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Abstract
For multivariate problems with many scattered data locations the use of radial functions has proven to be
advantageous. However, using the usual radial basis function approach one needs to solve a large (pos-
sibly dense) linear system. In the moving least squares (MLS) method one obtains a best approximation
of the given data in a (moving) weighted least-squares sense. The computational burden is now shifted,
and one needs to solve many small linear systems. Recently we have employed the theory of approx-
imate approximations (see [12]) to develop a completely matrix-free approximate MLS approximation
algorithm. So far we have only discussed applications of this method to scattered data approximation
problems (see [5], [6]). In this paper we present a comparison of two approaches to the solution of time
dependent (parabolic) PDEs of the form

∂u

∂t
(x, t) = Lu(x, t) + F (x, t), x ∈ Ω ⊂ IRd, t > 0,

based on the use of approximate moving least-squares approximation. In the first approach one assumes
the solution to be an approximate MLS approximation of the form

u(x, t) =
N∑
j=1

αj(t)ψj(x), x ∈ IRd,

where the generating functionsψj(x) = Ψ(‖x − xj‖) satisfy certain moment conditions to ensure a
desired approximation order. This leads to a system of ordinary differential equations for the coefficients
αj(t). Many traditional techniques can be applied to solve this ODE or DAE system. For the second
approach one first discretizes in time, and then applies approximate MLS collocation to the spatial part.
This part of the solution is analogous to scattered Hermite interpolation. Similarities and differences of
the two methods as well as numerical experiments are presented.
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1 Introduction

Meshless (or meshfree) methods are becoming increasingly popular for dealing with multivariate ap-
proximation problems. Once it has been established that these methods possess good approximation
properties it is natural to extend ones investigations to their use for the solution of (partial) differential
equations. Various approaches have been suggested in recent years, most of them based on some form of
Galerkin approach (see, e.g., [9] and references therein). Another commonly used approach is based on
radial basis function collocation (see, e.g., [3] and references therein). This approach is closely related
to Hermite interpolation, and generally requires the solution of a large system of linear equations. Mo-
tivated by our recent work on matrix-free moving least-squares (MLS) approximation methods (see [4],
[5], [6]) we are led to investigate the use of a matrix-free collocation-based approach to the solution of
partial differential equations.

In this paper we explore two basic approaches, one akin to the classical method of lines, the other related
to Hermite interpolation. We are interested in the fundamental differences and similarities of the two
approaches, as well as possible problems involved.

We will show below that the method of lines approach leads to a system of differential-algebraic equa-
tions for the coefficients of the radial basis functions of the moving least-squares quasi-interpolant. Im-
plementation of boundary conditions requires some care, and we mention a few possibilities for doing
this. The Hermite collocation approach arises from first discretizing the time component of the PDE.
One then obtains an elliptic equation, which can be interpreted as a generalized Hermite interpola-
tion/approximation problem. Since solving this problem with a matrix-free moving least-squares method
turns out to be rather tricky, we concentrate on the Hermite problem, and leave an implementation of the
second method for time-dependent PDEs for future work.

The paper is organized as follows. In the next section we briefly review the idea of approximate approx-
imation of given function-value data. We also develop a matrix-free generalized moving least-squares
approximation method for derivative data. In Sect. 3 we present a general description of the two meth-
ods for solving time-dependent PDEs. This general discussion is illustrated with two model problems
(one-dimensional transport, and one-dimensional diffusion) in Sect. 4. Numerical experiments for the
generalized MLS approximation method, as well as for the PDE model problems are given in Sect. 5.
The paper is concluded with some remarks in Sect. 6.

2 Matrix-Free Moving Least-Squares Approximation

2.1 Approximation of Function Value Data

First we consider data of the form{(xi, f(xi))}Ni=1 ⊂ IRd× IR with distinct data sitesxi, andf some
(smooth) function. Based on the theory of approximate approximations by Maz’ya and Schmidt (see,
e.g., [12]) we can approximate the data with an expansion of the form

Qhf(x) =
1√
Dd

N∑
j=1

f(xj)ψ
(

x− xj√
Dh

)
, x ∈ IRd, (1)

whereh is the “meshsize” of the collection of data sites, andD is a parameter which ensures that the
saturation error involved in the approximation is below any desired tolerance. In the approximation the-
ory literature this kind of expansion is referred to as aquasi-interpolantsince, in general, thegenerating
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functionsψ((· −xj)/(
√
Dh)) do not satisfy the cardinality propertyψ((xi−xj)/(

√
Dh)) = δij , where

δ is the usual Kronecker-delta. Following [12], we showed in [5] and [6] that such generating functions
of the formψj(x) = Ψ(‖x − xj‖) can be constructed with arbitrary approximation order (up to the
controllable saturation error) using radial basis functionsΨ0 as a starting point. The construction of mul-
tivariate (radial) generating functionsψj in (1) is based on certain univariate orthogonality conditions for
the functionΨ (cf. Sct.4.2 in [5]). A few of these generating functions (for various space dimensions) are
listed in Table 1. We note that all generating functions below are computed based on equally spaced data
sites. It is also possible to handle arbitrarily spaced sites, but this is more complicated, so for simplicity
we will focus only on the regular case in this paper. Also, compactly supported radial functions can be
used instead of globally supported ones (see [5]).

Table 1: Some globally supported generating functions based onΨ0(r) = e−r for approximation inIRd

(see [6]).
d O(h2) O(h4) O(h6)

1
1√
π
e−‖x‖

2 1√
π

(
3
2
− ‖x‖2

)
e−‖x‖

2 1√
π

(
15
8
− 5

2
‖x‖2 +

1
2
‖x‖4

)
e−‖x‖

2

2
1
π
e−‖x‖

2 1
π

(
2− ‖x‖2

)
e−‖x‖

2 1
π

(
3− 3‖x‖2 +

1
2
‖x‖4

)
e−‖x‖

2

3
1

π3/2
e−‖x‖

2 1
π3/2

(
5
2
− ‖x‖2

)
e−‖x‖

2 1
π3/2

(
35
8
− 7

2
‖x‖2 +

1
2
‖x‖4

)
e−‖x‖

2

In order to guide the choice ofD we consider the saturation errorε0 introduced by the approximation
scheme (1). An estimate is given by (see Lemma 2.1 in [11])

ε0(ψ,D) ≤
∑

ν∈ZZd \{0}

Fψ(
√
Dν) , (2)

whereFψ is the Fourier transform ofψ defined via

Fψ(w) =
∫

IRd
ψ(x)e−2πi〈x,w〉dx .

Here〈·, ·〉 is the standard Euclidean inner product inIRd. Theorem 6.1 of [13] gives the following formula
for the Fourier transform of a radial function (after adjusting for the different definition of the Fourier
transform in that paper):

FΨ(r) = 2πr−
d−2

2

∫ ∞
0

Ψ(t)t
d
2J d−2

2
(2πrt)dt , (3)

where theJν are the classical Bessel functions of the first kind. With the help of (3), the leading term
of (2) gives us an estimate forD for any desired saturation error. IfD is chosen large enough, then
the saturation error will be smaller than the machine accuracy for any given computer, and therefore
not noticeable in numerical computations. We will list the choices we make forD in our numerical
experiments below.

2.2 Approximation of Derivative Data

Next we consider a generalized moving least-squares problem. The data now are of the form
{(xi, Li(f))}Ni=1 ⊂ IRd× IR with distinct data sitesxi, andLi continuous linear functionals, e.g., eval-
uation of (a combination of) derivatives atxi (see, e.g., [8] or [14] for a more detailed discussion of this
problem).
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For this generalized problem an explicit quasi-interpolation scheme such as (1) is not yet available. We
must therefore solve the small linear systems arising in the generalized Backus-Gilbert approach associ-
ated with the generalized moving least-squares problem in a way analogous to the method described in
[4]. We now describe this generalized MLS method. Our goal is to obtain an approximation of the form

Gf(x) =
N∑
j=1

Lj(f)ψj(x), x ∈ IRd, (4)

where the generating functionsψj are determined by enforcing polynomial reproduction in the sense

N∑
j=1

Lj(p)ψj(x) = L(p), for all p ∈ PdQ.

HerePdQ is the space ofd-variate polynomials of degree at mostQ. In addition, a weighted norm of the
generating functions is minimized according to

1
2

N∑
j=1

ψj(x)w(Lj , L)→ min .

Herew is a function correlating the functionalsLj andL. In our caseL is usually evaluation atx, since
we are interested in constructing the value of the approximation atx. By using Lagrange multipliers, the
generating functionsψj are given by

ψj(x) =
1

w(Lj , L)

Q∑
k=1

λkLj(pk)

with theλk determined as the unique solution of the linear system

Q∑
k=1

λk

N∑
j=1

1
w(Lj , L)

Lj(pk)Lj(p`) = L(p`), 1 ≤ ` ≤ Q. (5)

We now describe how to construct generating functions for two specific sets of functionalsLj .

2.2.1 Full Hermite Problem

In the full Hermite approximation problem we assume we are given the function value as well as the
value of the first derivative of some univariate functionf at the data sitesxj , j = 1, . . . , N . Thus,

Lj(f) =
{
f(xj), j = 1, . . . , N ,
f ′(xj−N ), j = N + 1, . . . , 2N ,

and the approximation tof will be of the form (cf. (4))

Gf(x) =
N∑
j=1

f(xj)ψj(x) +
2N∑

j=N+1

f ′(xj−N )ψj(x) . (6)
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For the following derivation we choosed = 1 andQ = 1, and represent the space of univariate linear
polynomialsP1

1 with the basis{1, (· − x)} of monomials shifted to the evaluation pointx. We represent
the weight1/w(Lj , L) by the symmetric expressionφj(x) = Φ(‖x− xj‖). In this case (5) becomes

N∑
j=1

φj(x)
N∑
j=1

(xj − x)φj(x)

N∑
j=1

(xj − x)φj(x)
N∑
j=1

(xj − x)2φj(x) +
2N∑

j=N+1

φj(x)


[
λ1(x)
λ2(x)

]
=
[

1
0

]
,

so that the Lagrange multipliers are

λ1(x) =

N∑
j=1

(xj − x)2φj(x) +
2N∑

j=N+1

φj(x)

N∑
j=1

φj(x)

 N∑
j=1

(xj − x)2φj(x) +
2N∑

j=N+1

φj(x)

−
 N∑
j=1

(xj − x)φj(x)

2

λ2(x) = −

N∑
j=1

(xj − x)φj(x)

N∑
j=1

φj(x)

 N∑
j=1

(xj − x)2φj(x) +
2N∑

j=N+1

φj(x)

−
 N∑
j=1

(xj − x)φj(x)

2 , (7)

and the generating functions are given by

ψj(x) =
{
φj(x) [λ1(x) + λ2(x)(xj − x)] , j = 1, . . . , N ,
λ2(x)φj(x), j = N + 1, . . . , 2N .

(8)

In this case we end up with an approximation of the form (6) or

Gf(x) =
N∑
j=1

f(xj) [λ1(x) + λ2(x)(xj − x)]φj(x) +
2N∑

j=N+1

f ′(xj−N )λ2(x)φj(x) .

To simplify matters, we letφj+N (x) = φj(x), j = 1, . . . , N . This results in a final approximation of the
form

Gf(x) =
N∑
j=1

[(
λ̃1(x) + λ̃2(x)(xj − x)

)
f(xj) + λ̃2(x)f ′(xj)

]
φj(x) ,

where the notatioñλ reflects the fact that we have made the appropriate changes in the formulas for the
Lagrange multipliers.

Note, however, that this is not the same approximation one would obtain by applying a partition of unity
approach (modified Shepard’s method, see, e.g., [1]) to the Taylor dataLj(f) = f(xj)+(x−xj)f ′(xj).

Higher-order polynomial reproduction can also be enforced, but the resulting formulas are too compli-
cated to reproduce here. We have implemented a second-order method using Maple, and some results
obtained with this method are included below.
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2.2.2 Endpoint Hermite Problem

The previous problem does not really reflect the situation we face when trying to solve boundary-value
problems. Therefore, we also briefly give the formulas one obtains for the problem where the functionals
Lj (again for a one-dimensional problem) are of the formL1(f) = f(x1), LN (f) = f(xN ), and
Lj(f) = f ′(xj), j = 2, . . . , N − 1. This corresponds to an (overdetermined) first-order two-point
boundary-value problem. Following the same procedure as in the previous section we end up with

Gf(x) = γ1(x)f(x1)φ1(x) + γ2(x)f(xN )φN (x) + γ3(x)
N−1∑
j=2

f ′(xj)φj(x) ,

where

γ1(x) =

(xN − x)(xN − x1)φN (x) +
N−1∑
j=2

φj(x)

D
,

γ2(x) =

(x1 − x)(x1 − xN )φ1(x) +
N−1∑
j=2

φj(x)

D
,

γ3(x) =

(x− x1)φ1(x) + (x− xN )φN (x) +
N−1∑
j=2

φj(x)

D
,

and

D = (x1 − xN )2φ1(x)φN (x) + (φ1(x) + φN (x))
N−1∑
j=2

φj(x) .

As in the previous section, we have chosend = 1 andQ = 1 for this derivation. This approximation
scheme is included in our numerical experiments below.

3 Two Methods for Solving Time-dependent PDEs

We now present a general description of two methods for solving time-dependent PDEs of the form

ut(x, t) = Lu(x, t) + F (x, t), x ∈ Ω, t > 0, (9)

whereL is some linear spatial differential operator, andF is an arbitrary function of space and time. The
PDE (9) will be supplemented with an initial condition

u(x, 0) = f(x), x ∈ Ω, (10)

and possibly with boundary conditions

Du(x, t) = g(t), x ∈ ∂Ω, (11)

whereD is another differential operator defining the boundary conditions. For both methods we will
assume that the solution can be approximated by a meshfree quasi-interpolant of the type (1).

6
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3.1 Method of Lines

For the classical (spectral) method of lines approach one usually assumes

u(x, t) ≈
N∑
j=1

αj(t)ψj(x) , (12)

with some set of basis functions{ψ1, . . . , ψN} defined on the spatial domain, and theαj(t) time-
dependent coefficients to be determined.

Collocation of the PDE (9) atN collocation pointsξi, i = 1, . . . , N , leads to a system of ODEs for the
coefficientsαj(t) of the form

N∑
j=1

α′j(t)ψj(ξi) =
N∑
j=1

αj(t)Lψj(ξi) + F (ξi, t), i = 1, . . . , N.

Using matrix-vector notation we can write this problem as

Aα′(t) = ALα(t) + f , (13)

where the matricesA andAL have entriesAij = ψj(ξi) andAL
ij = Lψj(ξi), andf contains the forcing

term. An initial condition for this ODE system is obtained from the initial condition (10) using meshfree
quasi-interpolation, i.e.,

u(x, 0) = f(x) ≈
N∑
j=1

αj(0)ψj(x) .

According to (1) we get (with appropriate scaling of theψj)

αj(0) = f(xj), j = 1, . . . , N,

where thexj are the centers of the basis functionsψj . One can use standard software to solve the ODE
system (13) and then obtain an approximation to the solution at timet (for any spatial locationx) from
(12). We have done this for the examples involving the transport equation below.

The problem becomes more complicated when boundary conditions are added (as for the diffusion equa-
tion below). If we add boundary conditions of the type (11), then the system (13) now turns into a system
of differential-algebraic equations of the form[

A
0

]
α′(t) =

[
AL

AD

]
α(t) +

[
f
−g

]
. (14)

In order to have a square system, the number of collocation pointsξi and centersxj need to be equal.
We will discuss the choice of these points in more detail below. Again, standard software can be used to
solve (14), and an approximate solution is obtained via (12).

We note that an ODE-only approach for this type of problem (with an iterative treatment of boundary
conditions) was presented in [7].
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3.2 Hermite Collocation

For the second approach we first apply a standard discretization to the time derivative. We will use a
standard backward Euler method, but other discretizations are of course also possible. Thus, the PDE (9)
becomes

u(x, t) ≈ u(x, t−∆t) + ∆t (Lu(x, t) + F (x, t)) ,

or
(I −∆tL)u(x, t) ≈ u(x, t−∆t) + ∆tF (x, t) . (15)

Therefore, at every fixed time stept the problem is reduced to solving the elliptic PDE

Lu(x, t) ≈ F(x, t) , (16)

whereL = I − ∆tL, andF(x, t) = u(x, t − ∆t) + ∆tF (x, t). Boundary conditions as in (11) can
be added as additional constraints. It is clear that the problem (16) is related to the generalized Hermite
problem (see Sect.2.2 or [2]), and it is that problem which we will focus our numerical experiments on.

A similar approach using RBF collocation (which involves the solution of large linear systems) was
studied in [10].

4 Two Model Problems

We now illustrate the abstract approaches described in the previous section with two simple model prob-
lems.

4.1 1D Transport Equation

Our first model problem is

ut(x, t) + cux(x, t) = 0, x > 0, t > 0,
u(x, 0) = f(x), x ≥ 0, (17)

wherec is the constant wave speed, andf is some finitely supported initial profile. The exact solution to
this problem isu(x, t) = f(x− ct).

Using the method of lines approach we obtain the following system of ODEs:

Aα′(t) = −cAxα(t) , (18)

where the matricesA andAx have entriesAij = ψj(ξi) andAx
ij = ψ′j(ξi), respectively. Below we will

use symmetric basis functionsψj(x) = ψ(x− xj) = Ψ(|x− xj |2) as listed in Tab.1.

If the set of centers{xj} coincides with the collocation points{ξi} then, for the symmetric basis func-
tions we are suggesting, it is known that the matrixA is nonsingular (see, e.g., [13]). In the case of
differing sets this fact is no longer known, and we need to monitor the performance of the ODE solver.

If we discretize first in time and then collocate, we get the problem (cf. (15))

(I + c∆t
∂

∂x
)u(x, t) ≈ u(x, t−∆t) .

This corresponds to a generalized Hermite problem whereLj(f) = f(xj)+c∆tf ′(xj). We study similar
Hermite problems below (without the time stepping).

8
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4.2 1D Diffusion Equation

Our second model problem is the one-dimensional diffusion equation (heat equation)

ut(x, t) + cuxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(x, 0) = f(x), x ∈ [0, 1], (19)

wherec is the diffusivity, andf represents the initial temperature distribution. We will add homogeneous
Dirichlet as well as Neumann boundary conditions below. The exact solution can of course be obtained
using Fourier series.

We discuss only the method of lines approach for this problem. We now have to solve a differential-
algebraic system as in (14).

To be specific, let’s consider the heat equation (19) together with homogeneous Dirichlet boundary
conditions at each end. In order to obtain acceptable results we use additional basis functions cen-
tered outside the domain, and associated collocation points near the boundary (inside the domain).
Thus the set of centers is no longer identical to the set of collocation points, and we have no guaran-
tee that the matrix blockA below has full rank. We take the set of centersxj , j = 1, . . . , N + 4,
as {−2h,−h, 0, h, 2h, . . . , 1, 1 + h, 1 + 2h}, and the collocation pointsξi, i = 1, . . . , N + 4, as
{0, h/4, h/2, h, 2h, . . . , 1 − 2h, 1 − h, 1 − h/2, 1 − h/4, 1}, where the meshsizeh is given byh =
1/(N − 1). Then (14) becomes  0

A
0

α′(t) =

 A1

Axx

AN

α(t) . (20)

The matrix blocks are given by

Aij = ψj(ξi), i = 2, . . . , N + 3, j = 1, . . . , N + 4,
A1ij = ψj(ξi), i = 1, j = 1, . . . , N + 4,
Axx
ij = ψ′′j (ξi), i = 2, . . . , N + 3, j = 1, . . . , N + 4,

ANij = ψj(ξi), i = N + 4, j = 1, . . . , N + 4,

and 0 are zero (row-)vectors of lengthN + 4. Homogeneous Neumann conditions are implemented
similarly, with the first and last rows on the right-hand side replaced with the appropriate derivatives of
the basis functions.

5 Numerical Experiments

5.1 Method of Lines

We use either Maple’s numerical ODE solverrk45 or Matlab’s stiff ODE solverode15s for the ODE
and DAE systems encountered by the method of lines approach.

5.1.1 Transport Equation

We present the results of four experiments. They basically differ in the choice of generating functions
ψj used for the approximate approximation (1). Our three choices are listed in the row corresponding to

9
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Table 2: Method of lines solution for transport equation.

N Gaussian,D = 3 Gauss-Laguerre1,D = 3 Gauss-Laguerre2,D = 3 Gauss-Laguerre2,D = 5
`∞-err rate `∞-err rate `∞-err rate `∞-err rate

9 5.7903(−1) 4.2012(−1) 3.2148(−1) 4.2678(−1)
17 3.5533(−1) 0.70 1.5886(−1) 1.40 7.5236(−2) 2.10 1.5264(−1) 1.48
33 1.3457(−1) 1.40 2.5122(−2) 2.66 7.7958(−3) 3.27 1.8499(−2) 3.05
65 3.7964(−2) 1.83 2.9209(−3) 3.10 1.1129(−3) 2.81 2.2541(−3) 3.06

d = 1 of Table 1 and we denote them by Gaussian, Gauss-Laguerre 1, and Gauss-Laguerre 2 in Table 2.
For the first two experiments we chooseD = 3. For the second order Gauss-Laguerre functions we
provide two results: one obtained with the scaling constantD in (1) set toD = 3, the other withD = 5.
We take wave speedc = 1 in (17), and let the initial profile be given byf(x) = 64x3(1 − x)3 for
x ∈ [0, 1], andf(x) = 0 outside the interval. The simulation is allowed to run fort from 0 to 2. The
results displayed in Table 2 are the maximum error at the final time evaluated on a fine evaluation mesh,
along with an indication of theh-convergence rate of the method.

We see that the use of a more accurate quasi-interpolant pays off and results in higher accuracy. In
particular, going from the basic Gaussian generating function to the first-order Gauss-Laguerre method
makes a considerable difference. With the second-order Gauss-Laguerre method the saturation error
seems to be starting to play a role in the computation for higher values ofN . This claim is substantiated
by the fact that, with the larger value ofD = 5, the rate of convergence does not deteriorate. However,
this results in an overall smoothing effect, so that the absolute errors are not significantly smaller than
for the first-order method. Also, the accuracy of the time solver,rk45 , now has an impact on the overall
performance.

Snapshots (at timet = 0, t = 1, andt = 2) of the approximate solution to the transport equation are
presented in Figures 1 and 2. The dash-dotted (green) curves indicate the exact solution, the solid (red)
curves indicate the numerical approximation. The first three plots are for the caseN = 33, and show the
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Figure 1: Snapshots (att = 0, t = 1, andt = 2) of the solution for the transport equation using 33 points.
Gaussian approximation (left) and Gauss-Laguerre1 (right).
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Figure 2: Snapshots (att = 0, t = 1, andt = 2) of the solution for the transport equation using the
Gauss-Laguerre2 method.N = 33 points (left) and 9 points (right).

Gauss method, the Gauss-Laguerre1 and Gauss-Laguerre2 method, respectively (all withD = 3). The
fourth plot (right part of Fig. 2) shows the Gauss-Laguerre2 method forN = 9. We see that the basic
Gaussian approximation is not very good. For a low number of points (e.g.N = 9 or 17) the higher-order
Gauss-Laguerre methods produce solutions that oscillate considerably. This does not happen for the basic
Gaussian approximation. It is, however, exactly this oscillatory behavior of the generating functions that
ensures the higher rates of approximation.

We would also like to point out that radial basis function theory (essentially Bochner’s theorem) guar-
antees non-singularity (even positive definiteness) of the matrixA in (18) in case of all three types of
generating functions since it is easily verified that their Fourier transforms are positive.

5.1.2 Diffusion Equation

Two sets of experiments were performed. The first for equation (19) with homogeneous Dirichlet bound-
ary conditions. The second for the same partial differential equation, but with homogeneous Neumann
boundary conditions. In all examples the diffusivity was set toc = 1. For the Dirichlet problem we use
the piecewise linear function

f(x) =
{

2x, 0 ≤ x ≤ 1/2,
2(1− x), 1/2 ≤ x ≤ 1

as initial temperature distribution. For the problem with Neumann boundary conditions we use a piece-
wise quadratic initial temperature distribution

f(x) =
{

4x2, 0 ≤ x ≤ 1/2,
4(1− x)2, 1/2 ≤ x ≤ 1.

We perform two sets of experiments. One without special choice of collocation points, i.e.,xi = ξi,
i = 1, . . . , N , (see Fig. 3 left and Fig. 4 right). The second set is based on the choice of auxiliary
collocation points described in Sect. 4.2 (see Fig. 3 right, Fig. 4 left, and Fig. 5). Errors computed at
t = 0 and t = 1 on a fine evaluation mesh are listed in Tables 3 and 4. We see that the error in the
approximation of the initial conditions decreases only linearly with the number of collocation points
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Table 3: Diffusion equation with Dirichlet boundary conditions.

N Gaussian with aux. points Gauss-Laguerre1 (with aux. points)
`∞-err (t = 0) `∞-err (t = 1) `∞-err (t = 1) `∞-err (t = 0) `∞-err (t = 1)

17 0.1151 0.0303 0.0318 0.0503 0.0308
33 0.0576 0.0316 0.0323 0.0251 0.0316
65 0.0288 0.0322 0.0325 0.0126 0.0321
129 0.0144 0.0323 0.0326 0.0063 0.0323
257 0.0072 0.0325 0.0325 0.0031 0.0325
513 0.0036 0.0325 0.0326 0.0016 0.0325
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Figure 3: Time profile of the solution of the diffusion equation with Dirichlet boundary conditions using
N = 513 points. Gaussian approximation without (left) and with (right) auxiliary boundary points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Time profile of the solution of the diffusion equation with Dirichlet boundary conditions using
the Gauss-Laguerre1 method with auxiliary boundary points (left). Time profile for the diffusion equation
with Neumann boundary conditions based on Gaussian approximation without auxiliary boundary points
(right).N = 513 for both plots.
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Table 4: Diffusion equation with Neumann boundary conditions.

N Gaussian without aux. points Gaussian with with aux. points
`∞-err (t = 0) `∞-err (t = 1) `∞-err (t = 0) `∞-err (t = 1)

17 0.1151 53.9230 0.1151 0.0037
33 0.0576 7.2294(6) 0.0576 0.0045
65 0.0288 7.3030(28) 0.0288 0.0081
129 0.0144 7.5726(119) 0.0144 0.0160
257 0.0072 2.0274(304) 0.0072 0.0327
513 0.0036 5.0685(303) 0.0036 0.0687
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Figure 5: Time profile for the diffusion equation with Neumann boundary conditions based on Gaussian
approximation with auxiliary boundary points.N = 65 points (left), andN = 513 (right).

used. This is due to the fact that the initial temperature profile is not smooth. Therefore, using the higher-
order Gauss-Laguerre approximation does improve the error slightly, but not the rate of approximation.
In Figures 3 and 4 we present plots of the time profile (fort = 0 to t = 1 at discrete time steps) of the
approximate solution based on approximate approximations (solid curves, red) and the “exact” solution
based on 20 terms of the corresponding Fourier series expansion (dash-dotted curves, green). At time
t = 1 all solutions for the problem with Dirichlet boundary conditions basically look the same. Note that
for the Neumann problem the use of auxiliary collocation points is absolutely essential (see Fig.4 right).
However, even with auxiliary points, as the number of points increases the approximate solution tends to
end up increasingly above the correct solution (see Fig. 5 right).

5.2 Hermite Collocation

We now consider the second solution method described in Sect. 3.2. The numerical experiments be-
low are only for Hermite approximation (without the addition of time stepping, see Sect. 2.2). The test
function for all experiments in this section is

f(x) =
3
4

[
exp

(
−(9x− 2)2

4

)
+ exp

(
−(9x+ 1)2

49

)]
+

1
2

exp
(
−(9x− 7)2

4

)
−1

5
exp

(
−(9x− 4)2

)
.

5.2.1 Full Hermite Approximation

We approximate given function and derivative information sampled from the test function as described
in Sect.2.2.1. The left part of Figure 6 shows a sequence of increasingly better approximations (solid
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Figure 6: Typical full (left) and endpoint (right) Hermite approximations using linear precision.

curves, red) to the function (green curve, dash-dotted). The first approximation is based on data at 3
points, the last one uses 65 equally spaced points in [0,1]. Even though we show only the plots, it is clear
that this method works well, but is irrelevant for the solution of boundary-value problems. Therefore,
we next consider the modified problem for which function values are given only at the endpoints, and
elsewhere we know only derivative information.

5.2.2 Endpoint Hermite Collocation

The endpoint Hermite problem was described in Sect. 2.2.2. This problem is equivalent to a two-point
boundary value problem. As we can see from the plot in the right part of Figure 6 this method does not
work. The problem with this method is that the information from the boundary can not be communicated
to the interior points. Problems similar to this have also been observed in multigrid methods. As in
that application, we propose to solve the endpoint Hermite problem with an iterative algorithm which
alternates between a coarse grid and subsequent finer grids.

5.2.3 Nested Multilevel Hermite Collocation

In order to obtain an algorithm which yields a converging solution for the two-point boundary-value
problem/endpoint Hermite approximation problem we embed the basic quasi-interpolant for the endpoint
Hermite problem of the previous section in a nested multilevel algorithm. The algorithm can be described
as follows:

Algorithm
for l=1 to outeriterations

for k=1 to inneriterations
for j=1 to N

resj = Lj(f − Gf) % use residuals as data to be fitted
end
update = mlsapprox(N,supportsize,res)
Gf = Gf + update

end
end

14
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Table 5: Endpoint Hermite approximation with nested multilevel algorithm. 3 outer and 5 inner iterations.

k N support size l = 1 l = 2 l = 3
`∞-err rate `∞-err rate `∞-err rate

1 5 1.00 6.5528(−1) 1.0725(−1) .897 8.5521(−2) .767
2 9 .667 3.5408(−1) 1.85 1.3463(−1) .797 6.1028(−2) 1.40
3 17 .444 2.8035(−1) 1.26 1.0290(−1) 1.31 4.4788(−2) 1.36
4 33 .296 1.9991(−1) 1.40 8.1239(−2) 1.27 2.7042(−2) 1.66
5 65 .198 9.6185(−2) 2.08 6.5560(−2) 1.24 3.4117(−2) .793
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Figure 7: Typical endpoint Hermite approximations using quadratic precision and a nested multilevel
algorithm.

Results for an experiment using the same test function as before, and nested grids of 5 to 65 equally
spaced points are listed in Table 5 with the corresponding plots shown in Figure 7. We used 3 outer
iterations, along with 5 inner iterations for the multilevel algorithm. The results are still far from ideal,
but do show a marked improvement over the simple endpoint Hermite approximation results of the
previous experiment. By returning to the coarsest grid withN = 5 points at the beginning of each outer
iteration we are able to transfer some more of the information from the boundary to the interior of the
domain. We scaled the support size by a factor of 1.5 at each inner iteration instead of 2 (as the mesh
is). Scaling the support size is equivalent to modifying the scale parameterD in (1). This improves the
performance of the algorithm (but contradicts the philosophy of approximate approximations where one
value ofD is supposed to cover all scales).

6 Remarks

It was the aim of this paper to compare two alternative approaches to solving time-dependent PDEs with
meshfree radial MLS approximation methods. We have shown that the use of a more accurate quasi-
interpolant yields better results for the transport equation. In particular, the first-order Gauss-Laguerre
method is recommended instead of basic Gaussians. However, there still remains considerable work to
be done. This holds especially for the treatment of boundary conditions for the method of lines approach,
and for the transfer of an accurate Hermite collocation method to the PDE setting. Once these problems
have been overcome an extension to nonlinear problems can be achieved via Newton iteration.
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