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Abstract. We propose a fast and accurate approximation method
for large sets of multivariate data using radial functions. In the tradi-
tional radial basis function approach this task is usually accomplished
by solving a large system of linear equations stemming from an inter-
polation formulation. In the traditional moving least-squares method
one needs to solve a small linear system for each evaluation of the ap-
proximant. We present an approximation scheme – based on the work
on approximate approximation by Maz’ya and Schmidt – that has ap-
proximation properties similar to the moving least-squares method,
but completely avoids the solution of linear systems. Moreover, the
sums required for the evaluation of the approximant can be processed
quickly. We establish a connection to traditional radial basis func-
tion approximation by using appropriate radial generating functions.
Examples of locally supported as well as globally supported functions
with arbitrary approximation orders are given.

§1. Introduction

In this paper we propose a fast and accurate approximation method for
large sets of multivariate data of the form {(xi, f(xi)) : i = 1, . . . , N} ⊂
IRs× IR by radial functions. In the traditional radial basis function (RBF)
approach (see, e.g., [12,13]) this task is usually accomplished by interpola-
tion of the data which in turn leads to a large system of linear equations.
The zero-structure (sparse or dense) of the system matrix will depend on
the choice of radial function. Moreover, once the expansion coefficients
have been determined, subsequent evaluation of the RBF interpolant will
require evaluation of a sum of the form

If(x) =
N∑
j=1

cjφ(‖x− xj‖), x ∈ IRs .
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In the traditional moving least-squares (MLS) method [9] the amount of
work is shifted. There is no large system to solve. Instead, for every
evaluation one needs to solve a small linear system (normal equations)
to find the coefficients of the moving local (polynomial) approximant, and
then evaluate a summation (more details are given in Sect. 2). It is our goal
(started in [4]) to devise an approximation scheme that has approximation
properties similar to the MLS method, but completely avoids the solution
of linear systems. Moreover, we want to be able to process the sums
required for the evaluation of the approximant quickly.

In this paper we present such a method – based on the work on ap-
proximate approximation by Maz’ya and Schmidt [11]. We establish a
connection to traditional RBF approximation by using appropriate radial
generating functions. Examples of generating functions with arbitrary
approximation orders are given. The final section outlines a fast summa-
tion approach applicable to general global methods with rapidly decaying
generating functions.

Throughout the paper we will be using multi-index notation. We
call α = (α1, . . . , αs) ∈ INs a multi-index with length |α| =

∑s
i=1 αi.

The multivariate factorial is defined by α! = α1! · · ·αs!. If x ∈ IRs, then
the monomials are xα = xα1

1 · · ·xαss . Multivariate differential operators are
denoted by Dα = ∂α1

1 ∂α2
2 · · · ∂αss , where ∂i denotes differentiation with

respect to the i-th coordinate direction in IRs. Finally, α ≤ p, for some
integer p if αi ≤ p for all i = 1, . . . , s.

§2. Moving Least-Squares via Constrained Optimization

We begin the motivation of our method with a brief review of the so-called
Backus-Gilbert approach to MLS approximation (a more detailed discussion
covering also the more familiar discrete least-squares formulation can be
found in [4]). The basic idea is to approximate the given data with a
quasi-interpolant of the form

Qf(x) =
N∑
j=1

f(xj)Ψj(x), x ∈ IRs . (1)

The generating functions Ψj are determined such that

N∑
j=1

p(xj)Ψj(x) = p(x), ∀p ∈ Πs
d,

and
1
2

N∑
j=1

Ψ2
j (x)wj(x)→ min.
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Here the wj are considered to be positive weight functions. The first of
these constraints guarantees reproduction of polynomials up to degree d,
and thus approximation order d+ 1. Such a theorem was proven by both
Levin [10] and Wendland [16].

From the proofs of the approximation order result in [10] and [16],
a solution procedure is suggested as follows. We use Lagrange multipliers

and identify Φj(x) =
1

wj(x)
. This leads to the following formula for the

generating functions:

Ψj(x) =

(
m∑
k=1

λk(x)pk(xj)

)
Φj(x), j = 1, . . . , N, (2)

where the Lagrange multipliers λk(x) are the solution of

Gλ = q, with q = [p1(x), . . . , pm(x)]T . (3)

The matrix G is a Gram matrix with

Gk,`(x) =
N∑
j=1

pk(xj)p`(xj)Φj(x).

The best known (and simplest) example of an MLS method is Shep-
ard’s method [14] which arises in the case d = 0. In this case

Qf(x) =
N∑
j=1

f(xj)
Φj(x)∑N
k=1 Φk(x)

. (4)

The approximation order result quoted above guarantees that this method
has approximation order O(h) provided Φj has support size ρj = ch.

The following is an implication of the approximation order result by
Levin and Wendland.

Corollary 1. The choice of weight functions in MLS approximation does
not affect the approximation order.

This was illustrated numerically in [4] for Shepard’s method based
on three different locally supported weights. The convergence rate was
approximately the same for all three methods – but significantly better
than linear (approximately O(h1.3)). We will comment on this fact later.

§3. Matrix-free Formulations

As indicated in [4], there seem to be at least three approaches to obtaining
a matrix-free formulation for radial basis function approximation. Of those
three approaches, the most promising line of attack seems to be the direct
construction of appropriate generating functions. That is what we want
to pursue here. This approach was also suggested in [5]. In order to be
able to motivate our construction, we recall some formulas for the case
s = 2 and d = 1 from [4].



4 G. E. Fasshauer

Example 1. According to (2) and (3), the generating functions are given
by

Ψj(x, y) = [λ1(x, y) + λ2(x, y)(xj − x) + λ3(x, y)(yj − y)] Φj(x, y), (5)

where x and y denote the components of a point in IR2 and

λ1(x, y) =
1
D

[
µ2

11 − µ20µ02

]
,

λ2(x, y) =
1
D

[µ10µ02 − µ01µ11] ,

λ3(x, y) =
1
D

[µ20µ01 − µ10µ11] ,

(6)

with

D = µ2
10µ02 + µ20µ

2
01 − µ00µ20µ02 − 2µ10µ01µ11 + µ00µ

2
11

and discrete moments

µα =
N∑
j=1

(xj − x)αΦj(x), x ∈ IRs, |α| ≤ 2d.

This guarantees that we can approximate the given data by an expansion
of the form (1) with approximation order O(hd+1) = O(h2).

§4. Moment Conditions

Inspecting (6), we see that formula (5) for Ψj can be turned into the trivial
identity Ψj = Φj by enforcing a certain set of conditions on the moments
µα. For the example given above, these are

µ10 =
N∑
j=1

(xj − x)Φj(x, y) = 0,

µ01 =
N∑
j=1

(yj − y)Φj(x, y) = 0.

Then it is easy to see that

Ψj(x, y) =
Φj(x, y)∑N
j=1 Φj(x, y)

,

which now makes (1) look just like the basic Shepard method (4). However,
contrary to the approximation order predicted by the traditional MLS
theory, we have achieved an increase in approximation order by imposing
additional constraints on the weight functions. Here lies the explanation
why all three Shepard methods in the example from [4] mentioned at the
end of Sect. 2 performed better than linear. The preceding arguments can
be generalized:
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Proposition 2. Let Ω ⊂ IRs. If f ∈ Cd+1(Ω), {xi : i = 1, . . . , N} ⊂ Ω are
quasi-uniformly distributed with “mesh size” h, the generating functions
Ψj(x) = Ψ(x − xj) are compactly supported with support size ρj = ch
(c = const.), and the discrete moment conditions

µα =
N∑
j=1

(xj − x)Ψj(x) = δα0, 0 ≤ |α| ≤ d,

are satisfied, then

Qhf(x) =
N∑
j=1

f(xj)Ψ
(
x− xj
ρj

)

has approximation order O(hd+1).

We can interpret the effect of the moment conditions in Proposition 2
as follows. The generating function Ψ can be viewed as

Ψ(x) = Φ0(x)q(x), q ∈ Πs
d+1,

with Φ0 a new (arbitrary) weight function, and q an s-variate polynomial
orthogonal with respect to Φ0. Unfortunately, constructing such a func-
tion Ψ is a very difficult problem. It would require discrete multivariate
orthogonal polynomials at scattered centers.

§5. Approximate Approximation

The key to a numerically feasible approximation scheme is given by a
series of papers by Maz’ya and Schmidt in which they establish what they
coined approximate approximation. Their most relevant result (see [11]) is
summarized as

Theorem 3. (Maz’ya & Schmidt) Let f ∈ Cd+1(IRs), {xν : ν ∈ ZZs} ⊂
IRs, and Ψ a continuous generating function which satisfies the continuous
moment conditions∫

IRs
xαΨ(x)dx = δα0, 0 ≤ |α| ≤ d, (7)

along with a mild decay requirement. Then

Mhf(x) = D−s/2
∑
ν∈ZZs

f(xν)Ψ
(
x− xν√
Dh

)
leads to

‖Mhf − f‖∞ = O(hd+1 + ε0(Ψ,D)).
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The statement of Theorem 3 tells us that we can approximate with
numerical approximation order O(hd+1) until a certain saturation error ε0

takes over. The role of the parameter D is to regulate when this is to occur.
In other words, by scaling the generating functions appropriately, we can
assure that no saturation occurs within the range of machine accuracy on
a given computer.

We point out that Theorem 3 is formulated for gridded data on an un-
bounded domain. However, similar results for scattered data on bounded
domains can be found in the work of Maz’ya and Schmidt. The numerical
examples referred to later on are so far restricted to the gridded setting.
We have not yet implemented a practical method for scattered data.

§6. Construction of Generating Functions

To make the connection to RBF approximation, we assume the generating
function is radial, i.e., Ψ(x) = q(‖x‖2)φ0(‖x‖2). Therefore, we want (see
(7)) ∫

IRs
‖x‖2kq(‖x‖2)φ0(‖x‖2)dx = δk0, 0 ≤ k ≤ d, (8)

to ensure approximation order O(h2d+2).
By using s-dimensional spherical coordinates and the subsequent change

of variables y = r2, we see that (8) is equivalent to

πs/2

Γ(s/2)

∫ ∞
0

yk−1q(y)φ0(y)ys/2dy = δk0, 0 ≤ k ≤ d. (9)

This tells us that we need to find a univariate polynomial q which is or-
thogonal with respect to the weight ys/2φ0(y). Thus, the guiding principle
in constructing a generating function with the desired approximation order
is to pick an (arbitrary) univariate weight function φ0, and then compute
the multivariate generating function via the 1D moment conditions (9).

We have done this for compactly supported as well as globally sup-
ported weight functions φ0.

If φ0(r) = (1 −
√
r)4

+(4
√
r + 1), then we are able to compare our

approximate approximation results to interpolation with the compactly
supported RBF φ(r) = (1 − r)4

+(4r + 1) introduced by Wendland [15].
Corresponding generating functions for s = 1, 2, 3 and approximation or-
ders 2, 4, and 6 are listed in [5], and numerical comparisons between RBF
interpolation, MLS approximation and approximate MLS approximation
were also reported there.

Similarly, we can compute globally supported generating functions
for s = 1, 2, 3 with approximation orders 2, 4, or 6 by starting, e.g., with
φ0(r) = e−r. This leads to the functions listed in Table 1.
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s O(h2) O(h4) O(h6)

1
1√
π
e−‖x‖

2 1√
π

(
3

2
− ‖x‖2

)
e−‖x‖

2 1√
π

(
15

8
− 5

2
‖x‖2 +

1

2
‖x‖4

)
e−‖x‖

2

2
1

π
e−‖x‖

2 1

π

(
2− ‖x‖2

)
e−‖x‖

2 1

π

(
3− 3‖x‖2 +

1

2
‖x‖4

)
e−‖x‖

2

3
1

π3/2
e−‖x‖

2 1

π3/2

(
5

2
− ‖x‖2

)
e−‖x‖

2 1

π3/2

(
35

8
− 7

2
‖x‖2 +

1

2
‖x‖4

)
e−‖x‖

2

Tab. 1. Globally supported generating functions.

More generally, if we let Ls/2d be the generalized Laguerre polynomial
of degree d, then

Ψj(x) =
1

πs/2
L
s/2
d

(
‖x− xj‖2

Dh2

)
exp

(
−‖x− xj‖

2

Dh2

)
has approximation order O(h2d+2) in IRs.

§7. Fast Summation via Taylor Expansions

Once we have determined suitable generating functions for the quasi-
interpolant (1), the remaining task is to evaluate the corresponding sum
efficiently. Based on our experience with the generating functions men-
tioned in Sect. 6, better results are achieved with the globally supported
functions of Table 1. In the traditional RBF setting, Beatson and co-
workers (see, e.g., [1,2]) have developed fast evaluation methods especially
for polyharmonic splines and multiquadrics. Our work on this subject
is motivated by the general fast tree code algorithms of Krasny and co-
workers (see, e.g., [3]), and by the fast Gauss transform of Greengard and
Strain [8].

The main idea is to divide the computational mesh into clusters C
(containing the source points or centers). One then computes Taylor series
expansions about the centers of the source clusters. In order to devise a
fast summation algorithm, one needs fast decay of the generating functions
and a recurrence relation for the Taylor coefficients. The following theorem
can be applied for any quasi-interpolant.

Theorem 4. Let Ic be the index set denoting the sources xj which lie in
a cluster C with center xc. Then the value of the quasi-interpolant at x
is given by

Qf(x) =
∑
c

∑
j∈Ic

f(xj)Ψ(x− xj).
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Moreover
Qf(x) =

∑
c

∑
α≥0

Tα(x, xc)mα(c),

with the multivariate moments mα(c) given by

mα(c) =
∑
j∈Ic

f(xj)(xj − xc)α,

and Tα(x, xc) =
1
α!
DαΨ(z)|z=x−xc .

In order to devise a fast tree code one uses either the truncated Taylor
expansion

Qf(x) =
∑
c

∑
|α|<p

Tα(x, xc)mα(c),

or direct summation

Qf(x) =
∑
c

∑
j∈Ic

f(xj)Ψ(x− xj),

depending on which is more efficient for the given cluster size and desired
accuracy, i.e., p is the minimum order satisfying our accuracy criterion.

If we take Ψ(x) = e−‖x‖
2
, then

Tα(x, y) =
1
α!
Dα
y e
−‖x−y‖2 =

(−1)|α|

α!
hα(x− y),

and we obtain the expansions underlying the fast Gauss transform of
Greengard and Strain [8]. Here hα are multivariate Hermite functions. As
mentioned earlier, the well-known recurrence relation for Hermite func-
tions adds to the efficiency of the fast Gauss transform.

Initial experiments comparing an implementation of the fast Gauss
transform taken from [7] to direct summation in the case s = 1 have shown
an approximate 300-fold speedup. Thus, we are able to approximate data
given at 250,000 points in roughly the same time it takes us for direct
summation at 500 points. In other words, investing the same amount of
time, the accuracy can be improved by roughly five orders of magnitude.

In order to obtain a similar fast summation algorithm for our gener-
ating functions of Table 1, we need to derive recurrence relations for the
higher-order Gauss-Laguerre functions. We close with two such examples.

Example 2. We take Ψ(x) = e−‖x‖
2
. Then the Taylor coefficients are

bα =
1
α!
DαΨ(x).

Now, using the multivariate Leibniz rule, we get the recurrence relation

bα +
2
α`
x`bα−e` +

2
α`
bα−2e` = 0, ` = 1, . . . , s.
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Example 3. If Ψ(x) =
(
s+ 2

2
− ‖x‖2

)
e−‖x‖

2
, then the Taylor coeffi-

cients are
aα =

1
α!
DαΨ(x),

and (again using the multivariate Leibniz rule) we get the nested recursion

aα +
2
α`
x`aα−e` +

2
α`
aα−2e` = bα, ` = 1, . . . , s.

with bα as in the previous example.

§8. Concluding Remarks

We have proposed a computationally efficient (and accurate) meshfree
method. We have also seen that the choice of MLS weight function Φ
(with vanishing moments) has considerable effect on the rate of conver-
gence. Our numerical experiments (not reported here) have shown that
local approximate MLS approximation seems less stable and more sensi-
tive to the choice of the scale parameter D of Theorem 3. In order to get
good results with local functions the support has to be made essentially
global. A multilevel technique such as frequently used for interpolation
with compactly supported RBFs does not help (see [5]). The fast sum-
mation technique based on Taylor expansions suggested here applies to
arbitrary radial functions. The fast tree code algorithm can be made even
more efficient by using a cluster-cluster algorithm such as in the fast mul-
tipole method. A paper containing numerical experiments as well as more
details on the fast summation method is in preparation [6].

Acknowledgments. Supported by the National Science Foundation un-
der grant DMS-0073636.
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