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Reproducing Kernels of Sobolev Spaces via a Green Kernel
Approach with Differential Operators & Boundary Operators

Gregory E. Fasshauer · Qi Ye

Abstract We introduce a vector differential operatorP and a vector boundary operatorB
to derive a reproducing kernel along with its associated Hilbert space which is shown to be
embedded in a classical Sobolev space. This reproducing kernel is a Green kernel of dif-
ferential operatorL := P∗TP with homogeneous or nonhomogeneous boundary conditions
given byB, where we ensure that the distributional adjoint operatorP∗ of P is well-defined
in the distributional sense. We represent the inner productof the reproducing-kernel Hilbert
space in terms of the operatorsP andB. In addition, we find relationships for the eigen-
functions and eigenvalues of the reproducing kernel and theoperators with homogeneous
or nonhomogeneous boundary conditions. These eigenfunctions and eigenvalues are used
to compute a series expansion of the reproducing kernel and an orthonormal basis of the
reproducing-kernel Hilbert space. Our theoretical results provide perhaps a more intuitive
way of understanding what kind of functions are well approximated by the reproducing
kernel-based interpolant to a given multivariate data sample.

Keywords Green kernel· reproducing kernel· differential operator· boundary operator·
eigenfunction· eigenvalue
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1 Introduction

The reproducing-kernel Hilbert space construction associates a positive definite kernel with
a Hilbert space of functions often referred to as the native space of the kernel. This con-
struction can be used to deal with the problem of reconstructing an unknown function which
lies in the reproducing-kernel Hilbert space from a given multivariate data sample (see [9,
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25]) in an “optimal” way. Here this optimality can be quantified in terms of the norm in-
duced by the Hilbert space inner product. It is therefore of importance to understand these
spaces (and their inner products) as well as possible since such an understanding will pro-
vide us with insight into the “correct” choice of kernel for any given application. Potential
applications of kernel approximation methods can be found in an increasingly wider array
of topics of which we mention only scattered data approximation [5,7,9,21,25], numerical
solution of partial differential equations [9,13,14,18,19,20,25], statistical learning [4,23,
24] and engineering design [15]. Future applications may see the combination of meshfree
approximation methods and stochastic Kriging methods usedwithin a common reproduc-
ing kernel framework to approximate the numerical solutionof stochastic partial differential
equations (see, e.g., [11]).

However, kernel approximation methods still face quite a few difficulties and challenges.
Two important questions in need of a satisfactory answer are: What kind of functions belong
to a given reproducing-kernel Hilbert space?andWhich kernel function should we utilize
for a particular application?Our recent paper [10] establishes what kind of (full-space)
Green function is a (conditionally) positive definite function and then shows how to embed
its related reproducing kernel Hilbert space (or native space) into a generalized Sobolev
space defined by a vector distributional operatorP = (P1, · · · ,Pn, · · · )T . This construction
results in an arguably more intuitive interpretation of thereproducing kernel Hilbert space
associated with any given kernel. In some cases these two spaces are even shown to be
equivalent. Our theoretical results produce a rule that allows us to determine which Green
function can be used to approximate (well) an unknown smoothfunction. Conversely, we
can use a Green function to formulate an interpolant for a corresponding class of smooth
functions. The framework discussed in our earlier paper wasrestricted to full-space Green
functions defined on the whole spaceRd, i.e., without taking into consideration the effect of
boundary conditions. In the present paper we will show that the Green kernel derived using
boundary conditions in a regular bounded open domainΩ ⊂ Rd is a reproducing kernel and
that its reproducing kernel Hilbert space is embedded in a classical Sobolev space. We begin
by precisely defining what we mean in this paper by a function space being embedded in or
being isomorphic to another space.

Definition 1.1 ([1, Definition 1.25])We say the normed space H isembedded inthe normed
spaceH if H is a subspace ofH and the identity operatorI : H → H is a bounded
(continuous) operator, i.e., there is a positive constantC such that‖ f ‖H ≤ C‖ f ‖H for each
f ∈ H ⊆ H . In particular, ifH is also embedded in H then we say that H andH are
isomorphic, i.e., H� H .

Remark 1.1Hereequalityof two function spaces, H= H , means that H⊆ H andH ⊆
H only, i.e., we do not compare their norms. Unless specifically indicated otherwise, all
functions discussed in this article are real-valued.

We now present a standard Green kernel example from the theory of partial differential
equations (see [8, Chapter 2.2]) to set the stage for our discussions later on. In order to
solve Poisson’s equation in thed-dimensional (d ≥ 2) open unit ballΩ = B(0, 1) = {x ∈
Rd : ‖x‖2 < 1} with (homogeneous) Dirichlet boundary condition, one constructs the Green
kernel

G(x, y) = φ(x − y) − φ(‖x‖2y − x), x, y ∈ Ω,

of the Laplace operatorL = −∆ = −∑d
j=1

∂2

∂x2
j

subject to the given boundary condition, i.e.,

for each fixedy ∈ Ω, we haveG(·, y) ∈ H1(Ω) (see Section 3.1 below for the definition of
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the classical L2-based Sobolev spacesHm(Ω)) and














LG(·, y) = δy, in Ω,

G(·, y) = 0, on∂Ω,

whereφ is the fundamental solution of−∆ given by

φ(x) =















− 1
2π log‖x‖2, d = 2,
Γ(d/2+1)

d(d−2)πd/2 ‖x‖2−d
2 , d ≥ 3.

Just as in our discussion below, the Laplace operatorL = −∆ = P∗TP = −∇T∇ can be
computed using the gradientP = (P1, · · · ,Pd)T

= ∇ = ( ∂
∂x1
, · · · , ∂

∂xd
)T and its adjoint

P∗ = (P∗1, · · · ,P∗d)T
= −∇. With the help of Green’s formulas [8] we can further check that

the kernelG satisfies a reproducing property with respect to the gradient-semi-inner product,
i.e., for all f ∈ C1

0(Ω) andy ∈ Ω, we have

(G(·, y), f )∇,Ω =
∫

Ω

PG(x, y)TP f (x)dx =
d

∑

j=1

∫

Ω

∂

∂xj
G(x, y)

∂

∂xj
f (x)dx = f (y).

However, this Green kernelG is not a reproducing kernel (cf. Definition 2.2) becauseG is
singular along its diagonal, i.e.,G(x, x) = ∞ for eachx ∈ Ω.

Therefore, it is our goal to show what kind of Green kernel is areproducing kernel
while maintaining a similar concept for the reproducing property. Our Green kernel will be
associated with a differential operatorL with homogeneous or nonhomogeneous boundary
conditions (see Definition 4.1), and the inner product of itsreproducing-kernel Hilbert space
will be represented through a vector differential operatorP = (P1, · · · ,Pnp)

T and a vector
boundary operatorB = (B1, · · · , Bnb)

T , where the differential operatorsPj : Hm(Ω) →
L2(Ω) and the boundary operatorsBj : Hm(Ω) → L2(∂Ω) are bounded linear operators
which are defined and discussed in Section 3.

Because the Dirac delta functionδy is a tempered distribution in the dual spaceD
′(Ω) of

the test function spaceD(Ω) (see Section 3.1) we shall extend the differential operators and
their adjoint operators to distributional operators fromD

′(Ω) into D
′(Ω). Thus the differen-

tial operatorL can be represented by the vector differential operatorP and its distributional
adjoint operatorP∗ via the formulaL = P∗TP =

∑nb

j=1 P∗j Pj . In this article, a differential
operatorP, its distributional adjoint operatorP∗ and a boundary operatorB are assumed to
be linear with non-constant coefficients, i.e.,

P =
∑

|α|≤m

ρα ◦ Dα, P∗ =
∑

|α|≤m

(−1)|α|Dα ◦ ρα, B =
∑

|β|≤m−1

bβ ◦ Dβ|∂Ω,

whereρα ∈ C∞(Ω), bβ ∈ C(∂Ω) andα, β ∈ Nd
0 (see Definition 3.1 and 3.3).

Based on this construction we can establish a direct connection between Green kernels
and reproducing kernels. We are also able to show how to use the differential operatorP
and boundary operatorB to set up reproducing kernel Hilbert spaces which are embedded
in classical Sobolev spaces (see Section 4). For example, Theorems 3.2, Corollary 3.1 and
Theorem 4.5 allow us to arrive at a theorem such as

Theorem 1.1 Let Ω ⊂ Rd be a regular bounded open domain and introduce the vec-
tor differential operatorP = (P1, · · · ,Pnp)

T ∈ P
m
Ω

and vector boundary operatorB =
(B1, · · · , Bnb)

T ∈ B
m
Ω

, where m> d/2 and m∈ N. Suppose that there is a Green kernel G
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of L = P∗TP =
∑np

j=1 P∗j Pj with homogeneous boundary conditions given byB, i.e., for each
fixedy ∈ Ω, we have G(·, y) ∈ Hm(Ω) and















LG(·, y) = δy, in Ω,

BG(·, y) = 0, on∂Ω.

If the null spaceNull(P) := { f ∈ Hm(Ω) : P f = 0} is a finite-dimensional space, then the
direct sum space

HA

PB(Ω) = H0
P(Ω) ⊕ HA

B (Ω) = { f = fP + fB : B fP = 0, P fB = 0, where fP, fB ∈ Hm(Ω)}

equipped with the inner product

( f , g)HA

PB(Ω) =

np
∑

j=1

∫

Ω

Pj f (x)Pjg(x)dx +
nb
∑

j=1

∫

∂Ω

Bj f (x)Bjg(x)dS(x), f , g ∈ HA

PB(Ω),

is a reproducing-kernel Hilbert space whose reproducing kernel is a Green kernel K of L
with boundary conditions given byB and{Γ(·, y) : y ∈ Ω} ⊆ ⊗nb

j=1L2(∂Ω), i.e., for each fixed
y ∈ Ω, we have K(·, y) ∈ Hm(Ω) and















LK(·, y) = δy, in Ω,

BK(·, y) = Γ(·, y), on∂Ω,

where the boundary conditions also satisfy{Γ(x, ·) : x ∈ ∂Ω} ⊆ ⊗nb

j=1Null(P). Moreover, the

reproducing-kernel Hilbert spaceHA

PB(Ω) is embedded in the Sobolev spaceHm(Ω) and the
reproducing kernel K can be written in the explicit form

K(x, y) = G(x, y) +
na
∑

k=1

ψk(x)ψk(y), x, y ∈ Ω,

where{ψk}na

k=1 is an orthonormal basis ofNull(P) with respect to theB-semi-inner product.
(Here the classesPm

Ω
andB

m
Ω

are defined in Section 3.)

Theorem 1.1 shows that the vector differential operatorP and vector boundary operator
B enable us to verify the reproducing property of the reproducing-kernel Hilbert space. This
allows us to show that the Green kernelK becomes a reproducing kernel even with nonho-
mogeneous boundary conditions, not just for the case of homogeneous boundary conditions.
If Null(P) ≡ {0} thenK = G has homogeneous boundary conditions which implies that the
reproducing property depends onP without having to resort toB – just as we had above
for the case of the Poisson Green kernel. We can now reconsider the question of why the
Poisson Green kernel above isnot a reproducing kernel. Essentially this happens because
m = 1 ≤ d/2 so that the Sobolev embedding theory does not apply. On the other hand,
Remark 4.1 gives us a counter example demonstrating that theGreen kernel may not be a
reproducing kernel even if it is uniformly continuous in thewhole domain.

In Section 4 we also consider the solution of eigenvalue problems via the method pre-
sented in [3], where the authors discuss how to find the eigenfunctions and eigenvalues of
elliptic partial differential equations of order 2 with Dirichlet or Neumann boundary con-
ditions. This will enable us to see the relationships between the eigenfunctions and eigen-
values of Green kernels and those of differential operatorsL with homogeneous or nonho-
mogeneous boundary conditions given byB. Propositions 4.2 and 4.6 allow us to transfer
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eigenfunctions and eigenvalues from Green kernels toL and vice versa. We also use these
eigenfunctions and eigenvalues to obtain the orthonormal basis of the reproducing-kernel
Hilbert space and the explicit expansion of the Green kernelas, e.g., stated in Proposition 4.3
and 4.7.

In Section 5, we demonstrate that many well-known reproducing kernels are also Green
kernels. Examples include the min kernel and the univariateSobolev spline kernel. We also
construct other reproducing kernels that can be used in scattered data interpolation such as
a modification of the thin-plate spline.

In this article we limit our discussion of nonhomogeneous boundary conditions to those
that are determined by a finite bases. However, all the theoretical results presented here can
be extended to much more general nonhomogeneous boundary conditions constructed using
a countable basis (see the Ph.D. thesis [26] of the second author). Such Green kernelsK can
be seen as a reproducing kernel for the interpolation of multivariate scattered data obtained
from an unknown functionf ∈ Hm(Ω) at data sitesX = {x j}Nj=1 ⊂ Ω. In a similar fashion as
described in [9,23,25], we further obtain error bounds and optimal recovery properties for
the interpolantsf ,X =

∑N
j=1 cj K(·, x j) which satisfies the interpolation conditionssf ,X(x j) =

f (x j) for each j = 1, · · · ,N.

2 Positive Definite Kernels and Reproducing-Kernel HilbertSpace

We now provide a very brief summary of reproducing kernel Hilbert spaces. Much more
background information can be found in, e.g., [25].

Definition 2.1 ([25, Definition 6.24])Let Ω ⊆ Rd. A symmetric kernelK : Ω × Ω → R is
calledpositive definiteif, for all N ∈ N, pairwise distinct pointsX := {x1, . . . , xN} ⊂ Ω, and
c := (c1, . . . , cN)T ∈ RN \ {0} the quadratic form

N
∑

j=1

N
∑

k=1

cjckK(x j , xk) > 0.

If the quadratic form is only nonnegative, then the kernelK is said to be positive semi-
definite.

Definition 2.2 ([25, Definition 10.1]) Let Ω ⊆ Rd and H(Ω) be a real Hilbert space of
functions f : Ω→ R. H(Ω) is called areproducing-kernel Hilbert spacewith a reproducing
kernel K : Ω × Ω→ R if

(i) K(·, y) ∈ H(Ω) and (ii ) f (y) = (K(·, y), f )H(Ω), for all f ∈ H(Ω) and eachy ∈ Ω.

In order to formulate the following proposition which we will later use to verify some
of our results on eigenfunctions and eigenvalues of a Green kernel we first consider a kernel
K ∈ L2(Ω × Ω) and define anintegral operatorIK,Ω : L2(Ω)→ L2(Ω) via

(IK,Ω f )(y) :=
∫

Ω

K(x, y) f (x)dx, f ∈ L2(Ω) andy ∈ Ω. (2.1)

Proposition 2.1 ([25, Proposition 10.28])Suppose that the reproducing kernel K∈ L2(Ω×
Ω) is a symmetric positive definite kernel on the compact setΩ ⊆ Rd. Then the integral
operatorIK,Ω mapsL2(Ω) continuously into the reproducing-kernel Hilbert spaceH(Ω)
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whose reproducing kernel is K. The operatorIK,Ω is the adjoint of the embedding operator
of the reproducing-kernel Hilbert spaceH(Ω) into L2(Ω), i.e., it satisfies

∫

Ω

f (x)g(x)dx = ( f ,IK,Ωg)H(Ω), f ∈ H(Ω) and g∈ L2(Ω).

Moreover,Range(IK,Ω) = {IK,Ωg : g ∈ L2(Ω)} is dense inH(Ω) with respect to theH(Ω)-
norm.

3 Differential Operators and Boundary Operators

3.1 Differential Operators and Distributional Adjoint Operators

Our following proofs will rely on a number of basic concepts and techniques from the
Schwartz theory of distributions (see [1, Chapter 1.5] and [16, Chapter 1 and 2]). Of special
importance is the notion of a distributional derivative of an integrable function. Distribu-
tional derivatives are extensions of the standard partial derivatives

Dα :=
d

∏

k=1

∂αk

∂xαk

k

, |α| :=
d

∑

k=1

αk, α := (α1, · · · , αd) ∈ Nd
0.

Let Ω ⊂ Rd be an open bounded domain (connected subset). We first introduce a test
function space C∞0 (Ω) which consists of all those functions in C∞(Ω) having compact sup-
port inΩ. [1, Chapter 1.5] states that the test function space C∞

0 (Ω) can be given a locally
convex topology and thereby becomes a topological vector space calledD(Ω). Note, how-
ever, thatD(Ω) is not a normable space.

Its dual spaceD ′(Ω) (the space of continuous functionals onD(Ω)) is referred to as the
space of tempered distributions. According to [16, Chapter2.1], a distributionT ∈ D

′(Ω) is
a linear form onD(Ω) such that for every compact setΛ ⊂ Ω there exist a positive constant
C and a nonnegative integern ∈ N0 such that

T(γ) ≤ C
∑

|α|≤n

sup
x∈Λ
|Dαγ(x)|, for eachγ ∈ C∞0 (Λ) ⊂ D(Ω).

For example, the Dirac delta function (Dirac delta distribution) δy concentrated at the point
y ∈ Ω is an element ofD ′(Ω), i.e.,〈δy, γ〉Ω = γ(y) for eachγ ∈ D(Ω). Our later proofs will
make frequent use of the following two bilinear forms. We define adual bilinear form

〈T, γ〉Ω := T(γ), for eachT ∈ D
′(Ω) andγ ∈ D(Ω),

and the usualintegral bilinear form

( f , g)Ω :=
∫

Ω

f (x)g(x)dx, where f g is integrable onΩ.

[16, Chapter 1.5] shows that for each locally integrable function f ∈ L loc
1 (Ω) there exists a

unique tempered distributionT f ∈ D
′(Ω) that links these two bilinear forms by the Riesz

representation theorem, i.e.,

〈T f , γ〉Ω = ( f , γ)Ω, for eachγ ∈ D(Ω). (3.1)
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Thus f ∈ L loc
1 (Ω) can be viewed as an element ofD

′(Ω) andT f is frequently identified with
f . This means that Lloc

1 (Ω) ⊂ D
′(Ω).

Next we extend the standard derivativeDα to the notion of a distributional derivative
Pα : D

′(Ω)→ D
′(Ω). This distributional derivative is well defined by

〈PαT, γ〉Ω := (−1)α〈T,Dαγ〉, for eachT ∈ D
′(Ω) andγ ∈ D(Ω),

becauseDα is continuous fromD(Ω) into D(Ω) (see [16, Definition 3.1.1]). For convenience
Pα is also written asDα.

Using this notion of distributional derivatives the realclassicalL2-based Sobolev space
Hm(Ω) is defined by

Hm(Ω) :=
{

f ∈ L loc
1 (Ω) : Dα f ∈ L2(Ω), |α| ≤ m, α ∈ Nd

0

}

, m ∈ N0,

equipped with the natural inner product

( f , g)m,Ω :=
∑

|α|≤m

∫

Ω

Dα f (x)Dαg(x)dx, f , g ∈ Hm(Ω).

Moreover, the completion of Cm0 (Ω) with respect to theHm(Ω)-norm is denoted byHm
0 (Ω),

i.e.,Hm
0 (Ω) is the closure of C∞0 (Ω) inHm(Ω) as in [1].

In the literature (see, e.g., [16]) one also often finds differential operators written in the
form p(·,D)γ =

∑

|α|≤mραDαγ, wherep(x, y) :=
∑

|α|≤mρα(x)yα is a polynomial iny ∈ Rd

andρα ∈ C∞(Ω) (uniformly smooth functions space). The formal adjoint operator can be
represented asp∗(·,D)γ =

∑

|α|≤m(−1)|α|Dα(ραγ). If ρ ∈ C∞(Ω) then it can be seen as a
distributional operatorPρ : D

′(Ω)→ D
′(Ω), i.e.,

〈PρT, γ〉 := 〈T, ργ〉, for eachT ∈ D
′(Ω) andγ ∈ D(Ω),

becauseγ 7→ ργ is continuous fromD(Ω) into D(Ω) (see [16, Definition 3.1.1]). Here we
identify Pρ with ρ. Then this differential operatorp(·,D) and its adjoint operatorp∗(·,D) :
D(Ω) → D(Ω) can be extended to distributional operatorsP,P∗ : D

′(Ω) → D
′(Ω) similar

as the distributional derivatives. To avoid any confusion with the symbols we will write
P1P2 = ρ ◦ Dα andP2P1 = Dα ◦ ρ whereP1 = ρ andP2 = Dα. This means that

ρ ◦ Dαγ = ρ (Dαγ) , Dα ◦ ργ = (−1)|α|Dα (ργ) , γ ∈ D(Ω).

Definition 3.1 A differential operator(with non-constant coefficients)P : D
′(Ω)→ D

′(Ω)
is defined by

P =
∑

|α|≤m

ρα ◦ Dα, whereρα ∈ C∞(Ω) andα ∈ Nd
0, m∈ N0.

Its distributional adjoint operatorP∗ : D
′(Ω)→ D

′(Ω) is well-defined by

P∗ =
∑

|α|≤m

(−1)|α|Dα ◦ ρα.

We further denote itsorder by

O(P) := max
{

|α| : ρα . 0, |α| ≤ m, α ∈ Nd
0

}

.

A vector differential operatorP := (P1, · · · ,Pnp)
T is constructed using a finite number of

differential operatorsP1, · · · ,Pnp and itsorderO(P) := max{O(P1), · · · ,O(Pnp)}.
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After replacing the test function spaceS (metric space of rapidly decreasing functions
in C∞(Rd)) and tempered distribution spaceS′ (dual space ofS) in paper [10], the differ-
ential operatorP and its distributional adjoint operatorP∗ have the same properties as [10,
Definition 4.1], i.e.,P|D(Ω) andP∗|D(Ω) are continuous operators fromD(Ω) into D(Ω) and

〈PT, γ〉Ω = 〈T,P∗γ〉Ω and 〈P∗T, γ〉Ω = 〈T,Pγ〉Ω, for eachT ∈ D
′(Ω) andγ ∈ D(Ω).

SinceΩ is compact and C∞(Ω) ⊂ L2(Ω), the differential operatorP of orderO(P) = m is
a bounded linear operator fromHm(Ω) into L2(Ω). Its distributional adjoint operatorP∗ :
Hm(Ω) → L2(Ω) is also bounded. So we can further use a vector differential operatorP :=
(P1, · · · ,Pnp)

T of orderm to define aP-semi-inner productonHm(Ω) via the form

( f , g)P,Ω =

np
∑

j=1

(Pj f ,Pjg)Ω, f , g ∈ Hm(Ω).

Remark 3.1Our distributional adjoint operator differs from the classical adjoint operator of
a bounded operator defined in Hilbert space or Banach space. Our operator is defined in the
dual space ofD(Ω) and it may not be continuous if the dual ofD(Ω) is defined by its natural
topology. But the differential operator and its distributional adjoint operatorare continuous
whenD

′(Ω) is given the weak-star topology as the dual ofD(Ω), i.e.,Tk → T in D
′(Ω) if

and only if〈Tk, γ〉Ω → 〈T, γ〉Ω for everyγ ∈ D(Ω) where{Tk,T}∞k=1 ⊂ D
′(Ω).

WhenP = ∇ = ( ∂
∂x1
, · · · , ∂

∂xd
)T the P-semi-inner product is the same as the gradient-

semi-inner product on the Sobolev spaceH1(Ω). The Poincaré inequality [17, Theorem 12.77]
states that the gradient-semi-norm is equivalent to theH1(Ω)-norm on the spaceH1

0 (Ω), i.e.,
there are two positive constantsC1 andC2 such that

C1‖ f ‖1,Ω ≤ | f |∇,Ω ≤ C2‖ f ‖1,Ω, f ∈ H1
0 (Ω).

In order to prove a generalized Poincaré (Sobolev) inequality for the Sobolev spacesHm(Ω)
we need to set up a special class of vector differential operators.

Definition 3.2 P
m
Ω

is defined to be a collection of vector differential operatorsP = (P1, · · · ,Pnp)
T

of orderm ∈ N which satisfy the requirements that for each fixed|α| = m andα ∈ Nd
0, there

is an elementPj(α) ∈ {Pj}np

j=1 such that

P∗j(α)Pj(α) = (−1)|α|Dα ◦ ρ2
α ◦ Dα

+

n(α)
∑

i=1

Q∗α,iQα,i , 1 ≤ j(α) ≤ np, n(α) ∈ N0,

whereρα ∈ C∞(Ω) is positive in the whole domainΩ andQα,i , Q∗
α,i , i = 1, · · · , n(α), are

differential operators and their distributional adjoint operators.

Let’s consider an example. Ifd = 2, then both vector differential operatorsP1 :=
(P11,P12,P13)T

= ( ∂2

∂x2
1
,
√

2 ∂2

∂x1∂x2
, ∂2

∂x2
2
)T andP2 := P21 = ∆ belong toP

2
Ω

because



























P∗11P11 = Dα ◦ 1 ◦ Dα, whereα = (2, 0),

P∗12P12 = Dα ◦ 2 ◦ Dα, whereα = (1, 1),

P∗13P13 = Dα ◦ 1 ◦ Dα, whereα = (0, 2),



9

and (using the definitions ofP1 j just made)



























P∗21P21 = D(2,0) ◦ 1 ◦ D(2,0)
+ P∗12P12 + P∗13P13,

P∗21P21 = D(1,1) ◦ 2 ◦ D(1,1)
+ P∗11P11 + P∗13P13,

P∗21P21 = D(0,2) ◦ 1 ◦ D(0,2)
+ P∗11P11 + P∗12P12.

Therefore we can verify thatP∗T1 P1 =
∑3

j=1 P∗1 jP1 j = P∗T2 P2 = P∗21P21 = ∆
2. However, the

null spaces ofP1 andP2 are different, in factNull(P1) & Null(P2).
The following lemma extends the Poincaré inequality from the usual gradient semi-norm

to more generalP-semi norms and higher-order Sobolev norms. Since we could not find it
anywhere in the literature we provide a proof.

Lemma 3.1 If P ∈P
m
Ω

then there exist two positive constants C1 and C2 such that

C1‖ f ‖m,Ω ≤ | f |P,Ω ≤ C2‖ f ‖m,Ω, f ∈ Hm
0 (Ω). (3.2)

Proof By the method of induction, we can easily check that the second inequality in (3.2) is
true. We now verify the first inequality in (3.2). Fixing anyf ∈ Hm

0 (Ω), there is a sequence
{γk}∞k=1 ⊂ D(Ω) so that‖γk − f ‖m,Ω → 0 whenk→ ∞. Because ofP ∈ P

m
Ω

, for each fixed
|α| = m andα ∈ Nd

0, there is an elementPj(α) of P such that

‖Pj(α) f ‖2Ω = (Pj(α) f ,Pj(α) f )Ω = lim
k→∞

(Pj(α)γk,Pj(α)γk)Ω = lim
k→∞

(P∗j(α)Pj(α)γk, γk)Ω

= lim
k→∞

((−1)|α|Dα ◦ ρ2
α ◦ Dαγk, γk)Ω + lim

k→∞

n(α)
∑

i=1

(Q∗α,iQα,iγk, γk)Ω

= lim
k→∞

(ρα ◦ Dαγk, ρα ◦ Dαγk)Ω + lim
k→∞

n(α)
∑

i=1

(Qα,iγk,Qα,iγk)Ω

= (ρα ◦ Dα f , ρα ◦ Dα f )Ω +
n(α)
∑

i=1

(Qα,i f ,Qα,i f )Ω ≥ ‖ραDα f ‖2Ω

≥ min
x∈Ω
|ρα(x)|2‖Dα f ‖2Ω.

Since the uniformly continuous functionρα is positive in the compact subsetΩ, we have
minx∈Ω|ρα(x)| > 0. Therefore,

C2
P

∑

|α|=m

‖Dα f ‖2Ω ≤ | f |2P,Ω,

whereC2
P := n−d

p min
{

|ρα(x)|2 : x ∈ Ω, |α| = m, α ∈ Nd
0

}

> 0. According to the Sobolev
inequality [1, Theorem 4.31], there exists a positive constantCD such that

C2
D‖ f ‖2m,Ω ≤

∑

|α|=m

‖Dα f ‖2Ω, f ∈ Hm
0 (Ω).

By choosingC1 := CPCD > 0 we complete the proof.
⊓⊔
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3.2 Boundary Operators

In this section we wish to define boundary operators on the Sobolev spacesHm(Ω), m ∈ N.
Since these boundary operators can not be set up in an arbitrary bounded open domain, we
will assume thatΩ ⊂ Rd is aregularbounded open domain (connected subset), e.g., it should
satisfy a strong local Lipschitz condition or a uniform conecondition (see [1, Chapter 4.1]
and [17, Chapter 12.10]). This means thatΩ has a regular boundary trace∂Ω. Moreover∂Ω
is closed and bounded which implies that∂Ω is compact because the domainΩ is open and
bounded.

We begin by defining special L2 spaces restricted to the boundary trace∂Ω as

L2(∂Ω) := { f : ∂Ω→ R : ‖ f ‖∂Ω < ∞}

together with an inner product given by

( f , g)∂Ω :=
∫

∂Ω

f (x)g(x)dS(x), f , g ∈ L2(∂Ω).

Here
∫

∂Ω
f (x)dS(x) implies that f is integrable on the boundary trace∂Ω and dS is the

surface area element wheneverd ≥ 2. In the special cased = 1 we interpret the restricted
space as

L2(∂Ω) := { f : ∂Ω = {a, b} → R} ,

and its inner product as

( f , g)∂Ω = f (a)g(a) + f (b)g(b), f , g ∈ L2(∂Ω),

because the measure at the endpoints is defined asS(a) = S(b) = 1.
The crucial ingredient that allows us to deal with boundary conditions will be a boundary

trace mapping which restricts the derivative of anHm(Ω) function to the boundary trace∂Ω.
More precisely, for any fixed|β| ≤ m−1,β ∈ Nd

0, we will define theboundary trace mapping
of theβth derivative Dβ and denote it byDβ|∂Ω. We will now show that the operatorDβ |∂Ω is
a well-defined bounded linear operator fromHm(Ω) into L2(∂Ω).

Whend = 1 we haveΩ := (a, b) and∂Ω := {a, b} with −∞ < a < b < +∞. According to
the Sobolev embedding theorem (Rellich-Kondrachov theorem) [1, Theorem 6.3],Hm(a, b)
is embedded in Cm−1([a, b]). In this special case the boundary trace mapping of theβth

derivativeDβ, Dβ|∂Ω : Hm(a, b)→ L2({a, b}), is well-defined onHm(a, b) via

(Dβ|{a,b} f )(x) = Dβ f (x), f ∈ Hm(a, b) andx ∈ {a, b}.

In the cased ≥ 2 a linear operatorDβ|∂Ω : Cm(Ω)→ C(∂Ω) is well-defined by

Dβ|∂Ω f := Dβ f |∂Ω, f ∈ Cm(Ω).

According to the boundary trace embedding theorem ([1, Theorem 5.36] and [17, Theo-
rem 12.76]) there is a constantCβ > 0 such that

‖Dβ f ‖∂Ω ≤ Cβ‖Dβ f ‖1,Ω ≤ Cβ‖ f ‖m,Ω, f ∈ Cm(Ω),

which shows thatDβ|∂Ω is also a bounded operator from Cm(Ω) ⊂ Hm(Ω) into C(∂Ω) ⊂
L2(∂Ω). SinceΩ is assumed to be regular, Cm(Ω) is dense inHm(Ω) with respect to the
Hm(Ω)-norm by the density theorem for Sobolev spaces [17, Theorem 12.69]. Therefore,
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according to the bounded linear transformation theorem [17, Theorem 5.19],Dβ|∂Ω has a
unique bounded linear extension operatorBβ onHm(Ω) such that

Bβ f = Dβ|∂Ω f = Dβ f |∂Ω, f ∈ Cm(Ω) and ‖Bβ f ‖∂Ω ≤ Cβ‖ f ‖m,Ω, f ∈ Hm(Ω).

We will call Bβ : Hm(Ω) → L2(∂Ω) theboundary trace mapping of theβth derivative Dβ.
We use the convention for the notationsDβ |∂Ω same asBβ in this article.

Remark 3.2The construction and definition of these boundary trace mappings are the same
as in [1,17]. In these references it is further shown thatDβ |∂Ω is a surjective mapping from
Hm(Ω) ontoHm−|β|−1/2(∂Ω) wheneverd ≥ 2. However, we will not be concerned with the
spaceHm−|β|−1/2(∂Ω) in this paper.

Whend = 1 we also denote C(∂Ω) := { f : ∂Ω = {a, b} → R}. So C(∂Ω) ⊂ L2(∂Ω)
for every dimensiond ∈ N which implies thatbβ ◦ Dβ|∂Ω f := bβ(Dβ|∂Ω f ) ∈ L2(∂Ω) when
bβ ∈ C(∂Ω) and f ∈ Hm(Ω). Furthermorebβ ◦ Dβ |∂Ω is continuous onHm(Ω).

Definition 3.3 A boundary operator(with non-constant coefficients)B : Hm(Ω)→ L2(∂Ω)
is well-defined by

B =
∑

|β|≤m−1

bβ ◦ Dβ|∂Ω, wherebβ ∈ C(∂Ω) andβ ∈ Nd
0, m ∈ N.

Theorder of B is given by

O(B) := max
{

|β| : bβ . 0, |β| ≤ m− 1, β ∈ Nd
0

}

.

A vector boundary operatorB = (B1, · · · , Bnb)
T is formed using a finite number of boundary

operatorsB1, · · · , Bnb and itsorder isO(B) := max{O(B1), · · · ,O(Bnb)}.
We can use the vector boundary operatorB = (B1, · · · , Bnb)

T of orderm− 1 to define a
B-semi-inner productonHm(Ω) via the form

( f , g)B,∂Ω =

nb
∑

j=1

(Bj f , Bjg)∂Ω, f , g ∈ Hm(Ω).

Given a functionf ∈ H1(Ω), it is well known thatf ∈ H1
0 (Ω) if and only if f vanishes on

its boundary trace. Therefore we need sufficiently many homogeneous boundary conditions
to determine whether a functionf ∈ Hm(Ω) belongs toHm

0 (Ω).

Definition 3.4 B
m
Ω

is defined to be a collection of vector boundary operatorsB = (B1, · · · , Bnb)
T

of orderm− 1 ∈ N0 which satisfy the requirement that for each fixedf ∈ Hm(Ω)

B f = 0 if and only if Dβ|∂Ω f = 0 for each|β| ≤ m− 1 andβ ∈ Nd
0.

We illustrate Definition 3.4 with some examples for the setB
2
Ω

in the cased = 1 with
∂Ω := {0, 1}. Two possible members ofB2

Ω
are

B1 =

(

d
dx|∂Ω
I |∂Ω

)

or B2 =

(

d
dx|∂Ω + I |∂Ω
d
dx|∂Ω − I |∂Ω

)

.

While these are both first-order vector boundary operators,theirB1 andB2-semi-inner prod-
ucts defined inH2(Ω) are different.

Because of the trivial traces theorem [1, Theorem 5.37] we know that f ∈ Hm
0 (Ω) if and

only if Dβ|∂Ω f = 0 for each|β| ≤ m−1 andβ ∈ Nd
0 wheneverf ∈ Hm(Ω). In analogy to this,

we can verify the same trivial trace property for the vector boundary operatorsB ∈ B
m
Ω

.

Lemma 3.2 If B ∈ B
m
Ω

, then f ∈ Hm(Ω) belongs toHm
0 (Ω) if and only ifB f = 0.
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3.3 Constructing Hilbert Spaces by Differential and Boundary Operators

LetΩ be a regular bounded open domain ofRd. We want to observe the relationship between
our differential and boundary operators. Given a vector differential operator and a vector
boundary operator, i.e.,

P = (P1, · · · ,Pnp)
T ∈P

m
Ω , B = (B1, · · · , Bnb)

T ∈ B
m
Ω , m> d/2 andm∈ N,

the differential operatorL of orderO(L) = 2m is well-defined by

L = P∗TP =
np
∑

j=1

P∗j Pj .

Next we can construct homogeneous differential equations with respect toL andB in the
Sobolev spaceHm(Ω), i.e.,















L f = 0, in Ω,

B f = 0, on∂Ω.
(3.3)

Combining Equation (3.3) and the following Lemma 3.3, we will be able to verify that the
inner product spaces H0P(Ω) and HA

B (Ω) defined below are well-defined (see Definitions 3.5
and 3.6).

Lemma 3.3 Equation (3.3) has the unique trivial solution f≡ 0 inHm(Ω).

Proof It is obvious thatf ≡ 0 is a solution of Equation (3.3). Suppose thatf ∈ Hm(Ω) is a
solution of Equation (3.3). SinceB ∈ B

m
Ω

andB f = 0, Lemma 3.2 tells us thatf ∈ Hm
0 (Ω).

Thus there is a sequence{γk}∞k=1 ⊂ D(Ω) such that‖γk − f ‖m,Ω → 0 whenk→ ∞. And then,
using the two bilinear forms introduced earlier,

np
∑

j=1

(Pj f ,Pj f )Ω = lim
k→∞

np
∑

j=1

(Pj f ,Pjγk)Ω = lim
k→∞

np
∑

j=1

〈P∗j Pj f , γk〉Ω = lim
k→∞
〈L f , γk〉Ω = 0.

SinceP ∈P
m
Ω

, the generalized Sobolev inequality of Lemma 3.1 provides the estimate

‖ f ‖2Ω ≤ ‖ f ‖2m,Ω ≤ CP| f |2P,Ω = CP

np
∑

j=1

‖Pj f ‖2Ω = 0, CP > 0.

This, however, implies thatf ≡ 0 is the unique solution of Equation (3.3).
⊓⊔

Note that in the above proof we employed both the integral anddual bilinear forms.
Since we can only ensure thatP∗j Pj f ∈ D

′(Ω), this quantity needs to be handled with the
dual bilinear form. On the other hand,Pj f ∈ L2(Ω) implies that we can apply the integral
bilinear form in this case. Using the notation introduced in(3.1), we therefore obtain that
(Pj f ,Pjγk)Ω = 〈Pj f ,Pjγk〉Ω = 〈P∗j Pj f , γk〉Ω becausePjγk ∈ D(Ω).

Definition 3.5
H0

P(Ω) := { f ∈ Hm(Ω) : B f = 0} ,
and it is equipped with the inner product

( f , g)H0
P(Ω) := ( f , g)P,Ω =

np
∑

j=1

(Pj f ,Pjg)Ω, f , g ∈ H0
P(Ω).
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We now show that the H0P(Ω)-inner product is well-defined. Iff ∈ H0
P(Ω) such that‖ f ‖H0

P(Ω) =

0, thenB f = 0 and‖Pj f ‖Ω = 0, j = 1, · · · , np, which implies that

〈L f , γ〉Ω =
np
∑

j=1

〈P∗j Pj f , γ〉Ω =
np
∑

j=1

(Pj f ,Pjγ)Ω =
np
∑

j=1

(0,Pjγ)Ω = 0, γ ∈ D(Ω).

Thus f solves Equation (3.3) and then Lemma 3.3 states thatf = 0.

Theorem 3.1 H0
P(Ω) andHm

0 (Ω) are isomorphic, and thereforeH0
P(Ω) is a separable Hilbert

space.

Proof Because of Lemma 3.2, H0P(Ω) = Hm
0 (Ω). The generalized Poincaré (Sobolev) in-

equality of Lemma 3.1 further shows that the H0
P(Ω)-norm and theHm(Ω)-norm are equiv-

alent on the spaceHm
0 (Ω).

⊓⊔

In Section 4 we will establish relationships between H0
P(Ω) and Green kernels with ho-

mogeneous boundary conditions. Furthermore, we will consider Green kernels with non-
homogeneous boundary conditions. To this end we need to define the inner product spaces
HA

PB(Ω) defined below.

Definition 3.6 Let the pairA := {ψk; ak}na

k=1 for somena ∈ N0 where{ak}na

k=1 ⊂ R+ and
{ψk}na

k=1 ⊂ Null(L) := { f ∈ Hm(Ω) : L f = 0} is an orthonormal subset with respect to the
B-semi-inner product, i.e., (ψk, ψl)B,Ω = δkl, a Kronecker delta function,k, l = 1, · · · , na.
Denote that

HA

B (Ω) := span{ψ1, · · · , ψna}

and it is equipped with the inner-product

( f , g)HA

B (Ω) :=
na
∑

k=1

f̂kĝk

ak
, f , g ∈ HA

B (Ω),

where f̂k andĝk are the Fourier coefficients of f andg for the given orthonormal subset, i.e.,

f =
na
∑

k=1

f̂kψk, g =
na
∑

k=1

ĝkψk and { f̂k}na

k=1, {ĝk}na

k=1 ⊂ R.

In particular, ifna = 0 or A := {0; 0} then HA
B (Ω) := {0} and (0, 0)HA

B (Ω) := 0.

According to Lemma 3.3, theB-semi-inner product becomes an inner product onNull(L)
which implies that the HAB (Ω)-inner product is well-defined. It is obvious that HA

B (Ω) is
a separable Hilbert space which is embedded in the Sobolev spaceHm(Ω) because it is
finite-dimensional.

We have now finally arrived at the definition we will use in our construction of repro-
ducing kernel Hilbert spaces connected to Green kernels with nonhomogeneous boundary
conditions.
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Definition 3.7 The direct sum space HAPB(Ω) is defined as

HA

PB(Ω) := H0
P(Ω) ⊕ HA

B (Ω),

and it is equipped with the inner product

( f , g)HA
PB(Ω) := ( fP, gP)H0

P(Ω) + ( fB, gB)HA
B (Ω), f , g ∈ HA

PB(Ω),

where fP, gP ∈ H0
P(Ω) and fB, gB ∈ HA

B (Ω) are the unique decompositions off , g, i.e.,

f = fP + fB, g = gP + gB, where fP, gP ∈ H0
P(Ω) and fB, gB ∈ HA

B (Ω).

The direct sum space HAPB(Ω) is well-defined because H0P(Ω) ∩Null(L) = {0}.

Theorem 3.2 HA

PB(Ω) is a separable Hilbert space and it is embedded inHm(Ω). Moreover,

( f , g)HA

PB(Ω) = ( f , g)P,Ω +

na
∑

k=1

f̂kĝk

ak
−

na
∑

k=1

na
∑

l=1

f̂kĝl(ψk, ψl)P,Ω, f , g ∈ HA

PB(Ω),

where
f̂k := ( f , ψk)B,∂Ω, ĝk := (g, ψk)B,∂Ω, k = 1, · · · , na.

In particular, if A = {ψk; ak}na

k=1 further satisfies{ψk}na

k=1 ⊆ Null(P) then

‖ f ‖2
HA

PB(Ω)
= | f |2P,Ω +

na
∑

k=1

| f̂k|2
ak

, f ∈ HA
PB(Ω).

Proof Since H0
P(Ω) and HA

B (Ω) are separable Hilbert spaces which are embedded inHm(Ω),
we can immediately verify that HAPB(Ω) is a separable Hilbert space and that it is embedded
inHm(Ω).

Fix any f = fP + fB ∈ HA

PB(Ω), where fP ∈ H0
P(Ω) and fB ∈ HA

B (Ω). We immediately
haveB fP = 0 andL fB = 0. SincefP ∈ H0

P(Ω) � Hm
0 (Ω), there is a sequence{γk}∞k=1 ⊂ D(Ω)

such that‖γk − fP‖m,Ω → 0 whenk→ ∞. Thus we have

( fB, fP)P,Ω = lim
k→∞

np
∑

j=1

(Pj fB,Pjγk)Ω = lim
k→∞

np
∑

j=1

〈Pj fB,Pjγk〉Ω

= lim
k→∞

np
∑

j=1

〈P∗j Pj fB, γk〉Ω = lim
k→∞
〈L fB, γk〉Ω = 0.

Because ofB f = B fP + B fB = B fB, we can compute the Fourier coefficients of f as f̂k =
( f , ψk)B,∂Ω = ( fB, ψk)B,∂Ω which implies thatfB =

∑na

k=1 f̂kψk and‖ fB‖2HA
B (Ω)

=
∑na

k=1 a−1
k | f̂k|2.

Since

( fB, fB)P,Ω =

np
∑

j=1

(Pj fB,Pj fB)Ω =
na
∑

k=1

na
∑

l=1

f̂k f̂l

np
∑

j=1

(Pjψk,Pjψl)Ω,

we have

( f , f )P,Ω = ( fP, fP)P,Ω + 2( fP, fB)P,Ω + ( fB, fB)P,Ω = ( fP, fP)P,Ω +

na
∑

k=1

na
∑

l=1

f̂k f̂l(ψk, ψl)P,Ω.
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Summarizing the above discussion, we obtain that

‖ f ‖2
HA

PB(Ω)
= ‖ fP‖2H0

P(Ω)
+ ‖ fB‖2HA

B (Ω)
= | f |2P,Ω +

na
∑

k=1

| f̂k|2
ak
−

na
∑

k=1

na
∑

l=1

f̂k f̂l(ψk, ψl)P,Ω.

⊓⊔

We can also check that HAPB(Ω) � Hm
0 (Ω) ⊕ span{ψk}na

k=1, where the direct sum space is
defined by theHm(Ω)-norm.

Corollary 3.1 If Null(P) is finite-dimensional, then there is a pairA as in Definition 3.6
such thatHA

PB(Ω) � Hm
0 (Ω) ⊕ Null(P) with its inner product equal to

( f , g)HA
PB (Ω) = ( f , g)P,Ω + ( f , g)B,∂Ω, f , g ∈ HA

PB(Ω).

(Here the direct sum spaceHm
0 (Ω) ⊕ Null(P) is given theHm(Ω)-norm.)

Remark 3.3In [26] the finite pairA = {ψk; ak}na

k=1 is generalized to a countable pairA =

{ψk; ak}∞k=1 ⊂ Null(L) ⊗ R+ such that the HAPB(Ω) � Hm(Ω).

Corollary 3.2 Hm
0 (Ω) ⊕ Null(L) = Hm(Ω).

To achieve the proof, we first show thatNull(L) is complete with respect to theHm(Ω)-
norm. For eachf ∈ Hm(Ω) we can find its orthogonal projectionfP inHm

0 (Ω) with respect
to theP-semi-inner product. Finally, we can check thatfB := f − fP ∈ Null(L). The complete
proof is worked out in the thesis [26].

4 Constructing Reproducing Kernels via Green Kernels

Let Ω be a regular bounded open domain ofRd. Given a vector differential operatorP =
(P1, · · · ,Pnp)

T ∈ P
m
Ω

and a vector boundary operatorB = (B1, · · · , Bnb)
T ∈ B

m
Ω

, where
m> d/2 andm ∈ N, we want to find a Green kernel of the differential operatorL = P∗TP =
∑np

j=1 P∗j Pj with either homogeneous or nonhomogeneous boundary conditions given byB
so that it is also the reproducing kernel of a reproducing-kernel Hilbert space. Furthermore,
we assume that the pairA := {ψk; ak}na

k=1 ⊂ Null(L) ⊗ R+ satisfies the conditions of Defini-
tion 3.6 such that{ψk}na

k=1 is an orthonormal subset with respect to theB-semi-inner product.
In this section, we will show that the Green kernels with either homogeneous or nonho-

mogeneous boundary conditions are reproducing kernels andthat their reproducing-kernel
Hilbert spaces can be represented byP, B andA .

Definition 4.1 Suppose that the setR := {Γ(·, y) : y ∈ Ω} ⊆ ⊗nb

j=1L2(∂Ω). A kernelΦ :
Ω × Ω → R is called aGreen kernel of L with boundary conditions given byB andR if for
each fixedy ∈ Ω,Φ(·, y) ∈ Hm(Ω) is a solution of















LΦ(·, y) = δy, in Ω,

BΦ(·, y) = Γ(·, y), on∂Ω.

If R ≡ {0}, then the kernelG : Ω × Ω → R is called aGreen kernel of L with homogeneous
boundary conditions given byB, i.e., for each fixedy ∈ Ω, G(·, y) ∈ Hm(Ω) is a solution of















LG(·, y) = δy, in Ω,

BG(·, y) = 0, on∂Ω.

(We can also use Lemma 3.3 to show that the Green kernel is a unique solution.)
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Next we will view the relationship between the eigenvalues and eigenfunctions of the
Green kernels (reproducing kernels) and those of the differential operators with either ho-
mogeneous or nonhomogeneous boundary conditions.

Definition 4.2 LetΦ ∈ L2(Ω × Ω). {λp}∞p=1 ⊂ R and{ep}∞p=1 ⊂ L2(Ω)\{0} are calledeigen-
values and eigenfunctions ofΦ if for each fixedp ∈ N,

(IΦ,Ωep)(y) = (Φ(·, y), ep)Ω = λpep(y), y ∈ Ω,

whereIΦ,Ω is the integral operator defined in (2.1).

Definition 4.3 Let the setE := {ηp}∞p=1 ⊆ ⊗
nb

j=1L2(∂Ω). {µp}∞p=1 ⊂ R and{ep}∞p=1 ⊂ Hm(Ω)\{0}
are calledeigenvalues and eigenfunctions of L with boundary conditions given byB andE

if for each fixedp ∈ N we have














Lep = µpep, in Ω,

Bep = ηp, on∂Ω.

If E ≡ {0}, then{µp}∞p=1 ⊂ R and{ep}∞p=1 ⊂ Hm(Ω)\{0} are calledeigenvalues and eigen-
functions of L with homogeneous boundary conditions given by B, i.e., for eachp ∈ N















Lep = µpep, in Ω,

Bep = 0, on∂Ω.

The reader may be wondering about our use of different names for Green kernels. In
the following we will use these different names to distinguish between a various types of
Green kernels. The kernelsG and K are defined in Theorems 4.1 and 4.5, and they are
Green kernels with homogeneous and nonhomogeneous boundary conditions respectively.
Moreover, a kernelR determined by the setA is introduced in Theorem 4.4. We will verify
below thatK, G andR are reproducing kernels. Finally, we use the symbolΦ to denote the
Green kernel corresponding to the general boundary conditions stated in Definition 4.1. The
Green kernelΦ may not be a reproducing kernel. An example of such a typical case is given
in Remark 4.1.

4.1 Green Kernels with Homogeneous Boundary Conditions

Theorem 4.1 Suppose that there is a Green kernel G of L with homogeneous boundary con-
ditions given byB as in Definition 4.1. Then G is the reproducing kernel of the reproducing-
kernel Hilbert spaceH0

P(Ω) (see Definition 3.5) andH0
P(Ω) � Hm

0 (Ω).

Proof According to Theorem 3.1, H0P(Ω) � Hm
0 (Ω). Fix anyy ∈ Ω. SinceG(·, y) ∈ Hm(Ω)

andBG(·, y) = 0, we haveG(·, y) ∈ H0
P(Ω) by Lemma 3.2.

We now verify the reproducing property ofG. According to the Sobolev embedding
theorem [1],Hm(Ω) is embedded into C(Ω) whenm > d/2, i.e., there is a positive constant
Cm such that

‖ f ‖C(Ω) := sup{| f (x)| : x ∈ Ω} ≤ Cm‖ f ‖m,Ω, f ∈ Hm(Ω) ⊆ C(Ω).

For any fixedf ∈ H0
P(Ω) there is a sequence{γk}∞k=1 ⊂ D(Ω) such that

| f (y) − γk(y)| ≤ ‖ f − γk‖C(Ω) ≤ Cm‖ f − γk‖m,Ω → 0, whenk→ ∞. (4.1)
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Since

(G(·, y), γk)H0
P(Ω) =

np
∑

j=1

(PjG(·, y),Pjγk)Ω =
np
∑

j=1

〈PjG(·, y),Pjγk〉Ω

=

np
∑

j=1

〈P∗j PjG(·, y), γk〉Ω = 〈LG(·, y), γk〉Ω = 〈δy, γk〉Ω = γk(y), k ∈ N,

we can determine that

|(G(·, y), f )H0
P(Ω) − γk(y)| = |(G(·, y), f )H0

P(Ω) − (G(·, y), γk)H0
P(Ω)|

≤‖ f − γk‖H0
P(Ω)‖G(·, y)‖H0

P(Ω) ≤ CP‖ f − γk‖m,Ω‖G(·, y)‖m,Ω → 0, whenk→ ∞,
(4.2)

where the positive constantCP is independent of the functionf . Here – as before – the
two notations (·, ·)Ω and〈·, ·〉Ω denote the integral bilinear form and the dual bilinear form,
respectively (see Section 3.1). Combining Equations (4.1)and (4.2), we will get

(G(·, y), f )H0
P(Ω) = f (y).

⊓⊔

Corollary 4.1 G is a symmetric positive definite kernel onΩ.

Proof Fix any set of distinct pointsX = {x1, · · · , xN} ⊂ Ω and coefficientsc = (c1, · · · , cN)T ∈
RN, N ∈ N. SinceG is the reproducing kernel of the reproducing kernel Hilbertspace H0P(Ω),
G is symmetric and positive semi-definite, i.e.,

N
∑

j=1

N
∑

k=1

cjckG(x j , xk) = (
N

∑

j=1

cjG(·, x j),
N

∑

k=1

ckG(·, xk))H0
P(Ω) = ‖

N
∑

j=1

cjG(·, x j)‖2H0
P(Ω)
≥ 0.

To get strict positive definiteness we assume
∑N

j=1 cjG(·, x j) = 0. For anyγ ∈ D(Ω),

N
∑

j=1

cjγ(x j) =
N

∑

j=1

cj〈δx j , γ〉Ω =
N

∑

j=1

cj〈LG(·, x j), γ〉Ω = (
N

∑

j=1

cjG(·, x j), γ)P,Ω = 0.

To show thatcj = 0, j = 1, · · · ,N, we pick an arbitraryx j ∈ X and constructγ j ∈ D(Ω)
such thatγ j vanishes onX\{x j}, butγ j(x j) , 0. Therefore

N
∑

j=1

N
∑

k=1

cjckG(x j , xk) > 0, whenc , 0.

⊓⊔

SinceG(·, y) ∈ C(Ω) for eachy ∈ Ω, G is uniformly continuous onΩ which implies that
G ∈ L2(Ω × Ω). According to Mercer’s theorem [9, Theorem 13.5], there isan orthonormal
basis{ep}∞p=1 of L2(Ω) and a positive sequence{λp}∞p=1 such thatG(x, y) =

∑∞
p=1 λpep(x)ep(y)

and (G(·, y), ep)Ω = λpep(y), x, y ∈ Ω, p ∈ N. According to Proposition 2.1, we can use the
technology of the proof of [25, Proposition 10.29] to verify{

√

λpep}∞p=1 is an orthonormal

basis of H0
P(Ω). (We firstly show that{

√

λpep}∞p=1 is an orthonormal subset of H0
P(Ω). Next

we can verify that it is complete.)
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Proposition 4.2 If {λp}∞p=1 ⊂ R+ and {ep}∞p=1 are the eigenvalues and eigenfunctions of G,

then {λ−1
p }∞p=1 and {ep}∞p=1 are the eigenvalues and eigenfunctions of L with homogeneous

boundary conditions given byB. Moreover,{
√

λpep}∞p=1 is an orthonormal basis ofH0
P(Ω)

whenever{ep}∞p=1 is an orthonormal basis ofL2(Ω).

Proof According to Fubini’s theorem [17, Theorem 12.41], for eachfixed p ∈ N and any
γ ∈ D(Ω),

〈Lep, γ〉Ω = (ep, L
∗γ)Ω =

∫

Ω

ep(y)(L∗γ)(y)dy

=

∫

Ω

λ−1
p (G(·, y), ep)Ω(L∗γ)(y)dy =

∫

Ω

∫

Ω

λ−1
p G(x, y)ep(x)(L∗γ)(y)dxdy

=

∫

Ω

λ−1
p ep(x) (G(x, ·), L∗γ)Ω dx =

∫

Ω

λ−1
p ep(x)〈G(·, x), L∗γ〉Ωdx

=

∫

Ω

λ−1
p ep(x)〈LG(·, x), γ〉Ωdx =

∫

Ω

λ−1
p ep(x)〈δx, γ〉Ωdx

=

∫

Ω

λ−1
p ep(x)γ(x)dx = 〈λ−1

p ep, γ〉Ω.

This shows thatLep = λ
−1
p ep.

According to Proposition 2.1, the integral operatorIG,Ω is a continuous map from L2(Ω)
to H0

P(Ω). Sinceλpep(y) = (G(·, y), ep)Ω = (IG,Ωep)(y), y ∈ Ω, we can conclude thatep ∈
H0

P(Ω). This implies thatBep = 0, p ∈ N. Therefore{λ−1
p }∞p=1 and{ep}∞p=1 are the eigenvalues

and eigenfunctions ofL with homogeneous boundary conditions given byB.
⊓⊔

Proposition 4.3 If {µp}∞p=1 ⊂ R+ and {ep}∞p=1 are the eigenvalues and eigenfunctions of

L with homogeneous boundary conditions given byB, then {µ−1
p }∞p=1 and {ep}∞p=1 are the

eigenvalues and eigenfunctions of G. Moreover, if{ep}∞p=1 is an orthonormal basis ofL2(Ω),
then

G(x, y) =
∞
∑

p=1

µ−1
p ep(x)ep(y), x, y ∈ Ω.

Proof According to Theorem 4.1G is a reproducing kernel, i.e., we have

(G(·, y), ep)H0
P(Ω) = ep(y), y ∈ Ω, p ∈ N.

Applying the same method as in Equation (??), we obtain

(G(·, y), ep)H0
P(Ω) =

np
∑

j=1

(PjG(·, y),Pjep)Ω = (G(·, y), µpep)Ω.

Combining the above equations, we can easily verify that (G(·, y), ep)Ω = µ−1
p ep(y). The

second claim follows immediately.
⊓⊔
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4.2 Green Kernels with Nonhomogeneous Boundary Conditions

Theorem 4.4 The spaceHA
B (Ω) of Definition 3.6 is a reproducing-kernel Hilbert space

with reproducing kernel

R(x, y) :=
na
∑

k=1

akψk(x)ψk(y), x, y ∈ Ω.

In particular, when na = 0 or A = {0; 0} then R:= 0.

Proof We fix anyy ∈ Ω. It is obvious thatR(·, y) =
∑na

k=1(akψk(y))ψk ∈ HA

B (Ω).
We now turn to the reproducing property. Let anyf =

∑na

k=1 f̂kψk ∈ HA

B (Ω). Then

(R(·, y), f )HA

B (Ω) =

na
∑

k=1

akψk(y) f̂k
ak

=

na
∑

k=1

f̂kψk(y) = f (y), y ∈ Ω.

⊓⊔

Our main theorem now follows directly from Theorems 3.2, 4.1and 4.4.

Theorem 4.5 Suppose that there is a Green kernel G of L with homogeneous boundary con-
ditions given byB. Then the direct sum spaceHA

PB(Ω) (see Definition 3.7) is a reproducing-
kernel Hilbert space with reproducing kernel

K(x, y) := G(x, y) + R(x, y), x, y ∈ Ω.

Moreover,HA
PB(Ω) can be embedded intoHm(Ω).

By Corollary 4.1 we know thatG is a symmetric positive definite kernel, and using
similar arguments we can check thatR is symmetric positive semi-definite. Together, this
allows us to formulate the following corollary.

Corollary 4.2 K is a symmetric positive definite kernel onΩ.

On the other hand,K may not be positive definite on∂Ω (see the min kernel in Example 5.1).
According to Definition 4.1 we also have

Corollary 4.3 Let R := {BR(·, y) : y ∈ Ω}. Then K is a Green kernel of L with boundary
conditions given byB andR.

Remark 4.1To see that not every Green kernel is a reproducing kernel, assume thatΦ is
a Green kernel of the differential operatorL. Then, according to Corollary 3.2,Φ can be
uniquely written in the form

Φ(x, y) = ΦP(x, y) +ΦB(x, y), ΦP(·, y) ∈ Hm
0 (Ω), ΦB(·, y) ∈ Null(L), x, y ∈ Ω.

Therefore we have














LΦP(·, y) = δy, in Ω,

BΦP(·, y) = 0, on∂Ω,
and















LΦB(·, y) = 0, in Ω,

BΦB(·, y) = BΦ(·, y), on∂Ω.

This means thatΦP is a Green kernel ofL with homogeneous boundary conditions given
by B. However, there may be no pairA such thatR = ΦB even thoughA is extended to
a countable pair set. This shows thatΦ may not be a reproducing kernel of a reproducing-
kernel Hilbert space. For example,Φ(x, y) := − 1

2 |x − y| is the Green kernel ofL := − d2

dx2 .
However,φ(x) := Φ(x, 0) is only a conditionally positive definite function of order one and
therefore cannot be a reproducing kernel.



20

We are now ready to address nonhomogeneous boundary conditions. Consider a kernel
Γ ∈ L2(∂Ω × Ω). Then we can define anintegral operatorIΓ,Ω : L2(Ω) → L2(∂Ω) via the
form

(IΓ,Ω f )(x) := (Γ(x, ·), f )Ω, f ∈ L2(Ω) andx ∈ ∂Ω.

Let Γ denote the vector functionΓ(·, y) = (Γ1(·, y), · · · , Γnb(·, y))T := BK(·, y) for any
y ∈ Ω, i.e.,Γ j(·, y) = BjK(·, y), j = 1, · · · , nb. SinceBjG(·, y) = 0, y ∈ Ω, we have

Γ j(·, y) = BjK(·, y) = BjG(·, y) + BjR(·, y) = BjR(·, y) =
na
∑

k=1

ak(Bjψk)ψk(y).

As a consequence we haveΓ j ∈ L2(∂Ω ×Ω).

Proposition 4.6 If {λp}∞p=1 ⊂ R+ and {ep}∞p=1 are the eigenvalues and eigenfunctions of

K, then {λ−1
p }∞p=1 and {ep}∞p=1 are the eigenvalues and eigenfunctions of L with boundary

conditions given byB and

E := {ηp := (λ−1
p IΓ1,Ωep, · · · , λ−1

p IΓnb ,Ω
ep)T}∞p=1,

i.e.,ηp, j(x) = λ−1
p (Γ j(x, ·), ep)Ω, x ∈ ∂Ω. Moreover,{

√

λpep}∞p=1 is an orthonormal basis of

HA

PB(Ω) whenever{ep}∞p=1 is an orthonormal basis ofL2(Ω).

Proof Using the same method as in the proof of Proposition 4.2, we can verify that〈Lep, γ〉Ω =
〈λ−1

p ep, γ〉Ω for eachγ ∈ D(Ω). This implies thatLep = λ
−1
p ep, p ∈ N.

Next we compute their boundary conditions. Fix any boundaryoperatorBj , j = 1, · · · , nb

and any eigenfunctionep and eigenvalueλp of K, p ∈ N. BecauseK ∈ C(Ω × Ω) is pos-
itive definite. According to Mercer’s Theorem, there exist an orthonormal basis{ϕk}∞k=1 of
L2(Ω) and a positive sequence{νk}∞k=1 such thatK(x, y) =

∑∞
k=1 νkϕk(x)ϕk(y), x, y ∈ Ω.

We can also check that{ √νkϕk}∞k=1 is an orthonormal basis of HAPB(Ω). Let Kn(x, y) :=
∑n

k=1 νkϕk(x)ϕk(y), n ∈ N. Thus ‖K(·, y) − Kn(·, y)‖2
HA

PB(Ω)
=

∑∞
k=n+1 νk|ϕk(y)|2 → 0 when

n → ∞. According to Theorem 3.2, HAPB(Ω) is embedded intoHm(Ω), which implies
that ‖K(·, y) − Kn(·, y)‖m,Ω → 0 whenn → ∞. So BjK(·, y) =

∑∞
k=1 νk(Bjϕk)ϕk(y) and

(Bj,xK(x, ·), ep)Ω =
∑∞

k=1 νk(Bjϕk)(x)(ϕk, ep)Ω. It implies that

λp(Bjep)(x) = Bj,x(K(x, ·), ep)Ω = (Bj,xK(x, ·), ep)Ω = (Γ j(x, ·), ep)Ω, x ∈ ∂Ω.

It follows that the boundary conditions have the formBep = ηp for all p ∈ N.
⊓⊔

Proposition 4.7 If {µp}∞p=1 ⊂ R+ and {ep}∞p=1 of L2(Ω) are the eigenvalues and eigenfunc-
tions of L with boundary conditions given byB and

E := {ηp := (µpIΓ1,Ωep, · · · , µpIΓnb ,Ω
ep)T }∞p=1,

i.e., ηp j(x) = µp(Γ j(x, ·), ep)Ω, x ∈ ∂Ω, then{µ−1
p }∞p=1 and {ep}∞p=1 are the eigenvalues and

eigenfunctions of K. Moreover, if{ep}∞p=1 is an orthonormal basis ofL2(Ω), then

K(x, y) =
∞
∑

p=1

µ−1
p ep(x)ep(y), x, y ∈ Ω.
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Proof We fix any p ∈ N. Let vp(y) := µp(R(·, y), ep)Ω = µp
∑na

k=1 ak(ψk, ep)Ωψk(y), y ∈ Ω.
ThenLvp = 0 andBvp = ηp becauseBK(·, y) = BR(·, y) for eachy ∈ Ω.

Defineup := ep−vp, so thatLup = Lep = µpep andBup = Bep−Bup = 0 which implies
thatup ∈ H0

P(Ω). As in Proposition 4.3, we can obtain that

(G(·, y), µpep)Ω = (G(·, y), Lup)Ω = (G(·, y), up)H0
P(Ω) = up(y), y ∈ Ω.

It follows from the above discussion that

(K(·, y), ep)Ω = (G(·, y), ep)Ω + (R(·, y), ep)Ω = µ
−1
p up(y) + µ−1

p vp(y) = µ−1
p ep(y), y ∈ Ω.

⊓⊔

Given a functionf ∈ Hm(Ω), we also want to know whetherf belongs to the repro-
ducing kernel Hilbert space HAPB(Ω) as used in Theorem 4.5. According to Corollary 3.2,
f can be uniquely decomposed intof = fP + fB, where fP ∈ H0

P(Ω) and fB ∈ Null(L).
Theorem 3.2 shows thatf ∈ HA

PB(Ω) if and only if fB ∈ HA

B (Ω). Moreover, fB ∈ HA

B (Ω) if
and only if

∑na

k=1 a−1
k | f̂k|2 < ∞, where f̂k := ( f , ψk)B,∂Ω for eachk ∈ N.

Because
∑na

k=1 ak‖ψk‖2m,Ω < ∞. We can setΨ j(x, y) := Bj,xBj,yR(x, y), x, y ∈ ∂Ω and
j = 1, · · · , nb. ThenΨ j(x, y) =

∑na

k=1 ak(Bjψk)(x)(Bjψk)(y) which implies that eachΨ j is
symmetric positive semi-definite on∂Ω. SoΨ j is the reproducing kernel of a reproducing-
kernel Hilbert space Hj(∂Ω) by [4, Theorem 1.3.3]. According to [25, Theorem 10.29], we
have

∑na

k=1 a−1
k | f̂k|2 < ∞ if and only if Bj f ∈ H j(∂Ω), j = 1, · · · , nb.

Theorem 4.8 Let Ψ j(x, y) := Bj,xBj,yR(x, y), x, y ∈ ∂Ω and j = 1, · · · , nb. UseH j(∂Ω)
to denote the reproducing-kernel Hilbert space whose reproducing kernel isΨ j . Then a
function f ∈ Hm(Ω) belongs toHA

PB(Ω) if and only if Bj f ∈ H j(∂Ω) for each j= 1, · · · , nb.

Remark 4.2In Remark 3.3 we mentioned that the nonhomogeneous boundaryconditions
discussed in the present paper can be generalized to such that are generated by a countable
setA . One will also want to know which Green kernels associated with such nonhomoge-
neous boundary conditions are reproducing kernels. In the thesis [26] it is shown that, e.g.,
a Green kernelΦ ∈ Hm,m(Ω ×Ω) is a reproducing kernel if and only ifBj,xBj,yΦ is positive
semi-definite on∂Ω for each j = 1, · · · , nb. This Green kernel can then be expanded as the
sum of eigenvalues and eigenfunctions analogous to Propositions 4.6 and 4.7. This allows
us to approximate the interpolantsf ,X by a truncated expansion of the Green kernel.

5 Examples

Example 5.1 (Modifications of the Min Kernel)Let

Ω := (0, 1), P :=
d
dx
, L := P∗1P1 = −

d2

dx2
, B := I |∂Ω = I |{0,1}.

It is easy to check thatP ∈ P
1
Ω

andB ∈ B
1
Ω

, whereO(P) = O(B) + 1 = 1 > 1/2. We can
calculate the Green kernelG of L with homogeneous boundary conditions given byB, i.e.,

G(x, y) := min{x, y} − xy, x, y ∈ Ω.
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This Green kernelG is also known to be the covariance kernel of the Brownian bridge.
According to Theorem 4.1,G is the reproducing kernel of the reproducing-kernel Hilbert
space

H0
P(Ω) =

{

f ∈ H1(Ω) : f (0) = f (1) = 0
}

� H1
0 (Ω),

with the inner product

( f , g)H0
P(Ω) = ( f , g)P,Ω = ( f ′, g′)Ω =

∫ 1

0
f ′(x)g′(x)dx, f , g ∈ H0

P(Ω).

In order to obtain a second, related, kernel we consider the same differential operator
with a different set ofnonhomogeneousboundary conditions. One of the obvious orthonor-
mal subsets ofNull(L) = span{ψ1, ψ2} with respect to theB-semi-inner product is given
by

ψ1(x) := x, ψ2(x) := 1− x, x ∈ Ω,
and we can further obtain that

f̂1 := ( f , ψ1)B,∂Ω = f (1), f̂2 := ( f , ψ2)B,∂Ω = f (0), f ∈ H1(Ω).

We will choose the nonnegative coefficients

a1 := 1, a2 := 0,

to set up the pairA := {ψk; ak}2k=1. According to Theorems 4.4 and 4.5, the covariance kernel
of the standard Brownian motion

K(x, y) = G(x, y) +R(x, y) = G(x, y) + a1ψ1(x)ψ1(y) = min{x, y}, x, y ∈ Ω,

is the reproducing kernel of the reproducing-kernel Hilbert space

HA
PB(Ω) = H0

P(Ω) ⊕ HA
B (Ω) = H0

P(Ω) ⊕ span{ψ1} = { f ∈ H1(Ω) : f (0) = 0},

with the inner product

( f , g)HA

PB(Ω) = ( f , g)P,Ω +
f̂1ĝ1

a1
− f̂1ĝ1(ψ1, ψ1)P,Ω =

∫ 1

0
f ′(x)g′(x)dx, f , g ∈ HA

PB(Ω).

If we select another pairA , i.e.,

ψ1(x) :=

√
2

2
, ψ2(x) :=

√
2x−

√
2

2
, a1 := 1, a2 := 0,

then we can deal withperiodicboundary conditions. Thus we obtain the reproducing-kernel
Hilbert space

HA

PB(Ω) = H0
P(Ω) ⊕Null(P) = H0

P(Ω) ⊕ span{ψ1} = { f ∈ H1(Ω) : f (0) = f (1)}

equipped with the inner product

( f , g)HA

PB(Ω) = ( f , g)P,Ω + ( f , g)B,∂Ω =

∫ 1

0
f ′(x)g′(x)dx+ f (0)g(0)+ f (1)g(1),

whose reproducing kernel has the form

K(x, y) := G(x, y) + a1ψ1(x)ψ1(y) = min{x, y} − xy+
1
2
, x, y ∈ Ω.
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Example 5.2 (Univariate Sobolev Splines)Letσ be a positive scaling parameter and

Ω := (0, 1), P := (
d
dx
, σI )T , Lσ :=

2
∑

j=1

P∗j Pj = −
d2

dx2
+ σ2I , B := I |∂Ω.

ThenP ∈ P
1
Ω

andB ∈ B
1
Ω

. So the Green kernelGσ of Lσ with homogeneous boundary
conditions given byB has the form

Gσ(x, y) :=















1
σ sinh(σ) sinh(σx) sinh(σ − σy), 0 < x ≤ y < 1,

1
σ sinh(σ) sinh(σ − σx) sinh(σy), 0 < y ≤ x < 1.

Using the same approach as in Example 5.1 we can pick an orthonormal bases of
Null(L) with respect to theB-semi-inner product as

ψ1(x) :=
exp(σ − σx)
√

2
(

exp(σ) − 1
)

− exp(σx)
√

2
(

exp(σ) − 1
)

,

ψ2(x) :=
exp(σ − σx)
√

2
(

exp(σ) + 1
)

+
exp(σx)

√
2
(

exp(σ) + 1
)

,

and then compute

f̂1 := ( f , ψ1)B,∂Ω =
1
√

2
( f (0)− f (1)) , f̂2 := ( f , ψ2)B,∂Ω =

1
√

2
( f (0)+ f (1)) .

We further choose the positive sequence

a1 :=
exp(σ) − 1
2σ exp(σ)

, a2 :=
exp(σ) + 1
2σ exp(σ)

.

According to Theorem 4.5,

K(x, y) = Gσ(x, y) + R(x, y) = Gσ(x, y) +
2

∑

k=1

akψk(x)ψk(y) =
1

2σ
exp(−σ|x− y|)

is the reproducing kernel of the reproducing-kernel Hilbert space HAPB(Ω) � H1(Ω) with the
inner-product

( f , g)HA

PB(Ω) =

∫ 1

0
f ′(x)g′(x)dx+ σ2

∫ 1

0
f (x)g(x)dx+ 2σ f (0)g(0)+ 2σ f (1)g(1).

Remark 5.1Roughly speaking, the differential operatorLσ = − d2

dx2 + σ
2I converges to the

operatorL = − d2

dx2 from Example 5.1 whenσ → 0. We also observe that the homogeneous
Green kernelGσ of Lσ converges uniformly to the homogeneous Green kernelG of L when
σ→ 0. This matter is discussed in detail for radial kernels of even smoothness orders in the
paper [22]. One might hope to exploit this limiting behaviorto stabilize the positive definite
interpolation matrix corresponding toGσ whenσ is small by augmenting the matrix with
polynomial blocks that correspond to the better-conditioned limiting kernelG.
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Example 5.3 (Modifications of Thin Plate Splines)LetΩ := (0, 1)2 ⊂ R2 and

P := (
∂2

∂x2
1

,
√

2
∂2

∂x1∂x2
,
∂2

∂x2
2

)T , B := (
∂

∂x1
|∂Ω,

∂

∂x2
|∂Ω, I |∂Ω)T .

which shows thatP ∈P
2
Ω

andB ∈ B
2
Ω

. Thus we can compute that

L :=
3

∑

j=1

P∗j Pj = ∆
2.

We know that the fundamental solution ofL is given by

φ(x) :=
1
8π
‖x‖22 log‖x‖2, x ∈ R2,

i.e.,Lφ = δ0 in R2. Applying Green’s formulas, we can find a corrector functionφy ∈ H2(Ω)
for each fixedy ∈ Ω by solving















Lφy
= ∆2φy

= 0, in Ω,

Bφy
= Γ(·, y), on∂Ω,

whereΓ1(x, y) := 1
8π (2 log‖x − y‖2 + 1)(x1 − y1), Γ2(x, y) := 1

8π (2 log‖x − y‖2 + 1)(x2 − y2)
andΓ3(x, y) := 1

8π‖x − y‖22 log‖x − y‖2. SinceΓ(x, y) = Bxφ(x − y) for eachx ∈ ∂Ω and
y ∈ Ω, the kernelG(x, y) := φ(x − y) − φy(x) defined inΩ × Ω is a Green kernel ofL with
homogeneous boundary conditions given byB.

SinceNull(P) = π1(Ω), the space of linear polynomials onΩ, we can obtain an or-
thonormal basis ofπ1(Ω) with respect to theB-semi-inner product as

ψ1(x) :=
1
2
, ψ2(x) :=

√

3
29

(x1 − 2), ψ3(x) :=

√

3
29

(x2 − 2), x := (x1, x2) ∈ Ω.

We choose positive coefficients{ak}3k=1 asa1 = a2 = a3 := 1. ThusR(x, y) :=
∑3

k=1 akψk(x)ψk(y).
According to Theorems 3.2 and 4.5, the Green kernel

K(x, y) := G(x, y) + R(x, y), x, y ∈ Ω,

is the reproducing kernel of the reproducing-kernel Hilbert space HAPB(Ω) = Hm
0 (Ω)⊕ π1(Ω)

and its inner-product has the form

( f , g)HA

PB (Ω) := ( f , g)P,Ω + ( f , g)B,∂Ω, f , g ∈ HA

PB(Ω).

[25, Chapters 10 and 11] state that the native spaceNφ(Ω) of the thin plate splineφ
covers the Sobolev spaceH2(Ω). Therefore HAPB(Ω) & H2(Ω) ⊆ Nφ(Ω).

Remark 5.2We can also introduce otherd-dimensional examples that connect Green ker-
nels with, e.g., pdLg splines [12] or Sobolev splines [10]. ApdLg spline is given by a linear
combination of the homogeneous Green kernel centered at thedata sites fromX. Thus it pro-
vides theP-semi-norm-optimal solution of the scattered data interpolation problem. Accord-
ing to Example 5.7 of [10], the Matérn function (or Sobolev spline)φm,σ of orderm > d/2
with shape parameterσ > 0 can be identified with the kernelΦm,σ(x, y) = φm,σ(x − y)
which is afull-spaceGreen kernel of the differential operatorL := (∆ − σI )m. If we add
nonhomogeneous boundary conditions toL then the finite setA used in the present paper
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does not allow us to discuss the resulting Green kernelΦm,σ and to check whether it is a
reproducing kernel in a regular bounded open domainΩ. This is done in the thesis [26]
where it is shown that for eachσ the reproducing-kernel Hilbert space associated withΦm,σ

is equivalent to the Sobolev spaceHm(Ω). However, different shape parametersσ allow us
to choose a specific norm forHm(Ω) that reflects the relative influence of various derivatives
in the data.
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