd; µ) in Lq(Rd; µ) has the form

f ∗s (x) =
fs(x) | fs(x)|p−2

‖ fs‖
p−2
Lp(Rd;µ)

, x ∈ Rd.

Because the dual element of s∗D,L,R in Bp
Φ

(Rd) is equal to the identity element of
f ∗s ∈ Lq(Rd; µ) in Bp

Φ
(Rd), which is the inverse Fourier transfer of f ∗s , we can

determine that

sD,L,R(x) = F −1 (
f ∗s

)
(x) = (2π)−d/2

∫
Rd

Φ̂(y)p−1
N∑

k=1

ckei(x−xk)T y

∣∣∣∣∣∣∣
N∑

l=1

cle−ixT
l y

∣∣∣∣∣∣∣
p−2

dy,
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and the coefficients are given by ck := ‖ fs‖
2−p
p−1

Lp(Rd;µ) bk =
∥∥∥sD,L,R

∥∥∥q−2

B
p
Φ

(Rd)
bk for all

k = 1, . . . ,N, where q is the conjugate exponent of p.
�

Remark 5.5. In particular, if p is an even positive integer, then sD,L,R is also a linear
combination of some kernel function translated to the data points X. For example,
when p = 4, then

sD,L,R =

N,N,N∑
k1,k2,k3=1

ck1ck2ck3Φ3
(
· − xk1 + xk2 − xk3

)
=

N,N,N∑
k1,k2,k3=1

ck1ck2ck3K3
(
·, xk1 , xk2 , xk3

)
,

where the kernel function K3(x, y1, y2, y3) := Φ3(x − y1 + y2 − y3) and Φ3 is the
inverse Fourier transform of Φ̂3. Moreover,∥∥∥sD,L,R

∥∥∥4/3

B
p
Φ

(Rd)
=

∥∥∥sD,L,R

∥∥∥−2/3

B
p
Φ

(Rd)
[sD,L,R, sD,L,R]Bp

Φ
(Rd) =

∥∥∥sD,L,R

∥∥∥−2/3

B
p
Φ

(Rd)
〈sD,L,R, s∗D,L,R〉Bp

Φ
(Rd)

=

N∑
j=1

c j〈sD,L,R,K(·, x j)〉Bp
Φ

(Rd) =

N,N,N,N∑
j,k1,k2,k3=1

c jck1ck2ck3K3

(
x j, xk1 , xk2 , xk3

)
.

We can observe that the coefficients of the SVM solution sD,L,R given in The-
orem 5.4 differ from the coefficients of its dual element s∗D,L,R only by a constant
factor. As in Corollary 4.3, the coefficients of sD,L,R can also be computed by the
fixed point iteration method. For any fixed c := (c1, · · · , cN)T

∈ CN , we can define
a unique function sc ∈ B

p
Φ

(Rd) as in Equation (5.3). Let

φ j(c) := sc(x j) = (2π)−d/2
∫
Rd

Φ̂(y)p−1
N∑

k=1

ckei(x j−xk)T y

∣∣∣∣∣∣∣
N∑

l=1

cle−ixT
l y

∣∣∣∣∣∣∣
p−2

dy, c ∈ CN ,

for all j = 1, . . . ,N, and φ := (φ1, · · · , φN)T . Thus we have

‖sc‖
q
B

p
Φ

(Rd)
= ‖sc‖

q−2
B

p
Φ

(Rd)
〈sc, s∗c〉Bp

Φ
(Rd) =

N∑
j=1

c j〈sc,K(·, x j)〉Bp
Φ

(Rd) = c∗φ(c).

Here q is the conjugate exponent of p. Denote that

TD,L,R(c) :=
N∑

j=1

L
(
x j, y j, φ j(c)

)
+R

(
(c∗φ(c))1/q

)
=

N∑
j=1

L
(
x j, y j, sc(x j)

)
+R

(
‖sc‖Bp

Φ
(Rd)

)
.
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It is easy to check that the coefficients of sD,L,R are the minimizers of TD,L,R over
CN , i.e.,

copt := argmin
c∈CN

TD,L,R(c) such that sD,L,R = scopt .

Suppose that L(x, y, ·) ∈ C1(C) for all x ∈ Rd and all y ∈ C, R ∈ C1([0,∞)) and
p ≥ 2. We can compute the gradient of TD,L,R by Wirtinger partial derivatives in
the form

∇TD,L,R(c)T = l′D (φ(c))T
∇φ(c) +

R′
(
(c∗φ(c))1/q

)
2q (c∗φ(c))1/p c∗∇φ(c),

where l′D (φ) := (L′(x1, y1, φ1), · · · , L′(xN , yN , φN))T and the entries of the Jacobian
(gradient) matrix ∇φ :=

(
∂
∂ck
φ j

)N,N

j,k=1
by Wirtinger partial derivatives have the forms

∂

∂ck
φ j(c) =

p
2

(2π)−d/2
∫
Rd

Φ̂(y)p−1ei(x j−xk)T y

∣∣∣∣∣∣∣
N∑

l=1

cle−ixT
l y

∣∣∣∣∣∣∣
p−2

dy.

Moreover, copt is the stationary point of ∇TD,L,R which indicates that copt is a fixed
point of the function

FD,L,R(c) := c + ∇TD,L,R(c), c ∈ CN . (5.4)

Therefore, we can introduce the following corollary.

Corollary 5.5. Suppose that the loss function L(x, y, ·) ∈ C1(C) for all x ∈ Rd and
all y ∈ C, the regularization function R ∈ C1([0,∞)) and p ≥ 2. Then the coeffi-
cient vector c of the support vector machine solution sD,L,R given in Theorem 5.4
is a fixed point of the function FD,L,R defined in Equation (5.4), i.e., FD,L,R(c) = c.

Remark 5.6. The coefficients c := (c1, · · · , cN)T of the SVM solution sD,L,R in
B

p
Φ

(Rd) differ from the coefficients b := (b1, · · · , bN)T of its dual element s∗D,L,R
in Bq

Φ
(Rd) only by a constant factor. Both coefficient vectors b and c are fixed

points of the functions F∗D,L,R as in Equation (4.3) and FD,L,R as in Equation (5.4),
respectively. Roughly speaking, F∗D,L,R can be seen as a conjugate of FD,L,R. Much
more contents of these fixed point iteration algorithms for the binary classification
problems will be deeply discussed in our next papers.

We now use the techniques of [3, Theorem 6] to set up a two-sided RKBS
defined on a subset Ω of Rd.

24



Theorem 5.6. Let the positive definite function Φ be as in Theorem 5.1 and Ω ⊆

Rd. Then the function space

B
p
Φ

(Ω) :=
{
h : there exists a function h ∈ Bp

Φ
(Rd) such that f |Ω = h

}
,

equipped with the norm

‖h‖Bp
Φ

(Ω) := inf
f∈Bp

Φ
(Rd)
‖ f ‖Bp

Φ
(Rd) s.t. f |Ω = h,

is a reproducing kernel Banach space with the two-sided reproducing kernel

K|Rd×Ω(x, y) := Φ(x − y), x ∈ Rd, y ∈ Ω,

where f |Ω stands for the restriction of f to Ω. Its dual space Bp
Φ

(Ω)′ is isometri-
cally equivalent to a closed subspace of Bq

Φ
(Rd) (the annihilator ofN0 in Bq

Φ
(Rd))

N⊥0 =
{
g ∈ Bq

Φ
(Rd) ≡ Bp

Φ
(Rd)′ : 〈 f , g〉Bp

Φ
(Rd) = 0, for all f ∈ N0

}
,

where q is the conjugate exponent of p > 1 and

N0 :=
{
f ∈ Bp

Φ
(Rd) : f |Ω = 0

}
.

Moreover, Bp
Φ

(Ω) is uniformly convex and smooth.

Proof. Since convergence in a two-sided RKBS Bp
Φ

(Rd) implies pointwise con-
vergence, we can determine thatN0 is a closed subspace of Bp

Φ
(Rd). According to

the construction of Bp
Φ

(Ω), Bp
Φ

(Ω) is isometrically equivalent to the quotient space
B

p
Φ

(Rd)
/
N0 (see [16, Definition 1.7.1 and 1.7.3]). Thus Bp

Φ
(Ω) is a Banach space

by [16, Theorem 1.7.9 and Corollary 1.11.19].
Next we use the identification of

(
B

p
Φ

(Rd)
/
N0

)′
≡ N⊥0 to verify the two-sided

reproduction (see [16, Theorem 1.10.17]). Let K be the reproducing kernel of
B

p
Φ

(Rd) given in Theorem 5.1. We fix any y ∈ Ω. Since

〈 f ,K(·, y)〉Bp
Φ

(Rd) = f (y) = 0, for all f ∈ N0,

we have K(·, y) ∈ N⊥0 ≡
(
B

p
Φ

(Rd)
/
N0

)′
≡ B

p
Φ

(Ω)′. Combining this with the right-
sided reproduction of Bp

Φ
(Rd), we have

〈h,K(·, y)〉Bp
Φ

(Ω) = 〈Eh,K(·, y)〉Bp
Φ

(Rd) = (Eh)(y) = h(y),
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for all h ∈ Bp
Φ

(Ω) and all y ∈ Ω, where E is the extension operator fromBp
Φ

(Ω) into
B

p
Φ

(Rd) such that Eh|Ω = h and ‖Eh‖Bp
Φ

(Rd) = ‖h‖Bp
Φ

(Ω). Since K(x, ·)|Ω ∈ Bp
Φ

(Ω) for
all x ∈ Rd, we can also obtain the left-sided reproduction of Bp

Φ
(Ω), i.e.,

〈K(x, ·)|Ω, g〉Bp
Φ

(Ω) = 〈K(x, ·), g〉Bp
Φ

(Rd) = g(x),

for all g ∈ N⊥0 ≡ B
p
Φ

(Ω)′. Therefore Bp
Φ

(Ω) is an RKBS with the two-sided
reproducing kernel K|Rd×Ω.

SinceBp
Φ

(Rd) is uniformly convex, [16, Theorem 5.2.24] provides thatBp
Φ

(Ω) ≡
B

p
Φ

(Rd)
/
N0 is uniformly convex. We also know that Bp

Φ
(Rd)′ ≡ Lq(Rd; µ) is uni-

formly convex and N⊥0 is a closed subspace of Bq
Φ

(Rd) ≡ Bp
Φ

(Rd)′ by [16, Propo-
sition 1.10.15]. Combining with [16, Proposition 5.1.20 and 5.4.5], we can also
check that Bp

Φ
(Ω) is smooth. �

Remark 5.7. When p = 2, then we know that B2
Φ

(Ω) is a Hilbert space by The-
orem 5.1. Thus the dual space and the space itself are isometrically isomorphic
such that the reproducing kernel becomes K|Ω×Ω. Since B2

Φ
(Rd) = N0 ⊕ N

⊥
0 , we

can determine that
{
g|Ω : g ∈ N⊥0

}
= B2

Φ
(Ω) and ‖g‖B2

Φ
(Rd) = ‖g|Ω‖B2

Φ
(Ω) for all

g ∈ N⊥0 which implies that B2
Φ

(Ω) ≡ N⊥0 ≡ B
2
Φ

(Ω)′ and B2
Φ

(Ω) has the inner
product

(h1, h2)B2
Φ

(Ω) = 〈h1, h2〉B2
Φ

(Ω) = 〈Eh1, Eh2〉B2
Φ

(Rd) = (Eh1, Eh2)B2
Φ

(Rd),

for all h1, h2 ∈ B
2
Φ

(Ω). Therefore B2
Φ

(Ω) is an RKHS. Moreover, since K(·, y) ∈
N⊥0 for any y ∈ Ω, we have E (K(·, y)|Ω) = K(·, y). This shows that K|Ω×Ω is a
reproducing kernel of B2

Φ
(Ω). This conclusion is the same as in [3, Theorem 6].

If the RKBS is even a Hilbert space, then we can choose an equivalent function
space of its dual as itself such that its reproducing kernel has symmetric domains.
The difficulty to find an equivalent function space of the dual of RKBS, which is
defined on the same domain of the RKBS, causes the domains of its reproducing
kernel to be nonsymmetric. Theorems 5.1 and 5.6 provide us with examples of
symmetric and nonsymmetric reproducing kernels of RKBSs, respectively.

Suppose that the positive definite function Φ given in Theorem 5.1 has a com-
pact support ΩΦ. Because of the positive definite properties of Φ, its support
supp(Φ) = ΩΦ with the origin is symmetric and bounded. Let Ω1 and Ω2 be two
subsets of Rd such that the complement Ωc

1 includes Ωc
2+ΩΦ. We fix any γ ∈ S so

that its support supp(γ) ⊆ Ωc
2. Since the convolution function γ ∗Φ ∈ B

p
Φ

(Rd) and
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its support supp(γ ∗ Φ) ⊆ supp(γ) + supp(Φ) ⊆ Ωc
2 + ΩΦ ⊆ Ωc

1, we can determine
that γ ∗ Φ ∈ N0 with Ω := Ω1. For any g ∈ N⊥0 , we have∫
Rd
γ(x)g(x)dx =

∫
Rd
γ̂(x)ĝ(x)dx =

∫
Rd

γ̂ ∗ Φ(x)ĝ(x)
Φ̂(x)

dx = 〈γ ∗ Φ, g〉Bp
Φ

(Rd) = 0

which indicates that g|Ωc
2

= 0. According to this result we can deduce that g = 0 if
and only if g ∈ N⊥0 and g|Ω2 = 0. This means that the restriction map ofN⊥0 to Ω2

is one-to-one. Thus the normed space

B(Ω2) :=
{
φ : Ω2 → C : φ = g|Ω2 for some g ∈ N⊥0

}
equipped with the norm ‖φ‖B(Ω2) := ‖g‖Bq

Φ
(Rd) is well-defined and it is obvious

that B(Ω2) ≡ N⊥0 . Under these additional conditions, the dual space of Bp
Φ

(Ω1)
defined in Theorem 5.6 can be even isometrically equivalent to a space composed
of functions defined on Ω2, i.e., Bp

Φ
(Ω1)′ ≡ N⊥0 ≡ B(Ω2). In this case Bp

Φ
(Ω1) is

also an RKBS with the two-sided reproducing kernel K|Ω2×Ω1 .

Corollary 5.7. Suppose that the positive definite function Φ given in Theorem 5.1
has a compact support ΩΦ in Rd. Let Ω1 and Ω2 be two subsets of Rd such that the
complement Ωc

1 includes Ωc
2+ΩΦ. ThenBp

Φ
(Ω1) with p > 1 defined in Theorem 5.6

is a reproducing kernel Banach space with the two-sided reproducing kernel

K|Ω2×Ω1(x, y) := Φ(x − y), x ∈ Ω2, y ∈ Ω1.

If the subset Ω is a regular domain, then the definition of weak derivatives
(see [1, Section 1.62]) provides that f |Ω ∈ Wm

p (Ω) and ‖ f |Ω‖Wm
p (Ω) ≤ ‖ f ‖Wm

p (Rd) for
all f ∈ Wm

p (Rd), where Wm
p (Ω) is the Lp-based Sobolev space of order m. Now we

use the embeddings of Bp
Φ

(Rd) given in Corollary 5.3 to derive the embeddings of
B

p
Φ

(Ω). We fix any h ∈ Bp
Φ

(Ω). According to Corollary 5.3, we have

‖h‖Wm
p (Ω) ≤ ‖Eh‖Wm

p (Rd) ≤ C ‖Eh‖Bp
Φ

(Rd) = C ‖h‖Bp
Φ

(Ω) , h ∈ Bp
Φ

(Ω) ⊆ Wm
p (Ω),

for some positive constant C independent on h.

Corollary 5.8. Let Φ be a positive definite function and m > pd/q − d/q be as in
Corollary 5.3. Here q is the conjugate exponent of p ≥ 2. Suppose that Ω ⊆ Rd

is regular. Then Bp
Φ

(Ω) defined in Theorem 5.6 is embedded into the Lp-based
Sobolev space of order m, Wm

p (Ω), i.e.,

‖h‖Wm
p (Ω) ≤ C ‖h‖Bp

Φ
(Ω) , h ∈ Bp

Φ
(Ω) ⊆ Wm

p (Ω),

for some positive constant C independent on h.

27



6. Examples for Matérn Functions

[9, Example 5.7] and [22, Example 4.4] show that Matérn functions (Sobolev
splines) with shape parameter θ > 0 and degree n > d/2

Gθ,n(x) :=
21−n−d/2

πd/2Γ(n)θ2n−d (θ ‖x‖2)n−d/2Kd/2−n(θ ‖x‖2), x ∈ Rd,

are positive definite functions on Rd, where t 7→ Kν(t) is the modified Bessel
function of the second kind of order ν and t 7→ Γ(t) is the Gamma function.
Moreover, Gθ,n is a full-space Green function of the differential operator Lθ,n :=(
θ2I − ∆

)n
, i.e., Lθ,nGθ,n = δ0. The Fourier transform of Gθ,n has the form

Ĝθ,n(x) =
(
θ2 + ‖x‖22

)−n
, x ∈ Rd.

Let 1 < q ≤ 2 ≤ p < ∞ with p−1 + q−1 = 1 such that nq/p > d/2 and
m := 2n/q. Since Ĝmin{p,q}−1

θ,n ∈ L1(Rd), Theorem 5.1 provides that Bp
Gθ,n

(Rd) is an
RKBS on Rd with the two-sided reproducing kernel Kθ,n(x, y) = Gθ,n(x − y). We
can also check that there are two positive constants C1,C2 such that

C1

(
1 + ‖x‖22

)−m/2
≤ Ĝθ,n(x)1/q ≤ C2

(
1 + ‖x‖22

)−m/2
. x ∈ Rd.

According to Corollary 5.3 and 5.8, the RKBSBp
Gθ,n

(Rd) is embedded into Wm
p (Rd)

and the RKBS Bp
Gθ,n

(Ω) is embedded into Wm
p (Ω) for any regular domain Ω of Rd.

In particular, when p := 4, then Ĝ3
θ,n = Ĝθ,3n. According to the discussion of

Theorem 5.4 and Remark 5.5, the optimal solution of the SVM

min
f∈B4

Gθ,n
(Rd)

N∑
j=1

L(x j, y j, f (x j)) + R
(
‖ f ‖B4

Gθ,n
(Rd)

)
,

has the explicit representation

sD,L,R(x) =

N,N,N∑
k1,k2,k3=1

ck1ck2ck3Gθ,3n
(
x − xk1 + xk2 − xk3

)
=

N,N,N∑
k1,k2,k3=1

ck1ck2ck3Kθ,3n
(
x, xk1 , xk2 , xk3

)
, x ∈ Rd,
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and its coefficients c = (c1, · · · , cN)T are obtained by solving the following mini-
mization problem

min
c∈CN

N∑
j=1

L

x j, y j,

N,N,N∑
k1,k2,k3=1

ck1ck2ck3Kθ,3n

(
x j, xk1 , xk2 , xk3

)
+R

 N,N,N,N∑
j,k1,k2,k3=1

c jck1ck2ck3Kθ,3n

(
x j, xk1 , xk2 , xk3

)
3/4

,

whereKθ,3n(x, y1, y2, y3) := Gθ,3n(x− y1 + y2 − y3), and the loss function L and the
regularization function R are the same as in Theorem 5.4. More generally, when
p is even, then the SVM solution sD,L,R in Bp

Gθ,n
(Rd) is a linear combination of the

product groups of the reproducing kernel bases, i.e.,

sD,L,R(x) =
∑

k∈G N
p−1

p/2∏
j=1

ck2 j−1

p/2−1∏
l=1

ck2lKθ,(p−1)n

(
x, xk1 , · · · , xkp−1

)
, x ∈ Rd,

where Kθ,(p−1)n

(
x, y1, · · · , yp−1

)
:= Gθ,(p−1)n

(
x − y1 + y2 + · · · + (−1)p−1yp−1

)
and

G N
p−1 :=

{
k := (k1, · · · , kp−1)T ∈ Np−1 : 1 ≤ k j ≤ N, j = 1, . . . , p − 1

}
.

According to some numerical experiments comparing B2
Gθ,n

(R2) and B4
Gθ,n

(R2),
we find that the accuracy of the SVM solutions in B4

Gθ,n
(R2) is better than in

B2
Gθ,n

(R2) for the same training data and testing data. The reason for this is that
we use three data points to set up each reproducing kernel base for p = 4 but the
reproducing kernel base for p = 2 only owns two data points. This means that
the reproducing kernel base for p = 4 contains much more information than for
p = 2. Many other numerical tests will appear in a future paper.

The Matérn functions have been applied in the field of statistical learning
(see [14]). This new discovery about Matérn functions might help create new
numerical tools for SVMs in RKBS.
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