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1 Introduction

The present work contributes to the nonlinear pricing theory, which arises in a natural way when
accounting for salient features of real-world trades such as: trading constraints, differential funding
costs, collateralization, counterparty credit risk and capital requirements. To be more specific, the
aim of our study is to extend in several respects the hedging and pricing approach in nonlinear
market models developed in El Karoui and Quenez [EKQ97] and El Karoui et al. [EKPQ97] (see
also [CK93, DQS14, DQS15, KK96, KK98] for hedging and pricing with constrained portfolios)
by accounting for the complexity of over-the-counter financial derivatives and specific features
of the trading environment after the global financial crisis. Let us briefly summarize the main
contributions of this work:

• The first goal is to discuss the trading strategies in the presence of differential funding rates
and adjustment processes. We stress that the need for a more general approach arises due to
the fact that we study general contracts with cash flow streams, rather than simple contingent
claims with a single payoff at maturity (or upon exercise).

• Second, we examine in detail the issues of the existence of arbitrage opportunities for the
hedger and for the trading desk in a nonlinear trading framework and with respect to a
predetermined class of contracts. We introduce the concept of no-arbitrage with respect to
the null contract and a stronger notion of no-arbitrage for the trading desk. We then proceed
to the issue of unilateral fair valuation of a given contract by the hedger endowed with an
initial capital. We examine the link between the concept of no-arbitrage for the trading desk
and the financial viability of prices computed by the hedger.

• Third, we propose and analyze the concept of a regular market model, which extends the
concept of a nonlinear pricing system introduced in El Karoui and Quenez [EKQ97]. The
goal is to identify a class of nonlinear market models, which are arbitrage-free for the trading
desk and, in addition, enjoy the desirable property that for contracts that can be replicated,
the cost of replication is also the fair price for the hedger.

• Next, we focus on replication of a contract in a regular market model and we discuss the BSDE
approach to the valuation and hedging of contracts in a model with differential funding rates,
the counterparty credit risk and trading adjustments. We propose two main definitions of
no-arbitrage prices, namely, the gained value and the ex-dividend price, and we show that
they in fact coincide, under suitable technical conditions, when the pricing problem under
consideration is local. It is worth stressing that in the case of a global pricing problem the
two above-mentioned definitions will typically yield different pricing results for the hedger.
To complete our study, we also examine the marked-to-market valuation of a contract and
the problem of unwinding and offsetting for an existing contract.

• We conclude the paper by briefly addressing the issue of fair valuation and hedging of a
counterparty risky contract in a nonlinear market model.

It should be acknowledged that we focus on fair unilateral pricing from the perspective of the
hedger, although it is clear that the same definitions and pricing methods are applicable to his
counterparty as well. Hence, in principle, it is also possible to use our results in order to examine
the interval of fair bilateral prices in a regular market model. Particular instances of bilateral pricing
problems were studied in [NR15, NR16a, NR16c] where it was shown that a non-empty interval of
fair bilateral prices (or bilaterally profitable prices) can be obtained in some nonlinear models for
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contracts with either an exogenous or an endogenous collateralization. For more practical studies of
pricing and hedging subject to differential funding costs and the counterparty credit risk to which
our general theory can be applied, the reader is referred to [BCS15, BP14, BK11, BK13, Cré15a,
Cré15b, PPB12a, PPB12b, Pit10].

2 Nonlinear Market Model

In this section, we extend a generic market model introduced in [BR15]. Throughout the paper,
we fix a finite trading horizon date T > 0 for our model of the financial market. Let (Ω,G,G,P)
be a filtered probability space satisfying the usual conditions of right-continuity and completeness,
where the filtration G = (Gt)t∈[0,T ] models the flow of information available to all traders. For
convenience, we assume that the initial σ-field G0 is trivial. Moreover, all processes introduced in
what follows are implicitly assumed to be G-adapted and, as usual, any semimartingale is assumed
to be càdlàg. Also, we will assume that any process Y satisfies ∆Y0 := Y0 − Y0− = 0. Let us
introduce the notation for the prices of all traded assets in our model.

Risky assets. We denote by S = (S1, . . . , Sd) the collection of the ex-dividend prices of a family of
d risky assets with the corresponding cumulative dividend streams D = (D1, . . . , Dd). The process
Si is aimed to represent the ex-dividend price of any traded security, such as, stock, sovereign or
corporate bond, stock option, interest rate swap, currency option or swap, CDS, CDO, etc.

Cash accounts. The lending cash account B0,l and the borrowing cash account B0,b are used for
unsecured lending and borrowing of cash, respectively. For brevity, we will sometimes write Bl and
Bb instead of B0,l and B0,b. Also, when the borrowing and lending cash rates are equal, the single
cash account is denoted by B0 or simply B.

Funding accounts. We denote by Bi,l (resp. Bi,b) the lending (resp. borrowing) funding account
associated with the ith risky asset, for i = 1, 2, . . . , d. The financial interpretation of these accounts
varies from case to case. For an overview of trading mechanisms for risky assets, we refer to to
Section 2.6. In the special case when Bi,l = Bi,b, we will use the notation Bi and we call it the
funding account for the ith risky asset.

For brevity, denote by B = ((Bi,l, Bi,b), i = 0, 1, . . . , d) the collection of all cash and funding
accounts.

2.1 Contracts with Trading Adjustments

We will consider financial contracts between two parties, called the hedger and the counterparty.
In what follows, all the cash flows will be viewed from the prospective of the hedger. A bilateral
financial contract (or simply a contract) is given as a pair C = (A,X ) where the meaning of each
term is explained below.

A stochastic processes A represents the cumulative cash flows from time 0 till maturity date T .
The process A is assumed to model the (cumulative) cash flows of a given contract, which are either
paid out from the hedger’s wealth or added to the his wealth via the value process of his portfolio
of traded assets (including cash). Note that the price of the contract exchanged at its initiation
will not be included in A. For example, if a contract stipulates that the hedger will ‘receive’ the
(possibly random) cash flows a1, a2, . . . , am at times t1, t2, . . . , tm ∈ (0, T ], then

At =
m∑
l=1

1[tl,∞)(t)al.
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Let (At, 0) denote a contract initiated at time t with X = 0. Then the only cash flow exchanged
between parties at time t is the price of the contract, denoted as pt, and thus the remaining cash
flows of (At, 0) are given as Atu := Au −At for u ∈ [t, T ]. In particular, the equality Att = 0 is valid
for any contract (A, 0) and any date t ∈ [0, T ). All future cash flows al for l such that tl > t are
predetermined, in the sense that they are explicitly specified by the contract covenants, but the
price pt needs to be first properly defined and next computed using some particular market model.

As an example, consider the situation where the hedger sells at time t a European call option
on the risky asset Si. Then m = 1, t1 = T , and the terminal payoff from the perspective of
the issuer equals a1 = −(SiT − K)+. Consequently, for every t ∈ [0, T ), the process At satisfies
Atu = −(SiT −K)+1[T,∞)(u) for all u ∈ [t, T ]. Obviously, the price pt of the option depends both
on a market model and a pricing method.

To account for market frictions, we postulate that the cash flows A (resp. At) of a contract
are complemented by trading adjustments, which are formally represented by the process X (resp.
X t) given as X = (X1, . . . , Xn;α1, . . . , αn;β1, . . . , βn). Its role is to describe additional trading
covenants associated with a given contract, such as collateralization and regulatory capital, as
well as the adjustments due to the counterparty credit risk. For each adjustment process Xk,
the auxiliary process αkXk represents additional incoming or outgoing cash flows for the hedger,
which are either stipulated in the clauses of a contract (e.g., the credit support annex) or imposed
by a third party (for instance, the regulator). In addition, each process Xk, k = 1, 2, . . . , n
is complemented by the corresponding remuneration process βk, which is used to determine net
interest payments (if any) associated with the process Xk. It should be noted that the processes
X1, . . . , Xn and the associated remuneration processes β1, . . . , βn do not represent traded assets.
It is rather clear that the processes α and β may depend on the respective adjustment process.
Therefore, when the adjustment process is Y, rather than X , one should write α(Y) and β(Y) in
order to avoid confusion. However, for brevity, we will keep the shorthand notation α and β when
the adjustment process is denoted as X .

Valuation or pricing of a given contract means, in particular, to find the range of fair prices
pt at any date t from the viewpoint of either the hedger or the counterparty. Although it will be
postulated that both parties adopt the same valuation paradigm, due to the asymmetry of cash
flows, differential trading costs and possibly also different trading opportunities, they will typically
obtain different ranges for fair unilateral prices for a given bilateral contract. The discrepancy in
pricing for the two parties is a consequence of the nonlinearity of the wealth dynamics in trading
strategies, so that it may occur even within the framework a complete market model where the
perfect replication of any contract can be achieved by both parties.

2.2 Self-financing Trading Strategies

The concept of a portfolio refers to the family of primary traded assets, that is, risky assets, cash
accounts, and funding accounts for risky assets. Formally, by a portfolio on the time interval [t, T ],
we mean an arbitrary R3d+2-valued, G-adapted process (ϕtu)u∈[t,T ] denoted as

ϕt =
(
ξ1, . . . , ξd;ψ0,l, ψ0,b, ψ1,l, ψ1,b, . . . , ψd,l, ψd,b

)
(2.1)

where the components represent positions in risky assets (Si, Di), i = 1, 2, . . . , d, cash accounts
B0,l, B0,b, and funding accountsBi,l, Bi,b, i = 1, 2, . . . , d for risky assets. It is postulated throughout
that ψj,lu ≥ 0, ψj,bu ≤ 0 and ψj,lu ψ

j,b
u = 0 for all j = 0, 1, . . . , d and u ∈ [t, T ]. If the borrowing and

lending rates are equal, then we denote by Bj , for j = 0, 1, . . . , d, the corresponding cash or funding
account and we denote ψj = ψj,l +ψj,b. It is also assumed throughout that the processes ξ1, . . . , ξd

are G-predictable.
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We say that a portfolio ϕ is constrained if at least one of the components of the process ϕ is
assumed to satisfy some additional constraints. For instance, we will need to impose conditions
ensuring that the funding of each risky asset is done using the corresponding funding account.
Another example of an explicit constraint is obtained when we set ψ0,b

u = 0 for all u ∈ [t, T ],
meaning that an outright borrowing of cash from the account B0,b is prohibited. We are now in a
position to state some fairly standard technical assumptions underpinning our further developments.

Assumption 2.1. We work throughout under the following standing assumptions:

(i) for every i = 1, 2, . . . , d, the price Si of the ith risky asset is a semimartingale and the
cumulative dividend stream Di is a process of finite variation with Di

0 = 0;

(ii) the cash and funding accounts Bj,l and Bj,b are strictly positive and continuous processes of

finite variation with Bj,l
0 = Bj,b

0 = 1 for j = 0, 1, . . . , d;

(iii) the cumulative cash flow process A of any contract is a process of finite variation;

(iv) the adjustment processes Xk, k = 1, 2, . . . , n and the auxiliary processes αk, k = 1, 2, . . . , n
are semimartingales;

(v) the remuneration processes βk, k = 1, 2, . . . , n are strictly positive and continuous processes
of finite variation with βk0 = 1 for every k.

In the next definition, the Gt-measurable random variable xt represents the endowment of the
hedger at time t ∈ [0, T ) whereas pt, which at this stage is an arbitrary Gt-measurable random
variable, stands for the price at time t of Ct = (At,X t), as seen by the hedger. Recall that At

denotes the cumulative cash flows of the contract A that occur after time t, that is, Atu := Au−At
for all u ∈ [t, T ]. Hence At can be seen as a contract with the same remaining cash flows as
the original contract A, except that At is initiated and traded at time t. By the same token, we
denote by X t the adjustment process related to the contract At. Let C be a predetermined class
of contracts. As expected, it is assumed throughout that the null contract N = (0, 0) is traded in
any market model, that is, N ∈ C (see Assumption 3.1).

It should be noted that the prices pt for contracts belonging to the class C are yet unspecified
and thus there is a certain degree of freedom in the foregoing definitions.

Note also that we use the convention that
∫ u
t :=

∫
(t,u] for any t ≤ u.

Definition 2.2. A quadruplet (xt, pt, ϕ
t, Ct) is a self-financing trading strategy on [t, T ] associated

with the contract C = (A,X ) if the portfolio value V p(xt, pt, ϕ
t, Ct), which is given by

V p
u (xt, pt, ϕ

t, Ct) :=
d∑
i=1

ξiuS
i
u +

d∑
j=0

(
ψj,lu B

j,l
u + ψj,bu Bj,b

u

)
(2.2)

satisfies for all u ∈ [t, T ]

V p
u (xt, pt, ϕ

t, Ct) = xt + pt +Gu(xt, pt, ϕ
t, Ct), (2.3)

where the adjusted gains process G(xt, pt, ϕ
t, Ct) is given by

Gu(xt, pt, ϕ
t, Ct) :=

d∑
i=1

∫ u

t
ξiv (dSiv + dDi

v) +
d∑
j=0

∫ u

t

(
ψj,lv dBj,l

v + ψj,bv dBj,b
v

)
(2.4)

+
n∑
k=1

αkuX
k
u −

n∑
k=1

∫ u

t
Xk
v (βkv )−1 dβkv +Atu.

For a given pair (xt, pt), we denote by Φt,xt(pt, Ct) the set of all self-financing trading strategies on
[t, T ] associated with a contract C.
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When studying valuation of a contract Ct for a fixed t, we will typically assume that the hedger’s
endowment xt is given and we will search for the range of prices pt for Ct. For instance, when dealing
with the hedger with a fixed initial endowment xt at time t, we will consider the following set of
self-financing trading strategies Φt,xt(C ) = ∪C∈C ∪pt∈Gt Φt,xt(pt, Ct). Note, however, that in the
definition of the market model we do not assume that the quantity xt is predetermined.

Definition 2.3. The market model is the quintuplet M = (S,D,B,C ,Φ(C )) where Φ(C ) stands
for the set of all self-financing trading strategies associated with the class C of contracts, that is,
Φ(C ) = ∪t∈[0,T ) ∪xt∈Gt Φt,xt(C ).

Note that, in principle, the market model defined above is nonlinear, in the sense that either the
portfolio value process V p(xt, pt, ϕ

t, Ct) is not linear in (xt, pt, ϕ
t, Ct) or the class of all self-financing

strategies is not a vector space (or both). Therefore, we refer to this model as to a generic nonlinear
market model. In contrast, by a linear market model we will understand in this paper the version of
the model defined above in which all adjustments are null (i.e., Xk = 0 for all k = 1, 2, . . . , n), there
are no differential funding rates (i.e., Bj,b = Bj,l for all j = 0, 1, . . . , d) and there are no trading
constraints. In particular, in the linear market model the class of all self-financing trading strategies
is a vector space and the value process V p(xt, pt, ϕ

t, Ct) is a linear mapping in (xt, pt, ϕ
t, Ct).

To alleviate notation, we will frequently write (x, p, ϕ, C) instead of (x0, p0, ϕ
0, C0) when working

on the interval [0, T ]. Note that (2.3) yields the following equalities for any trading strategy
(x, p, ϕ, C) ∈ Φ0,x(C )

V p
0 (x, p, ϕ, C) =

d∑
i=1

ξi0S
i
0 +

d∑
j=0

(
ψj,l0 B

j,l
0 + ψj,b0 Bj,b

0

)
= x+ p+

n∑
k=1

αk0X
k
0 . (2.5)

Recall that in the classical case of a frictionless market, it is common to assume that the initial
endowments of traders are null. Moreover, the price of a derivative has no impact on the dynamics
of the gains process. In contrast, when portfolio’s value is driven by nonlinear dynamics, the initial
endowment x at time 0, the initial price p and the cash flows of a contract may all affect the
dynamics of the gains process and thus the classical approach is no longer valid.

2.3 Funding Adjustment

The concept of the funding adjustment refers to the spreads of funding rates with regard to some
benchmark cash rate. In the present setup, it can be defined relative to either Bl or Bb. If the
lending and borrowing rates are not equal, then (2.3) can be written as follows

V p
t (x,p, ϕ, C) = x+ p+

d∑
i=1

∫ t

0
ξiu (dSiu + dDi

u) +
n∑
k=1

αktX
k
t +At

+
d∑
j=0

∫ t

0

(
ψj,lu dB0,l

u + ψj,bu dB0,b
u

)
−

n∑
k=1

∫ t

0

(
(Xk

u)+(B0,l
u )−1 dB0,l

u − (Xk
u)−(B0,b

u )−1 dB0,b
u

)

+
d∑
i=1

∫ t

0

(
ψi,lu
(
(B̂i,l

u − 1) dB0,l
u +B0,l

u dB̂i,l
u

)
+ ψi,bu

(
(B̂i,b

u − 1) dB0,b
u +B0,b

u dB̂i,b
u

))
−

n∑
k=1

∫ t

0

(
(Xk

u)+(βk,lu )−1 dβ̂k,lu − (Xk
u)−(βk,bu )−1 dβ̂k,bu

)
,
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where B̂j,l/b := Bj,l/b(B0,l/b)−1 and β̂k,l/b := βk(B0,l/b)−1. The quantity

d∑
i=1

∫ t

0

(
ψi,lu
(
(B̂i,l

u − 1) dB0,l
u +B0,l

u dB̂i,l
u

)
+ ψi,bu

(
(B̂i,b

u − 1) dB0,b
u +B0,b

u dB̂i,b
u

))
−

n∑
k=1

∫ t

0

(
(Xk

u)+(βk,lu )−1 dβ̂k,lu − (Xk
u)−(βk,bu )−1 dβ̂k,bu

)
is called the funding adjustment. If the borrowing and lending rates are equal, then the expression
for the funding adjustment simplifies to

d∑
i=1

∫ t

0
ψiu
(
(B̂i

u − 1) dB0
u +B0

u dB̂
i
u

)
−

n∑
k=1

∫ t

0
Xk
u(β̂ku)−1dβ̂ku.

When the cash account B0 is used for funding and remuneration for adjustment processes, that is,
when Bi = B0 for i = 1, 2, . . . , d and βk = B0 for k = 1, 2, . . . , n, then the funding adjustment
vanishes, as was expected.

2.4 Financial Interpretation of Trading Adjustments

In this study, we will devote significant attention to terms appearing in the dynamics of V p(x, ϕ,A,X ),
which correspond to the trading adjustment process X .

Definition 2.4. The stochastic process $ =
∑n

k=1$
k, where for k = 1, . . . , n,

$k
t := αktX

k
t −

∫ t

0
Xk
u(βku)−1 dβku (2.6)

is called the cash adjustment.

In general, the financial interpretation of the cash adjustment term $k is as follows: the term
αktX

k
t represents the part of the kth adjustment that the hedger can either use for his trading

purposes when αktX
k
t > 0 or has to put aside (for instance, pledge as a collateral or hold as a

regulatory capital) when αktX
k
t < 0. Let us illustrate alternative interpretations of cash adjustments

given by (2.6). We denote X̂k = (βk)−1Xk.

• Let us first assume that αkt = 1, for all t. The term Xk
t −

∫ t
0 X̂

k
u dβ

k
u indicates that the cash

adjustment $k is affected by both the current value Xk
t of the adjustment process and by the

cost of funding of this adjustment given by the integral
∫ t
0 X̂

k
u dβ

k
u. Such a situation occurs,

for example, when Xk represents the capital charge or the rehypotecated collateral. The
integration by parts formula gives

$k
t = Xk

t −
∫ t

0
X̂k
u dβ

k
u = Xk

0 +

∫ t

0
βku dX̂

k
u , (2.7)

where the integral
∫ t
0 β

k
u dX̂

k
u has the following financial interpretation: X̂k

u is the number of
units of the funding account βku that are needed to fund the amount Xk

u of the adjustment
process. Hence dX̂k

u is the infinitesimal change of this number and βku dX̂
k
u is the cost of this

change, which has to be absorbed by the change in the value of the trading strategy. Observe
that the term βku dX̂

k
u may be negative, meaning that a cash relieve situation is taking place.
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In the special case when αkt = 1 and βkt = 1 for all t, we obtain $k
t = Xk

t for all t. We
deal here with the cash adjustment Xk on which there is no remuneration since manifestly∫ t
0 X̂

k
u dβ

k
u = 0. This situation may arise, for example, if the bank does not use any external

funding for financing this adjustment, but relies on its own cash reserves, which are assumed
to be kept idle and neither yield interest nor require interest payouts.

• Let us now assume that αkt = 0 for all t. Then the term $k
t = −

∫ t
0 X̂

k
u dβ

k
u indicates

that the cash value of the adjustment Xk does not contribute to the portfolio value. Only
the remuneration of the adjustment process Xk, which is given by the integral

∫ t
0 X̂

k
u dβ

k
u,

contributes to the portfolio’s value. This happens, for example, when the adjustment process
represents the collateral posted by the counterparty and kept in the segregated account.

As was argued above, in most practical applications, the cash adjustment process can be rep-
resented as follows

$t =

n1∑
k=1

Xk
0 +

n1∑
k=1

∫ t

0
βku dX̂

k
u −

n1+n2∑
k=n1+1

∫ t

0
X̂k
u dβ

k
u +

n1+n2+n3∑
k=n1+n2+1

Xk
t , (2.8)

where the non-negative integers n1, n2, n3 are assumed to satisfy n1 + n2 + n3 = n.

2.5 Wealth Process

Let (x, p, ϕ, C) be an arbitrary self-financing trading strategy. Then the following natural question
arises: what is the wealth of a hedger at time t, say Vt(x, p, ϕ, C)? It is clear that if the hedger’s
initial endowment equals x, then his initial wealth equals x + p when he sells a contract C at the
price p at time 0. By contrast, the initial value of the hedger’s portfolio, that is, the total amount of
cash he invests at time 0 in his portfolio of traded assets, is given by (2.5) meaning that the trading
adjustments at time 0 need to be accounted for in the initial portfolio’s value. However, according
to the financial interpretation of trading adjustments, they have no bearing on the hedger’s initial
wealth and thus the relationship between the hedger’s initial wealth and the initial portfolio’s value
reads

V0(x, p, ϕ, C) = V p
0 (x, p, ϕ, C)−

n∑
k=1

αk0X
k
0 .

Analogous arguments can be used at any time t ∈ [0, T ], since the hedger’s wealth at time t should
represent the value of his portfolio of traded assets net of the value of all trading adjustments
(see (2.10)). Furthermore, one needs to focus on the actual ownership (as opposed to the legal
ownership) of each of the adjustment processes X1, . . . , Xn, of course, provided that they do not
vanish at time t. Although this general rule is cumbersome to formalize, it will not present any
difficulties when applied to a particular contract at hand.

For instance, in the case of the rehypothecated cash collateral (see Section 2.7.1), the hedger’s
wealth at time t should be computed by subtracting the collateral amount Ct from the portfolio’s
value. This is consistent with the actual ownership of the cash amount delivered by either the
hedger or the counterparty at time t. For example, if C+

t > 0 then the legal owner of the amount
C+
t at time t could be either the holder or the counterparty (depending on the legal covenants

of the collateral agreement) but the hedger, as a collateral taker, is allowed to use the collateral
amount for his trading purposes. If there is no default before T , the collateral taker returns the
collateral amount to the collateral provider. Hence the amount C+

t should be accounted for when
dealing with the hedger’s portfolio, but should be excluded from his wealth. In general, we have
the following definition of the wealth process.
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Definition 2.5. The wealth process of a self-financing trading strategy (xt, pt, ϕ
t, Ct) defined, for

every u ∈ [t, T ], by

Vu(xt, pt, ϕ
t, Ct) := V p

u (xt, pt, ϕ
t, Ct)−

n∑
k=1

αkuX
k
u (2.9)

or, more explicitly,

Vu(xt, pt, ϕ
t, Ct) =

d∑
i=1

ξiuS
i
u +

d∑
j=0

(
ψj,lu B

j,l
u + ψj,bu Bj,b

u

)
−

n∑
k=1

αkuX
k
u . (2.10)

Let us observe that there is a lot of flexibility in the choice of the adjustment processes Xks and
corresponding processes αks. However, we will always assume that these processes are specified
such that the above arguments of interpreting the actual ownership of the capital and thus also of
the wealth process V (x, p, ϕ,A,X ) hold true.

As an immediate consequence of Definitions 2.2 and 2.5, it follows that the wealth process V of
any self-financing trading strategy (xt, pt, ϕ

t, Ct) admits the dynamics, for u ∈ [t, T ],

Vu(xt, pt, ϕ
t, Ct) = xt + pt +

d∑
i=1

∫ u

t
ξiv d(Siv +Di

v) +
d∑
j=0

∫ u

t

(
ψj,lv dBj,l

v + ψj,bv dBj,b
v

)
(2.11)

−
n∑
k=1

∫ u

t
Xk
v (βkv )−1 dβkv +Atu.

One could argue that it would be possible to take equations (2.10) and (2.11) as the definition of
a self-financing trading strategy and subsequently deduce that equality (2.3) holds for the portfolio’s
value V p(x, p, ϕ, C), which is then given by (2.9). We contend this alternative approach would not
be optimal, since conditions in Definition 2.2 are obtained through a straightforward analysis of
the trading mechanism and physical cash flows, whereas the financial justification of equations
(2.10)–(2.11) is less appealing.

Clearly, the wealth processes of a self-financing trading strategy is characterized in terms of
two equations (2.10) and (2.11). Observe that, using (2.10), it is possible to eliminate one of the
processes ψj,l or ψj,b from (2.11) and thus to characterize the wealth process in terms of a single
equation. We obtain in this way a (typically nonlinear) BSDE, which can be used to formulate
various valuation problems for a given contract.

2.6 Trading in Risky Assets

Note that we do not postulate that processes Si, i = 1, 2, . . . , d are positive, unless it is explicitly
stated that the process Si models the price of a stock. Hence by the long cash position (resp. short
cash position), we mean the situation when ξitS

i
t ≤ 0 (resp., ξitS

i
t ≥ 0), where ξit is the number of

hedger’s positions in the risky asset Si at time t.

2.6.1 Cash Market Trading

For simplicity of presentation, we assume that Sit ≥ 0 for all t ∈ [0, T ]. Assume first that the

purchase of ξit > 0 shares of the ith risky asset is funded using cash. Then we set ψi,bt = 0 for all
t ∈ [0, T ] and thus the process Bi,b becomes irrelevant. Let us now consider the case when ξit < 0.
If we assume that the proceeds from short selling of the risky asset Si can be used by the hedger
(this is typically not true in practice), we also set ψi,lt = 0 for all t ∈ [0, T ], and thus the process
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Bi,l becomes irrelevant as well. Hence, under these stylized cash trading conventions, there is no
need to introduce the funding accounts Bi,l and Bi,b for the ith risky asset. Since dividends Di are
passed over to the lender of the asset, they do not appear in the term representing the gains/losses
from the short position in the risky asset. In the simplest case of no market frictions and trading
adjustments, and with the single risky asset S1, under the present short selling convention, (2.3)
becomes

V p
t (x, p0, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS1

u + dD1
u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)
+At. (2.12)

More practical short selling conventions are discussed in the foregoing subsections.

2.6.2 Short Selling of Risky Assets

Let us now consider the classical way of short selling of a risky asset borrowed from a broker. In
that case, the hedger does not receive the proceeds from the sale of the borrowed shares of a risky
asset, which are held instead by the broker as the cash collateral. The hedger may also be requested
to post additional cash collateral to the broker and, in some cases, he may be paid interest on his
margin account with the broker.1 To represent these trading arrangements for the ith risky asset,
we set ψi,lt = 0, αit = αi+dt = 0 and

Xi
t = −(1 + δit)(ξ

i
t)
−Sit , Xi+d = δit(ξ

i
t)
−Sit ,

where βit specifies the interest (if any) on the hedger’s margin account with the broker, δit ≥ 0
represents an additional cash collateral, and βi+d specifies the interest rate paid by the hedger for
financing the additional collateral.

For example, if we assume that the risky asset is purchased using cash as in Section 2.6.1, we
get the following equality, which is a slight extension of equality (2.2),

V p
t (x, p, ϕ, C) =

d∑
i=1

(ξ1t )+Sit + ψ0,l
t B

0,l
t + ψ0,b

t B0,b
t (2.13)

whereas equation (2.3) becomes

V p
t (x, p, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS1

u + dD1
u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)
+At (2.14)

+

∫ t

0
(β1u)−1(1 + δ1u)(ξ1u)−S1

u dβ
1
u −

∫ t

0
(β2u)−1δ1u(ξ1u)−S1

u dβ
2
u.

If, however, a specific interest rate for remuneration of an additional collateral is not specified, then
we set Xi+d = 0 and thus the last term in (2.14) should be omitted.

2.6.3 Repo Market Trading

Let us first consider the cash-driven repo transaction, the situation when shares of the ith risky
asset owned by the hedger are used as collateral to raise cash.2 To represent this transaction, we
set

ψi,bt = −(Bi,b
t )−1(1− hi,b)(ξit)+Sit , (2.15)

1The interested reader may consult the web pages http://www.investopedia.com/terms/s/shortsale.asp and https:

//www.sec.gov/investor/pubs/regsho.htm for more details on the mechanics of short-sales.
2We refer to https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr529.pdf for a detailed de-

scription of mechanics of repo trading.

http://www.investopedia.com/terms/s/shortsale.asp
https://www.sec.gov/investor/pubs/regsho.htm
https://www.sec.gov/investor/pubs/regsho.htm
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr529.pdf
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where Bi,b specifies the interest paid to the lender by the hedger who borrows cash and pledges the
risky asset Si as collateral, and the constant hi,b represents the haircut for the ith asset pledged.

A synthetic short-selling of the risky asset Si using the repo market is obtained through the
security-driven repo transaction, that is, when shares of the risky asset are posted as collateral by
the borrower of cash and they are immediately sold by the hedger who lends the cash. Formally,
this situation corresponds to the equality

ψi,lt = (Bi,l
t )−1(1− hi,l)(ξit)−Sit (2.16)

where Bi,l specifies the interest amount paid to the hedger by the borrower of the cash amount
(1− hi,l)(ξit)−Sit and hi,l is the corresponding haircut.

If only one risky asset is traded and transactions are exclusively in repo market, then we obtain

V p
t (x, p, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS1

u + dD1
u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)
(2.17)

+

∫ t

0

(
(B1,l

u )−1(1− h1,l)(ξ1u)−S1
u dB

1,l
u − (B1,b

u )−1(1− h1,b)(ξ1u)+S1
u dB

1,b
u

)
+At.

In practice, it is reasonable to assume that the long and short repo rates for a given risky
asset are identical, that is, Bi,l = Bi,b. In that case, we may and do set Bi := Bi,l = Bi,b and
ψit = (1− hi)(Bi

t)
−1ξitS

i
t , so that equations (2.15) and (2.16) reduce to just one equation

(1− hi)ξitSit + ψitB
i
t = 0. (2.18)

According to this interpretation of Bi, equality (2.18) means that trading in the ith risky asset is
done using the (symmetric) repo market and ξit shares of a risky asset are pledged as collateral at
time t, meaning that the collateral rate equals 1. Under (2.18), equation (2.17) reduces to

V p
t (x, p, ϕ, C) = x+ p+

∫ t

0
ξ1u (dS1

u + dD1
u) +

∫ t

0

(
ψ0,l
u dB0,l

u + ψ0,b
u dB0,b

u

)
(2.19)

−
∫ t

0
(B1

u)−1(1− h1)ξ1uS1
u dB

1
u +At.

2.7 Collateralization

We consider the situation when the hedger and the counterparty enter a contract and either receive
or pledge collateral with value denoted by C, which is assumed to be a semimartingale. Generally
speaking, the process C represents the value of the margin account. We let

Ct = X1
t +X2

t , (2.20)

where X1
t := C+

t = Ct1{Ct≥0}, and X2
t := −C−t = Ct1{Ct<0}. By convention, the amount C+

t is

the cash value of collateral received at time t by the hedger from the counterparty, whereas C−t
represents the cash value of collateral pledged by him and thus transferred to his counterparty.
For simplicity of presentation and consistently with the prevailing market practice, it is postulated
throughout that only cash collateral may be delivered or received (for other collateral conventions,
see, e.g., [BR15]). According to ISDA Margin Survey 2014, about 75% of non-cleared OTC collateral
agreements are settled in cash and about 15% in government securities. We also make the following
natural assumption regarding the value of the margin account at the contract’s maturity date.

Assumption 2.6. The G-adapted collateral amount process C satisfies CT = 0.
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Typically this means that the collateral process C will have a jump at time T from CT− to 0.
The postulated equality CT = 0 is simply a convenient way of ensuring that any collateral amount
posted is returned in full to the pledger when the contract matures, provided that the default events
have not occurred prior to or at maturity date T . As soon as the default events are also modeled,
we will need to specify the closeout payoff (see Section 2.8.1).

Let us first make some comments from the hedger’s perspective regarding the crucial features of
the margin account. The financial practice may require to hold the collateral amounts in segregated
margin accounts, so that the hedger, when he is a collateral taker, cannot make use of the collateral
amount for trading. Another collateral convention mostly encountered in practice is rehypothecation
(around 90% of cash collateral of OTC contracts are rehypothecated), which refers to the situation
where the hedger may use the collateral pledged by his counterparties as collateral for his contracts
with other counterparties. Obviously, if the hedger is a collateral provider, then a particular
convention regarding segregation or rehypothecation is immaterial for the dynamics of the value
process of his portfolio. We refer the reader to [BR15] and [CBB14] for a detailed analysis of various
conventions on collateral agreements. Here we will examine some basic aspects of collateralization
(sometimes also called margining) in our context.

In general, we have

$t = α1
tC

+
t − α2

tC
−
t −

∫ t

0
(β1u)−1C+

u dβ
1
u +

∫ t

0
(β2u)−1C−u dβ

2
u, (2.21)

where the remuneration processes β1 and β2 determine the interest rates paid or received by the
hedger on collateral amounts C+ and C−, respectively. The auxiliary processes α1 and α2 intro-
duced in (2.21) are used to cover alternative conventions regarding rehypothecation and segregation
of margin accounts. Note that we always set α2

t = 1 for all t ∈ [0, T ] when considering the portfolio
of the hedger, since a particular convention regarding rehypothecation or segregation is manifestly
irrelevant for the pledger of collateral.

2.7.1 Rehypothecated Collateral

As it is customary in the existing literature, we assume that rehypothecation of cash collateral
means that it can be used by the hedger for his trading purposes without any restrictions. To cover
this stylized version of a rehypothecated collateral for the hedger, it suffices to set α1

t = α2
t = 1

for all t ∈ [0, T ], so that for the hedger we obtain α1
tX

1
t + α2

tX
2
t = Ct. Consequently, the cash

adjustment corresponding to the margin account equals

$t = $1
t +$2

t =

2∑
k=1

(
Xk

0 +

∫ t

0
βku dX̂

k
u

)
. (2.22)

2.7.2 Segregated Collateral

Under segregation, the collateral received by the hedger is kept by the third party, so that it cannot
be used by the hedger for his trading activities. In that case, we set α1

t = 0 and α2
t = 1 for all

t ∈ [0, T ] and thus α1
tX

1
t +α2

tX
2
t = −C−t . Hence the corresponding cash adjustment term $ equals

$t = $1
t +$2

t = X2
0 −

∫ t

0
X̂1
u dβ

1
u +

∫ t

0
β2u dX̂

2
u. (2.23)
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2.7.3 Initial and Variation Margins

In market practice, the total collateral amount is usually represented by two components, which
are termed the initial margin (also known as the independent amount) and the variation margin. In
the context of self-financing trading strategies, this can be easily dealt with by introducing two (or
more) collateral processes for a given contract A. It is worth mentioning that each of the collateral
processes specified in the clauses of a contract is usually subject to a different convention regarding
segregation and/or remuneration.

2.8 Counterparty Credit Risk

The counterparty credit risk in a financial contract arises from the possibility that at least one of
the parties in the contract may default prior to or at the contract’s maturity, which may result in
failure of this party to fulfil all their contractual obligations leading to financial loss suffered by
either one of the two parties in the contract. We will model defaultability of the two parties to the
contract in terms of their default times. We denote by τh and τ c the default times of the hedger
and his counterparty, respectively. We require that τh and τ c are non-negative random variables
defined on (Ω,G,G,P). If τh > T holds a.s. (resp., τ c > T , a.s.) then the hedger (resp., the
counterparty) is considered to be default-free, at least with respect to the contract under study.
Hence the counterparty risk is a relevant aspect of our model provided that P(τ ≤ T ) > 0, where
τ := τh ∧ τ c is the moment of the first default.

From now on, we postulate that the process A models all promised (or nominal) cash flows of the
contract, as seen from the perspective of the trading desk without taking into account the possibility
of defaults of trading parties. In other words, A represents cash flows that would be realized in case
none of the two parties defaulted prior to or at the contract’s maturity. We will sometimes refer to
A as to the counterparty risk-free cash flows or counterparty clean cash flows and we will call the
contract with cash flows A the counterparty risk-free contract or the counterparty clean contract.
The key concept in the context of counterparty risk is the counterparty risky contract.

2.8.1 Closeout Payoff

On the event {τ <∞}, we define the random variable Υ as

Υ = Qτ + ∆Aτ − Cτ , (2.24)

where Q is the Credit Support Annex (CSA) closeout valuation process of the contract A, ∆Aτ =
Aτ − Aτ− is the jump of A at τ corresponding to a (possibly null) promised bullet dividend at τ ,
and Cτ is the value of the collateral process C at time τ . In the financial interpretation, Υ+ is the
amount the counterparty owes to the hedger at time τ , whereas Υ− is the amount the hedger owes
to the counterparty at time τ . It accounts for the legal value Qτ of the contract, plus the bullet
dividend ∆Aτ to be received/paid at time τ , less the collateral amount Cτ since it is already held
by the hedger (if Cτ > 0) or by the counterparty (if Cτ < 0). We refer the reader to [CBB14,
Section 3.1.3] for more details regarding the financial interpretation of Υ.

One of the key financial aspects of the counterparty risky contract is the closeout payoff, which
occurs if at least one of the parties defaults either before or at the maturity of the contract.
It represents the cash flow exchanged between the two parties at first-party-default time. The
following definition of the closeout payoff, as seen from the perspective of the hedger, is taken from
[CBB14]. The random variables Rc and Rh, which take values in [0, 1], represent the recovery rates
of the counterparty and the hedger, respectively.
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Definition 2.7. The CSA closeout payoff K is defined as

K := Cτ + 1{τc<τh}(RcΥ
+ −Υ−) + 1{τh<τc}(Υ

+ −RhΥ−) + 1{τh=τc}(RcΥ
+ −RhΥ−). (2.25)

The counterparty risky cumulative cash flows process A] is given by

A]t = 1{t<τ}At + 1{t≥τ}(Aτ− + K), t ∈ [0, T ]. (2.26)

Let us make some comments on the form of the closeout payoff K. First, the term Cτ is due to
the fact that legal title to the collateral amount comes into force only at the time of the first default.
The following three terms correspond to the CSA convention that, in principle, the nominal cash
flow at the first default from the perspective of the hedger is given as Qτ + ∆Aτ . Let us consider,
for instance, the event {τc < τh}. If Υ+ > 0, then we obtain

K = Cτ +Rc(Qτ + ∆Aτ − Cτ ) ≤ Qτ + ∆Aτ ,

where the equality holds whenever Rc = 1. If Υ− > 0, then we get

K = Cτ − (−Qτ −∆Aτ + Cτ ) = Qτ + ∆Aτ .

Finally, if Υ = 0, then K = Cτ = Qτ + ∆Aτ . Similar analysis can be done on the remaining two
events in (2.25).

Remark 2.8. Of course, there is no counterparty credit risk present under the assumption that
P(τ > T ) = 1. Let us consider the case where P(τ > T ) < 1. We denote by pet the clean (that is,
counterparty risk-free) ex-dividend price of the contract at time t. If we set Rc = Rh = 1, then we
obtain

A]τ = Aτ +Qτ .

Hence the counterparty credit risk is still present, despite the postulate of the full recovery, unless
the legal value Qτ perfectly matches the clean ex-dividend price peτ . Obviously, the counterparty
credit risk vanishes when Rc = Rh = 1 and Qτ = peτ , since in that case the so-called exposure at
default (see [CBB14, Section 3.2.3]) is null.

2.8.2 Counterparty Credit Risk Decomposition

To effectively deal with the closeout payoff in our general framework, we now define the counterparty
credit risk (CCR) cash flows, which are sometimes called CCR exposures. Note that the events
{τ = τh} = {τh ≤ τ c} and {τ = τ c} = {τ c ≤ τh} may overlap.

Definition 2.9. By the CCR processes, we mean the processes CL,CG and RP where the credit
loss CL equals

CLt = −1{t≥τ}1{τ=τc}(1−Rc)Υ+,

the credit gain CG equals

CGt = 1{t≥τ}1{τ=τh}(1−Rh)Υ−,

and the replacement process is given by

CRt = 1{t≥τ}(Aτ −At +Qτ ).

The CCR cash flow is given by ACCR = CL+ CG+ CR.
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It is worth noting that the CCR cash flows depend on processes A,C and Q. The next propo-
sition shows that we may interpret the counterparty risky contract as the clean contract A, which
is complemented by the collateral adjustment process X = (X1, X2) = (C+,−C−) and the CCR
cash flow ACCR. In view of this result, the counterparty risky contract (A],X ) admits the following
formal decompositions (A],X ) = (A,X ) + (ACCR, 0) and (A],X ) = (A, 0) + (ACCR,X ).

Proposition 2.10. The equality A]t = At +ACCR
t holds for all t ∈ [0, T ].

Proof. We first note that

K = Cτ + 1{τc<τh}(RcΥ
+ −Υ−) + 1{τh<τc}(Υ

+ −RhΥ−) + 1{τh=τc}(RcΥ
+ −RhΥ−)

= Cτ − 1{τc≤τh}(1−Rc)Υ+ + 1{τh≤τc}(1−Rh)Υ− + Υ

= Qτ + ∆Aτ − 1{τc≤τh}(1−Rc)Υ+ + 1{τh≤τc}(1−Rh)Υ−

where we used (2.24) in the last equality. Therefore, from (2.26) we obtain

A]t = 1{t<τ}At + 1{t≥τ}(Aτ− + K) = 1{t<τ}At + 1{t≥τ}(Aτ −∆Aτ + K)

= At∧τ + 1{t≥τ}(K−∆Aτ ) = At + (At∧τ −At) + 1{t≥τ}(K−∆Aτ )

= At + 1{t≥τ}
(
Aτ −At +Qτ − 1{τc≤τh}(1−Rc)Υ+ + 1{τh≤τc}(1−Rh)Υ−

)
,

which is the desired equality in view of Definition 2.9.

More generally, given two contracts, say (Ai,X i) for i = 1, 2, we are interested in pricing
and hedging issues for a compound contract (A,X ) where A = f(A1, A2) in relation to pricing
and hedging of its components (A1,X 1) and (A2,X 2). To be more specific, we wish to find out
whether individual no-arbitrage pricing for (A1,X 1) and (A2,X 2) leads to, at least approximate,
fair valuation for the contract (A,X ). We need to stress that there may be a feedback effect involved
between the compound contract and its components. For instance, it follows from Proposition 2.10
that the counterparty risky contract can be decomposed into the clean component (A1,X 1) =
(A,X ) and the CCR component (A2,X 2) = (ACCR, 0). In bank’s practice, the exit price for a
counterparty risky contract is the combination of the clean price of the contract and the price of
the counterparty credit risk, which is referred to as the CCR price in what follows. The clean price
and the corresponding hedge are established by the trading desk, whereas the price and hedge for
the counterparty credit risk are dealt with by the dedicated CVA desk. To sum up, the typical
procedure used in industry to derive the exit price of the contract (A],X ) is based on the following
additive decomposition

price (A],X ) = price (A,X ) + price (ACCR, 0) = clean price + CCR price. (2.27)

It is unclear under which conditions this procedure results in an overall arbitrage-free valuation
and hedging of the counterparty risky contract, in general, since the implicitly assumed additivity
of pricing does not necessarily hold under market frictions.

In the existing literature, the counterpart of the above relationship is usually represented by
the equality

counterparty risky price = clean price− TVA

where TVA stands for the total valuation adjustment. This requires two comments. First, the
TVA term accounts for several adjustments, and not only the counterparty credit risk, typically
represented by the CVA and DVA. In particular, it may account for the funding valuation adjust-
ment (FVA). In our approach, the funding adjustment results from the funding costs attributed to
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hedging the two components of (A],X ). Second, in our formula we have the sum, rather than the
difference, in the right-hand side of (2.27). This discrepancy is simply due to our definition of the
adjustments CL, CG and CR, which are set to be negatives of their counterparts encountered in
other papers.

2.9 Regulatory Capital

The case of the regulatory capital can be formally covered by adding the process Xk = −K, where
K is a non-negative stochastic process and by setting αkt = 1 for all t ∈ [0, T ]. If the regulatory
capital is remunerated, then we also need to specify the corresponding remuneration process βk. Of
course, an important issue of explicit specifications of these processes will arise when the general
theory is implemented. A practical approach to the capital valuation adjustment associated with
the regulatory capital was developed in a recent work by Albanese et al. [ACC16].

3 Arbitrage-Free Trading Models

The analysis of the self-financing property of a trading strategy should be complemented by the
study of some kind of a no-arbitrage property for the adopted market model. Due to the nonlinearity
of a market model with differential funding rates, the concept of no-arbitrage is nontrivial, even
when no trading adjustments are present. We will argue that it can be effectively dealt with using a
reasonably general definition of an arbitrage opportunity associated with trading. Let us stress that
we only consider here a nonlinear extension of the classical concept of an arbitrage opportunity (as
opposed to other related concepts, such as: NFLVR, NUPBR, etc.).

3.1 No-arbitrage Pricing Principles

Let us first describe very briefly the commonly adopted pricing paradigm for financial derivatives.
In essence, a general approach to no-arbitrage pricing hinges on the following steps:

Step (L.1). One first checks whether a market model with predetermined trading rules and primary
traded assets is arbitrage-free, where the definition of an arbitrage opportunity is a mathematical
formalization of the real-world concept of a risk-free profitable trading opportunity.

Step (L.2). Given a financial derivative for which the price is yet unspecified, one proposes a
price (not necessarily unique) and checks whether the extended model (that is, the model where
the financial derivative is postulated to be an additional traded asset) is also arbitrage-free in the
sense made precise in Step (L.1).

The valuation procedure outlined above can be referred to as the no-arbitrage pricing paradigm.
In any linear market model (see the comments after Definition 2.3), the unique price given by repli-
cation (or the range of no-arbitrage prices obtained using the concept of superhedging strategies in
the case of an incomplete market) is consistent with the no-arbitrage pricing paradigm (L.1)–(L.2),
although to establish this property in a continuous-time framework, one needs also to introduce the
concept of admissibility of a trading strategy. This is feasible since the strict comparison property
of linear BSDEs can be employed to show that replication (or superhedging) will indeed yield prices
for derivatives that are consistent with the no-arbitrage pricing paradigm. Alternatively, the fun-
damental theorem of asset pricing (FTAP) can be used to show that the discounted prices defined
through admissible trading strategies are local martingales (in fact, supermartingales) under an
equivalent local martingale measure. The latter property is a well known fundamental feature of
stochastic integration, so it covers all linear market models.
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Let us now comment on the existing approaches to nonlinear pricing of derivatives. The most
common approach to the pricing problem in a nonlinear framework seems to hinge, at least implic-
itly, on the following steps in which it is usually assumed that the hedger’s initial endowment is
null. In fact, Step (N.1) was explicitly addressed only in some works, whereas most papers in the
existing literature were concerned with finding a replicating strategy mentioned in Step (N.2). Also,
to the best of our knowledge, the important issue outlined in Step (N.3) was up to now completely
ignored.

Step (N.1). The strict comparison argument for the BSDE associated with the wealth dynamics
is used to show that it is not possible to construct an admissible trading strategy with the null
initial wealth and the terminal wealth, which is non-negative almost surely and strictly positive
with a positive probability.

Step (N.2). The price for a European contingent claim is defined using either the cost of replication
or the minimal cost of superhedging. A suitable version of the strict comparison property for the
wealth dynamics can be used to show that in some market models (referred to as regular models
in this work) the two pricing approaches yield the same value for any European claim that can be
replicated.

Step (N.3). It remains to check if the prices given by the cost of replication (or selected to be
below the upper bound given by the minimal cost of superhedging) comply with some form of the
no-arbitrage principle.

The problem whether the extended nonlinear market model is still arbitrage-free in some sense
is much harder to tackle than it was the case for the linear framework, since trading in derivatives
may essentially change the properties of the market. However, in the case of a regular model, this
step is relatively easy to handle due to the postulated regularity conditions (see, in particular,
Definition 4.6 and Proposition 4.8).

3.2 Discounted Wealth and Admissible Strategies

To deal with the issue of no-arbitrage, we need to introduce the discounted wealth process and
properly define the concept of admissibility of trading strategies. Let us denote

Bt(x) := 1{x≥0}B
0,l
t + 1{x<0}B

0,b
t . (3.1)

Note that if B0,l = B0,b, then B(x) = B0 = B. Furthermore, if x = 0, then xB0,b
T = xB0,l

T = 0 and
thus the choice of either B0,l or B0,b in the right-hand side of (3.1) is immaterial. It is natural to

postulate that the initial endowment x ≥ 0 (resp. x < 0) has the future value xB0,l
t (resp. xB0,b

t )
at time t ∈ [0, T ] when invested in the cash account B0,l (resp. B0,b). We thus henceforth work
under the following assumption.

Assumption 3.1. We postulate that:

(i) for any initial endowment x ∈ R of the hedger, the null contract N = (0, 0) belongs to C ,

(ii) for any x ∈ R, the trading strategy (x, 0, ϕ̂,N ) where ϕ̂ has all components null except for
either ψ0,l (if x ≥ 0) or ψ0,b (if x < 0) belongs to Φ0,x(C ) and V p

t (x, 0, ϕ̂,N ) = Vt(x, 0, ϕ̂,N ) =
xBt(x) for all t ∈ [0, T ].

Assumption 3.1 may look redundant at the first glance, but it is nevertheless needed and useful
in derivation of basic properties of fair prices. Condition (i) is a rather obvious requirement. Note
that condition (ii) cannot be deduced directly from the self-financing condition, since it hinges on
the additional postulate that there are no trading adjustments (such as: taxes, transactions costs,
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margin account, etc.) when the initial endowment is invested in the cash account. Formally, it
states that the null contract N = (0, 0) can be entered into by the hedger and it be will used to
show that the null contract has zero fair price at any date t ∈ [0, T ]. Also, the trading strategy
introduced in condition (ii) will serve as a natural benchmark for assessment of profits or losses
incurred by the hedger.

We also follow the standard approach of introducing the concept of admissibility for the dis-
counted wealth. Towards this end, for any fixed t ∈ [0, T ) we consider a hedger who starts trading
at time t with the initial endowment xt and who uses a self-financing trading strategy (xt, pt, ϕ

t, Ct),
where the price pt ∈ Gt at which the contract Ct is traded at time t is arbitrary. We also consider
the discounting process Bt(xt) on [t, T ], which is given by

Btu(xt) := 1{xt≥0}B
0,l
u (B0,l

t )−1 + 1{xt<0}B
0,b
u (B0,b

t )−1, (3.2)

so that, in particular, Btt(xt) = xt. Then the wealth process discounted back to time t satisfies

Ṽu(xt, pt, ϕ
t, Ct) := (Btu(xt))

−1Vu(xt, pt, ϕ
t, Ct), u ∈ [t, T ], (3.3)

and we have the following natural concept of admissibility of a trading strategy on [t, T ].

Definition 3.2. Let t ∈ [0, T ). We say that a trading strategy (xt, pt, ϕ
t, Ct) ∈ Φt,xt(C ) is admis-

sible if the discounted wealth Ṽu(xt, pt, ϕ
t, Ct) is bounded from below by a constant. We denote by

Ψt,xt(pt, Ct) the class of admissible strategies corresponding to (xt, pt, ϕ
t, Ct), and we let

Ψt,xt(C ) := ∪C∈C ∪pt∈Gt Ψt,xt(pt, Ct)

to denote the class of all admissible trading strategies on [t, T ] relative to the class C of contracts
for the hedger with the initial endowment xt at time t. In particular, Ψ0,x(C ) represents the class
of all trading strategies admissible at time t = 0 for the hedger with the initial endowment x.

3.3 No-arbitrage with Respect to the Null Contract

A minimal no-arbitrage requirement for an underlying market model is that it should be arbitrage-
free with respect to the null contract. Note that, consistently with Assumption 3.1 and the concept
of replication (for the general formulation of replication of a non-null contract, see Definition 4.4),
it is implicitly assumed in Definition 3.3 that the price at which the null contract is traded at time
zero equals zero. Needless to say, this is a rather obvious postulate in any trading model.

Definition 3.3. Consider an underlying market model M = (S,D,B,C ,Ψ0,x(C )). An arbitrage
opportunity with respect to the null contract (or a primary arbitrage opportunity) for the hedger
with an initial endowment x is a strategy (x, 0, ϕ,N ) ∈ Ψ0,x(0,N ) such that

P(ṼT (x, 0, ϕ,N ) ≥ x) = 1, P(ṼT (x, 0, ϕ,N ) > x) > 0. (3.4)

If no primary arbitrage opportunity exists in the market modelM then we say thatM is arbitrage-
free with respect to the null contract for the hedger with an initial endowment x.

For any linear market model, Definition 3.3 reduces to the classical definition of an arbitrage
opportunity. It is well known that the no-arbitrage property introduced in this definition is a
sufficiently strong tool for the development of no-arbitrage pricing for financial derivatives in the
linear framework. This does not mean, however, that Definition 3.3 is sufficiently strong to allow
us to develop nonlinear no-arbitrage pricing theory, which would enjoy the properties, which are
desirable from either mathematical or financial perspective. On the one hand, a natural definition
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of a hedger’s fair value (see Definition 4.1) is consistent with the concept of no-arbitrage with
respect to the null contract and thus it seems to be theoretically sound. On the other hand, as we
argue below, Definition 3.3 is manifestly not sufficient to ensure an efficient pricing and hedging
approach in a general nonlinear market.

First, it may occur that the replication cost of a contract does not satisfy the definition of a fair
price, since selling of a contract at its replication cost may generate an arbitrage opportunity for the
hedger. Explicit examples of market models, which are arbitrage-free in the sense of Definition 3.3,
but suffer from this deficiency, are given in Section 7.1.

Second, and more importantly, not well established method of finding a fair price in a general
nonlinear market satisfying Definition 3.3 is available. We contend that the drawback of the defini-
tion of an arbitrage-free model with respect to the null contract is that it does not make an explicit
reference to a class C of contracts under study. Indeed, it hinges on the specification of the class
Ψ0,x(0,N ) of trading strategies, but it does not take into account the larger class Ψ0,x(C ). To
amend this drawback of Definition 3.3, it was proposed in [BR15] to consider the concept of the
no-arbitrage for the trading desk with respect to a predetermined family C of contracts.

3.4 No-arbitrage for the Trading Desk

Following [BR15], we will now examine a stronger no-arbitrage property of a model, which is directly
related to a predetermined family C of contracts. The goal to impose a more stringent no-arbitrage
condition, which not only accounts for the nonlinearity of the market, but also explicitly refers to
a family of contracts under consideration. Regrettably, the class of models that are arbitrage-free
in the sense of Definition 3.7 could still be too encompassing, and thus it is unclear whether the
pricing irregularities mentioned in the preceding section will be eliminated (for an example, see
Section 7.2).

For simplicity of notation, we consider here the case of t = 0, but all definitions can be extended
to the case of any date t. The symbols X = X (A) and Y = Y(−A) are used to emphasize that there
is no reason to expect that the trading adjustments will satisfy the equality X (−A) = −X (A), in
general. Therefore, we denote by Y = (Y 1, . . . , Y n;α1(Y), . . . , αn(Y);β1(Y), . . . , βn(Y)) the trading
adjustments associated with the cumulative cash flows process −A. In order to avoid confusion, we
will use the full notation for the wealth process, for instance, V (x, p, ϕ, C) = V (x, p, ϕ,A,X ), etc.

Definition 3.4. For a contract C = (A,X ) and an initial endowment x, the combined wealth is
defined as

V com(x1, x2, ϕ, ϕ̄, A,X ,Y) := V (x1, 0, ϕ,A,X ) + V (x2, 0, ϕ̄,−A,Y), (3.5)

where x1, x2 are any real numbers such that x = x1 + x2, ϕ ∈ Ψ0,x1(0, A,X ), ϕ̄ ∈ Ψ0,x2(0,−A,Y).
In particular, V com

0 (x1, x2, ϕ, ϕ̄, A,X ,Y) = x1 + x2 = x.

The rationale for the term combined wealth comes from the financial interpretation of the process
given by the right-hand side in (3.5). We argue that it represents the aggregated wealth of two
traders, which are members of the same trading desk, who are supposed to act as follows:

• The first trader takes the long position in a contract (A,X ), whereas the second one takes
the short position in the same contract, which is thus formally represented by (−A,Y). Since
we assume that the long and short positions have exactly opposite prices, the corresponding
cash flows p and −p coming to the trading desk (and not to individual traders) offset each
other and thus the initial endowment x of the trading desk remains unchanged.
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• In addition, it is assumed that after the cash flows p and −p have been netted so they are
no longer present, the initial endowment x is split into arbitrary amounts x1 and x2 meaning
that x = x1 +x2. Then each trader is allocated the respective amount x1 and x2 as an initial
endowment and each of them hedges his position. It is now clear that the level of the initial
price p at which the contract is traded at time zero is immaterial for both hedging strategies
and the combined wealth of the two traders is given by the right-hand side in (3.5).

Alternatively, the combined wealth may be used to describe the situation where a single trader
takes long and short positions with two external counterparties and hedges them independently
using his initial endowment x split into x1 and x2. Of course, in that case it is even more clear
that the initial price p has no impact on his trading strategies.

Remark 3.5. One can also observe that the following equality is manifestly satisfied for any real
number p

V (x1, 0, ϕ,A,X ) + V (x2, 0, ϕ̄,−A,Y) = V (x̃1, p, ϕ,A,X ) + V (x̃2,−p, ϕ̄,−A,Y),

where x̃1 = x1 − p and x̃2 = x2 + p is another decomposition of x such that x = x̃1 + x̃2. However,
equation (3.5) much better reflects the actual trading arrangements and it has a clear advantage
that an unknown number p does not appear in the formula for the combined wealth. It thus
emphasizes the crucial feature that the combined wealth is independent of p. In fact, one can
remark that the issue whether the trading desk has been informed about the actual level of the
price p does not matter at all.

Definition 3.6. A pair (x1, ϕ;x2, ϕ̄) of trading strategies introduced in Definition 3.4 is admissible
for the trading desk if the discounted combined wealth process

Ṽ com(x1, x2, ϕ, ϕ̄, A,X ,Y) := (B(x))−1V com(x1, x2, ϕ, ϕ̄, A,X ,Y) (3.6)

is bounded from below by a constant. The class of such strategies is denoted by Ψ0,x1,x2(A,X ,Y).

We are in a position to formalize the concept of an arbitrage-free model for the trading desk
with respect to a particular family of contracts.

Definition 3.7. We say that a pair (x1, ϕ;x2, ϕ̄) ∈ Ψ0,x1,x2(A,X ,Y) is an arbitrage opportunity
for the trading desk with respect to a contract (A,X ) if the following conditions are satisfied

P(Ṽ com
T (x1, x2, ϕ, ϕ̄, A,X ,Y) ≥ x) = 1, P(Ṽ com

T (x1, x2, ϕ, ϕ̄, A,X ,Y) > x) > 0.

We say that the market model M = (S,D,B,C ,Ψ0,x(C )) is arbitrage-free for the trading desk if
no arbitrage opportunity exists for the trading desk with respect to any contract C from C .

Our main purpose in Sections 3.3 and 3.4 was to provide some simple criteria that would allow
one to eliminate models in which some particular form of arbitrage appears. Definition 3.3 and
Definition 3.7 provide such criteria for accepting or rejecting any tentative nonlinear market model.
It is easy to see that a model which is rejected according to Definition 3.7 is also rejected when
Definition 3.3 is applied. We do not claim, however, that these tests are sufficient to discriminate
between acceptable and non-acceptable nonlinear models for pricing of derivatives. Indeed, in
Definition 4.6 we formulate additional conditions that should be satisfied by a viable market model.
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3.5 Dynamics of the Discounted Wealth Process

It is natural to ask whether the no-arbitrage for the trading desk can be checked for a given market
model. Before we illustrate a simple verification method for this property, we need to introduce
additional notation. Let us write

B̃i,l(x) := (B(x))−1Bi,l, B̃i,b(x) := (B(x))−1Bi,b,

β̃k(x,X ) := (B(x))−1βk(X ), β̃k(x,Y) := (B(x))−1βk(Y),

X̂k := (βk(X ))−1Xk, Ŷ k := (βk(Y))−1Y k,

B0,b,l := (B0,l)−1B0,b, B0,l,b := (B0,b)−1B0,l.

Lemma 3.8. The discounted combined wealth satisfies

dṼ com
t (x1, x2, ϕ, ϕ̄, A,X ,Y) =

d∑
i=1

(ξit + ξ̄it) dS̃
i,cld
t (x) +

d∑
i=1

(ψi,lt + ψ̄i,lt ) dB̃i,l
t (x)

+
d∑
i=1

(ψi,bt + ψ̄i,bt ) dB̃i,b
t (x) + 1{x≥0}(ψ

0,b
t + ψ̄0,b

t ) dB0,b,l
t + 1{x<0}(ψ

0,l
t + ψ̄0,l

t ) dB0,l,b
t (3.7)

−
n∑
k=1

X̂k
t dβ̃

k
t (x,X )−

n∑
k=1

Ŷ k
t dβ̃

k
t (x,Y) +

n∑
k=1

(
(1− αkt (X ))Xk

t + (1− αkt (Y))Y k
t

)
d(Bt(x))−1,

where we set

S̃i,cldt (x) := (Bt(x))−1Sit +

∫ t

0
(Bu(x))−1 dDi

u. (3.8)

Proof. For an arbitrary decomposition x = x1 + x2, we write (note that the notation introduced in
Definition 3.2 is extended here, since x 6= xi, in general)

Ṽ (x1, p, ϕ,A,X ) := (B(x))−1Ṽ (x1, p, ϕ,A,X ), Ṽ (x2, p, ϕ̄,−A,Y) := (B(x))−1Ṽ (x2, p, ϕ̄,−A,Y).

From (2.10) and (2.11), using the Itô integration by parts formula, we obtain

dṼt(x1, p, ϕ,A,X ) =

d∑
i=1

ξit dS̃
i,cld
t (x) +

d∑
i=1

(
ψi,lt dB̃

i,l
t (x) + ψi,bt dB̃i,b

t (x)
)

+ 1{x≥0}ψ
0,b
t dB0,b,l

t + 1{x<0}ψ
0,l
t dB0,l,b

t + (Bt(x))−1 dAt −
n∑
k=1

X̂k
t dβ̃

k
t (x,X ) (3.9)

+
n∑
k=1

(1− αkt (X ))Xk
t d(Bt(x))−1,

and an analogous equality holds for Ṽ (x2, p, ϕ̄,−A,Y). Hence (3.7) follows from (3.5) and (3.6).

It is worth noting that it follows from (3.9) that condition (ii) in Assumption 3.1 is satisfied
provided that no additional constraints on trading strategies are imposed (recall that condition (i)
in Assumption 3.1 is always postulated to hold).

Assume now, in addition, that Bi,l = Bi,b = Bi for i = 1, 2, . . . , d. We define the processes Si,cld

and Ŝi,cld

Si,cldt := Sit +Bi
t

∫ t

0
(Bi

u)−1 dDi
u, Ŝi,cldt := (Bi

t)
−1Si,cldt = Ŝit +

∫ t

0
(Bi

u)−1 dDi
u,
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where in turn Ŝi := (Bi)−1Si. It is easy to check that

dS̃i,cldt (x) = B̃i
t(x) dŜi,cldt + Ŝit dB̃

i
t(x), (3.10)

where B̃i(x) := (B(x))−1Bi and thus (3.7) becomes

dṼ com
t (x1, x2, ϕ, ϕ̄, A,X ,Y) =

d∑
i=1

(ξit + ξ̄it)B̃
i
t(x) dŜi,cldt +

d∑
i=1

(
(ξit + ξ̄it)Ŝ

i
t + (ψit + ψ̄it)

)
dB̃i

t(x)

+ 1{x≥0}(ψ
0,b
t + ψ̄0,b

t ) dB0,b,l
t + 1{x<0}(ψ

0,l
t + ψ̄0,l

t ) dB0,l,b
t −

n∑
k=1

X̂k
t dβ̃

k
t (x,X ) (3.11)

−
n∑
k=1

Ŷ k
t dβ̃

k
t (x,Y) +

n∑
k=1

(
(1− αkt (X ))Xk

t + (1− αkt (Y))Y k
t

)
d(Bt(x))−1.

3.6 Sufficient Conditions for the Trading Desk No-Arbitrage

The following result gives a sufficient condition for a market model to be arbitrage-free for the
trading desk. The proof of Proposition 3.9 is straightforward and thus it is omitted.

Proposition 3.9. Assume that there exists a probability measure Q, equivalent to P on (Ω,GT ), and
such that for any decomposition x = x1 + x2 and any admissible combination of trading strategies
(x1, ϕ,A,X ) and (x2, ϕ̄,−A,Y) for any contract (A,X ) belonging to C the discounted combined
wealth Ṽ com(x1, x2, ϕ, ϕ̄, A,X ,Y) is a supermartingale under Q. Then the market model M =
(S,D,B,C ,Ψ0,x(C )) is arbitrage-free for the trading desk.

Although Proposition 3.9 is fairly abstract, the sufficient condition stated there can readily be
verified as soon as a specific market model is adopted (see, for instance, [BR15, NR15, NR16a,
NR16c]). To support this claim, we will examine a market model with idiosyncratic funding of
risky assets and rehypothecated cash collateral.

Example 3.10. We consider the special case where B0,l = B0,b = B = B(x) and Bi,l = Bi,b = Bi

for all i = 1, 2, . . . , d. Under the assumption of no additional constraints on trading strategies,
(3.11) yields (for a special case of this formula, see Corollary 2.1 in [BR15])

dṼ com
t (x1, x2, ϕ, ϕ̄, A,X ,Y) =

d∑
i=1

(ξit + ξ̄it)B̃
i
t(x) dŜi,cldt +

d∑
i=1

(ξitS
i
t + ψitB

i
t)(B

i
t)
−1 dB̃i

t(x)

+
d∑
i=1

(ξ̄itS
i
t + ψ̄itB

i
t)(B

i
t)
−1 dB̃i

t(x)−
n∑
k=1

X̂k
t dβ̃

k
t (x,X )−

n∑
k=1

Ŷ k
t dβ̃

k
t (x,Y)

+
n∑
k=1

(
(1− αkt (X ))Xk

t + (1− αkt (Y))Y k
t

)
dB−1t .

We postulate that the cash collateral is rehypothecated, so that n = 2 in Section 2.4. Then
α1
t = α2

t = α1
t (Y) = α2

t (Y) = 1 and X1
t + Y 1

t = X2
t + Y 2

t = 0 for all t ∈ [0, T ]. Let us assume, in
addition, that ξitS

i
t + ψitB

i
t = ξ̄itS

i
t + ψ̄itB

i
t = 0 for all i and t ∈ [0, T ], meaning that the ith risky

asset is fully funded from the repo account Bi (see Section 2.6.3). More generally, it suffices to
assume that the following equalities are satisfied for all t ∈ [0, T ]

d∑
i=1

∫ t

0
(ξiuS

i
u + ψiuB

i
u)(Bi

u)−1 dB̃i
u(x) =

d∑
i=1

∫ t

0
(ξ̄iuS

i
u + ψ̄iuB

i
u)(Bi

u)−1 dB̃i
u(x) = 0. (3.12)
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Finally, let the remuneration processes satisfy βk(X ) = βk(Y). Then the formula for the dynamics
of the discounted combined wealth for the trading desk reduces to

dṼ com
t (x1, x2, ϕ, ϕ̄, A,X ,Y) =

d∑
i=1

(ξit + ξ̄it)B̃
i
t(x) dŜi,cldt

and thus the model is arbitrage-free for the trading desk provided that there exists a probability
measure Q, which is equivalent to P on (Ω,GT ), and such that the processes Ŝi,cld, i = 1, 2, . . . , d are
Q-local martingales. This property is still a sufficient condition for the trading desk no-arbitrage
when the cash account B0,l and B0,b differ, but the borrowing rate dominates the lending rate.

4 Hedger’s Fair Pricing

We now address the issue of a fair pricing in our nonlinear model under the assumption that
the hedger has the initial endowment xt at time t. We assume that the model is arbitrage-free
either with respect to the null contract or for the trading desk and we consider the hedger who
contemplates entering into the contract Ct at time t. The first goal is to describe the range of the
hedger’s fair prices for the contract Ct. Let pt ∈ Gt denote a generic price of a contract at time
t, as seen from the perspective of the hedger. Hence a positive value of pt means that the hedger
receives at time t the cash amount pt from the counterparty, whereas a negative value of pt means
that he agrees to pay the cash amount −pt to the counterparty at time t. In the next definition,
we fix a date t ∈ [0, T ) and we assume that the contract Ct is traded at the price pt at time t. It
is natural to ask whether in this situation the hedger can make a risk-free profit by entering into
the contract and hedging it with an admissible trading strategy over [t, T ]. We propose to call it a
hedger’s pricing arbitrage opportunity. Recall that the arbitrage opportunities defined in Section
3 are related to the properties of a trading model, and they do not depend on the level of a price
pt for Ct.

Definition 4.1. A trading strategy (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) is a hedger’s pricing arbitrage oppor-

tunity on [t, T ] associated with a contract Ct traded at pt at time t (or, briefly, a secondary arbitrage
opportunity) if

P
(
ṼT (xt, pt, ϕ

t, Ct) ≥ xt
)

= 1 (4.1)

and

P
(
ṼT (xt, pt, ϕ

t, Ct) > xt
)
> 0. (4.2)

It is clear that (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) is not a hedger’s pricing arbitrage opportunity on [t, T ]

if either

P
(
ṼT (xt, pt, ϕ

t, Ct) = xt
)

= 1 (4.3)

or

P
(
ṼT (xt, pt, ϕ

t, Ct) < xt
)
> 0. (4.4)

We will refer to condition (4.4) as the strict subhedging condition.

Definition 4.2. We say that pft = pft (xt, Ct) is a fair hedger’s price at time t for Ct if there is no

hedger’s secondary arbitrage opportunity (xt, p
f
t , ϕ

t, Ct) ∈ Ψt,xt(C ). A fair hedger’s price pft such

that the strict subhedging condition holds for every trading strategy (xt, p
f
t , ϕ

t, Ct) ∈ Ψt,xt(C ) is
called a strict subhedging price.
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It is clear from Definitions 4.2 and 4.1 that if pft is a fair price, then any trading strategiy
(xt, pt, ϕ

t, Ct) ∈ Ψt,xt(C ) necessarily satisfies either condition (4.3) or condition (4.4). Obviously,
a fair hedger’s price depends both on the given endowment xt and the contract Ct and thus the
notation pft (xt, Ct) is appropriate, but it will be frequently simplified to pft when no danger of

confusion may arise. It is important to note that if pft is a fair hedger’s price (resp. a strict

subhedging price) at time t for Ct, then any pt ≤ pft is also a fair hedger’s price (resp. a strict

subhedging price) at time t for that contract, provided that the amount pft −pt ≥ 0 can be invested
in B0,l with no trading adjustments. Recall that the latter property has been already postulated
in our framework and thus it is not restrictive.

A fair price prevents the hedger from making sure profit with a positive probability and with
no risk of losing money. In contrast, it does not prevent the hedger from losing money, in general.
It is thus natural to search for the highest possible value of a fair price. This idea motivates the
following definition of the upper bound for the hedger’s fair prices

pf
t
(xt, Ct) := ess sup

{
pft ∈ Gt | p

f
t is a fair hedger’s price for Ct

}
. (4.5)

We find it useful to study also the upper bound for the strict subhedging prices, which is given by

p
t
(xt, Ct) := ess sup

{
pft ∈ Gt | p

f
t is a strict subhedging price for Ct

}
. (4.6)

Definition 4.3. A trading strategy (xt, p
s
t , ϕ

t, Ct) ∈ Ψt,xt(C ) is said to be a superhedging strategy for
a contract Ct if (4.1) holds, whereas a strict superhedging means that (4.1) and (4.2) are satisfied. In
the former (resp. latter) case, pst = pst (xt, Ct) is called a superhedging cost (resp. strict superhedging
cost) at time t for Ct.

If a superhedging (resp. strict superhedging) strategy exists when Ct is entered into at the price
pst , then a superhedging (resp. strict superhedging) strategy exists as well for any pt satisfying
pt ≥ pst . The lower bound for superhedging costs is given by

pst (xt, Ct) := ess inf
{
pst ∈ Gt | pst is a superhedging cost for Ct

}
(4.7)

and the lower bound for strict superhedging costs equals

pt(xt, Ct) := ess inf
{
pst ∈ Gt | pst is a strict superhedging cost for Ct

}
. (4.8)

For the basic relationships between the quantities introduced above when t = 0, see Lemma 4.5
(analogous relationships hold in fact for any t > 0 as well, but they are not reported here).

In any linear (either complete or incomplete) market model, the quantities p
t

and pt do not
depend on the hedger’s endowment. Moreover, the equality p

t
= pt can be established in some

arbitrage-free incomplete models for all square-integrable European claims (see El Karoui and
Quenez [EKQ95]). It was shown in [EKQ95] that the common value is not a fair hedger’s price for
a European claim, unless it can be replicated. Of course, in the latter case we have that p

t
= pt = p̂t

where p̂t denotes the unique cost of replication.
Obviously, this does not mean that such desirable properties of p

t
(xt, Ct), pt(xt, Ct) and the cost

of replication (see Definition 4.4) will still be valid when the assumption of a model’s linearity is
relaxed, even when a nonlinear model is assumed to be arbitrage-free either with respect to the
null contract or for the trading desk. Furthermore, Definition 4.2 is too broad, in the sense that it
is not constructive and thus it does not offer any guidance how to implement fair pricing, let alone
how to derive the dynamics of fair prices for a given contract. These important shortcomings are
addressed and overcome in Section 4.2 where the notion of a regular market is introduced.
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4.1 Replication on [0, T ] and the Gained Value

Admittedly, the most commonly used technique for valuation of derivatives hinges on the concept
of replication. In the present framework, it is given by the following definition, in which we consider
the hedger with the initial endowment x at time 0 and p̂0 stands for an arbitrary real number.

Definition 4.4. A trading strategy (x, p̂0, ϕ̂, C) ∈ Ψ0,x(C ) is said to replicate a contract C on [0, T ]
whenever VT (x, p̂0, ϕ̂, C) = xBT (x) or, equivalently, ṼT (x, p̂0, ϕ̂, C) = x. Then p̂0 = p̂0(x, C) is said
to be a hedger’s replication cost for C at time 0 and the process p̂(x, C) given by

p̂t(x, C) := Vt(x, p̂0(x, C), ϕ̂, C)− xBt(x) (4.9)

is called a hedger’s gained value.

Note that the uniqueness of a replication cost p̂0(x, C) is not yet guaranteed and indeed there is
no reason to expect that it will always hold in every market model satisfying either Definition 3.3
or Definition 3.7. Nevertheless, the financial interpretation of a hedger’s replication cost p̂0(x, C)
for a given contract C ∈ C is fairly straightforward. It represents either a positive or a negative
adjustment to the initial endowment, which is required to implement a trading strategy ensuring
that the hedger’s wealth at time T , after the terminal payoff of the contract has been settled,
perfectly matches the value at time T of his initial endowment invested in the cash account.

It is clear that the equality p̂T (x, C) = 0 holds for any replicable contract C ∈ C . As ex-
pected, for the null contract N = (0, 0), the self-financing strategy (x, 0, ϕ̂,N ), with the portfolio ϕ̂
putting/taking all the money into/from the bank account, will be a replicating strategy such that
p̂t(x,N ) = 0 for all t ∈ [0, T ]. The fact that such a trading strategy is self-financing was postulated
in Section 3.2 but, of course, this a priori assumption needs to be checked for any market model at
hand.

As was already mentioned, it should not be taken for granted that in a nonlinear market model,
which is assumed to be arbitrage-free with respect to the null contract (or even arbitrage-free for
the trading desk), the cost of replication for a contract C will satisfy the definition of a fair price for
the hedger. In fact, it is possible to show by means of counter-examples that this highly desirable
property may fail to hold (see the appendix). To amend this drawback, we introduce in the next
section a class of models in which replication can be proven to be a reliable method of fair pricing
for any contract from a predetermined family C for which a replicating strategy exists.

4.2 Market Regularity on [0, T ]

Once again, we consider the hedger with the initial endowment x at time 0. Intuitively, the concept
of regularity with respect to a given family C of contracts is motivated by our desire to ensure that,
for any contract from C , the cost of replication is never higher than the minimal cost of superhedging
and, in addition, the cost of replication is a fair hedger’s price, in the sense of Definition 4.1. The
following lemma is an easy consequence of Definitions 4.2 and and 4.3.

Lemma 4.5. We have that

p
0
(x, C) ≤ pf

0
(x, C) = ps0(x, C) ≤ p0(x, C).

Therefore, either (a) p
0
(x, C) = p0(x, C) or (b) p

0
(x, C) < p0(x, C).

Suppose first that case (a) occurs and a contract C can be replicated. Then it may happen that
p
0
(x, C) = p0(x, C) = p̂0(x, C). It is not obvious, however, that p̂0(x, C) would be in this situation a

hedger’s fair price, since it is still possible that a strict superhedging strategy with the same initial
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cost might exist. Furthermore, it may also happen that p0(x, C) < p̂0(x, C) meaning that a strict
superhedging is less expensive than replication.

Suppose now that case (a) occurs but a contract C cannot be replicated. Then it is not clear
whether p0 := pf

0
(x, C) = ps0(x, C) is a fair price, although we have that

p
0
(x, C) = pf

0
(x, C) = ps0(x, C) = p0(x, C)

so that p0 is equal to the upper bound for strict subhedging prices and to the lower bound for strict
superhedging costs.

Suppose now that case (b) occurs. Then, it can be checked that any number p ∈ (p
0
(x, C), p0(x, C)

is a replication cost. It is not clear, however, whether p
0
(x, C) is a replication cost or a strict sub-

hedging price. One can also ask whether there exists a replication cost equal to or higher than
p0(x, C).

To eliminate at least some of such ambiguities from our further study of nonlinear pricing
techniques, we will later restrict our attention to nonlinear market models satisfying some additional
regularity conditions.

Definition 4.6. We say that the market modelM = (S,D,B,C ,Ψ0,x(C )) is regular on [0, T ] with
respect to C if for every replicable contract C ∈ C and for every replicating strategy (x, p̂0(x), ϕ̂,X )
the following properties hold:

(i) if p is such that there exists (x, p, ϕ, C) ∈ Ψ0,x(p, C) satisfying

P
(
ṼT (x, p, ϕ, C) ≥ x

)
= 1, (4.10)

then p ≥ p̂0(x);

(ii) if p is such that there exists (x, p, ϕ, C) ∈ Ψ0,x(p, C) such that

P
(
ṼT (x, p, ϕ, C) ≥ x

)
= 1 (4.11)

and
P
(
ṼT (x, p, ϕ, C) > x

)
> 0, (4.12)

then p > p̂0(x).

By applying Definition 4.6 to the null contract N = (0, 0), we deduce that any regular market
model is arbitrage-free for the hedger with respect to the null contract. It is not clear, however,
whether an arbitrage opportunity for the trading desk may arise in a regular model.

It is important to note that condition (i) implies that the replication cost p̂0(x) for C is unique.
Moreover, if condition (i) holds, then condition (ii) is equivalent to the following condition:

(iii) if p is such that there exists (x, p, ϕ, C) ∈ Ψ0,x(p, C) satisfying

P
(
ṼT (x, p, ϕ, C) ≥ x

)
= 1 (4.13)

then the following implication is valid: if p = p̂0(x), then

P
(
ṼT (x, p, ϕ, C) = x

)
= 1. (4.14)

Condition (i) in Definition 4.1 states that superhedging cannot be less expensive than replication,
whereas condition (ii) states that strict superhedging is in fact always more costly than replication.

Remark 4.7. In the special case of European claims with maturity T and no trading adjustments,
conditions (i) and (ii) correspond to the comparison and strict comparison properties of solutions
to BSDEs satisfied by the wealth process with different terminal conditions. In fact, the same
idea underpins Definition 2.7 of a nonlinear pricing system introduced by El Karoui and Quenez
[EKQ97]. As in [EKQ97], we will show that regularity of a market model can be established for a
large variety of models using a BSDE approach.
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4.2.1 Replicable Contracts

We first focus on contracts that can be replicated. Proposition 4.8 shows that, in a regular market
model, the cost of replication is the unique fair price of a contract C ∈ C that can be replicated
and the equalities p̂0(x, C) = p0(x, C) = p

0
(x, C) hold for such a contract. This means that the

replication of a contract is a viable method of pricing within the framework of a regular model,
although this statement is not necessarily true for any nonlinear market model.

Proposition 4.8. Assume that a market model M = (S,D,B,C ,Ψ0,x(C )) is regular on [0, T ]
with respect to C . Then for every contract C ∈ C that can be replicated on [0, T ] we have:

(i) the replication cost p̂0(x, C) is unique,

(ii) p̂0(x, C) is the lower bound for superhedging costs and strict superhedging costs, that is,
p̂0(x, C) = ps0(x, C) = p0(x, C),

(iii) p̂0(x, C) is the maximal fair price and the upper bound for strict subhedging prices, that is,
p̂0(x, C) = pf

0
(x, C) = p

0
(x, C).

Proof. As was already mentioned, the uniqueness of the replication cost p̂0(x, C) is an immediate
consequence of condition (i) in Definition 4.6.

For part (ii), we first observe that condition (i) in Definition 4.6 means that the initial cost p
of any superhedging strategy satisfies p ≥ p̂0(x, C) and thus, since a replicating strategy is also a
superhedging strategy, the equality p̂0(x, C) = ps0(x, C) is obvious. Moreover, since the initial cost
p0 of any strict superhedging strategy also satisfies p ≥ p̂0(x, C) and, for any p > p̂0(x, C), there
manifestly exists a strict superhedging strategy with the initial cost p, we conclude that the equality
p̂0(x, C) = p0(x, C) is valid as well.

For part (iii), we note that condition (ii) in Definition 4.6 implies that there is no trading
strategy (x, p̂0(x, C), ϕ, C) ∈ Ψ0,x(C ) such that conditions (4.11) and (4.12) are satisfied. This
means that no hedger’s arbitrage opportunity arises (that is, no strict superhedging strategy for C
exists) if C is traded at time 0 at its replication price p̂0(x, C), so that p̂0(x, C) is a fair hedger’s price.
Furthermore, no fair price for C strictly higher than p̂0(x, C) may exist, since for any p > p̂0(x, C)
there exists a superhedging strategy with cost p, which contradicts the definition of a fair price.
Hence the equality p̂0(x, C) = pf

0
(x, C) holds.

Let us now consider any number p < p̂0(x, C). We claim that p is a strict subhedging price.
Indeed, p is a fair price and it cannot be a replication price (since the latter is unique), so it is a
strict subhedging price. We conclude that p̂0(x, C) = p

0
(x, C).

4.2.2 Non-replicable Contracts

Let us make some comments on the pricing of a contract C for which replication in a regular model
M = (S,D,B,C ,Ψ0,x(C )) is not feasible. Since we already know that the equality p

0
(x, C) =

p0(x, C) holds in any regular model and any contract C ∈ C , the question of great interest is whether
the common value is a fair price or not. Unfortunately, the definitive answer is not available, since
it may happen that the common value is a fair price, but it may also occur that it is a cost of a
strict superhedging strategy.

5 Pricing in Regular Models

In this section, we assume that a market model is regular and we examine the properties of prices
of a contract C, which can be replicated on [t, T ] for every t ∈ [0, T ). Recall that for any fixed
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t ∈ [0, T ) we denote by (xt, pt, ϕ
t, Ct) a hedger’s trading strategy starting at time t with a Gt-

measurable endowment xt when a contract Ct is traded at a Gt-measurable price pt. For simplicity,
we focus on contracts C = (A,X ) with a constant maturity date T , which correspond to non-
defaultable contracts of European style. To deal with the counterparty credit risk, it suffices to
replace A by the process A] introduced in Section 2.8.1 and a fixed maturity T by the effective
maturity of a contract at hand, for instance, by T ∧τ where τ is the random time of the first default
or, more generally, by the effective settlement date of a contract in the presence of the gap risk.
Furthermore, in the case of contracts of American style or game contracts, the effective settlement
date is also affected by the decisions of both parties to prematurely terminate a contract.

5.1 Replication and Market Regularity on [t, T ]

The notion of the hedger’s gained value p̂t(x, C), t ∈ [0, T ) reduces to the classical no-arbitrage
price obtained through replication in the linear set-up provided that the only cash flow of A after
time 0 is the terminal payoff. Unfortunately, in a general nonlinear set-up considered in this work,
the financial interpretation of the hedger’s gained value at time t > 0 is less transparent, since
it depends on the hedger’s initial endowment, the past cash flows of a contract and the strategy
implemented by the hedger on [0, t]. The following definition mimics Definition 4.4, but focuses on
the restriction of a contract C to the interval [t, T ]. Note that here the discounted wealth process
is given by equation (3.3). It is assumed in this section that Ct can be replicated on [t, T ) at some
price p̂t, in the sense of the following definition.

Definition 5.1. For a fixed t ∈ [0, T ], let p̂t be a Gt-measurable random variable. If there exists a
trading strategy (xt, p̂t, ϕ

t, Ct) ∈ Ψt,xt(C ) such that

ṼT (xt, p̂t, ϕ
t, Ct) = xt, (5.1)

then p̂t = p̂t(xt, Ct) is called a replication cost at time t for the contract Ct relative to the hedger’s
endowment xt at time t.

As expected, Definition 4.6, and thus also Proposition 4.8, can be extended to any date t ∈ [0, T ).

Definition 5.2. We say that a market model M = (S,D,B,C ,Ψt,xt(C )) is regular on [t, T ] with
respect to C if the following properties hold for every contract C ∈ C that can be replicated:

(i) if pt ∈ Gt and there exists (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) satisfying

P
(
ṼT (xt, pt, ϕ

t, Ct) ≥ xt
)

= 1, (5.2)

then pt ≥ p̂t(xt, Ct);
(ii) if pt ∈ Gt and there exists (xt, pt, ϕ

t, Ct) ∈ Ψt,xt(C ) such that for some D ∈ Gt

P
(
1DṼT (xt, pt, ϕ

t, Ct) ≥ 1D xt
)

= 1 (5.3)

and

P
(
1DṼT (xt, pt, ϕ

t, Ct) > 1D xt
)
> 0 (5.4)

then P(1D pt > 1D p̂t(xt, Ct)) > 0.

Similarly as in the case of t = 0, if condition (i) holds, then condition (ii) is equivalent to the
following condition:
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(iii) if pt and there exists (xt, pt, ϕ
t, Ct) ∈ Ψt,xt(C ) such that for some event D ∈ Gt

P
(
1DṼT (xt, pt, ϕ

t, Ct) ≥ 1D xt
)

= 1 (5.5)

then the following implication holds: if 1D pt = 1D p̂t(xt, Ct), then

P
(
1DṼT (xt, pt, ϕ

t, Ct) = 1D xt
)

= 1. (5.6)

In the following extension of Proposition 4.8, we assume that the hedger’s endowment xt at
time t is given and the contract C has all cash flows on (t, T ] so that Ct = C. We now search for
the hedger’s fair price for C at time t assuming that a replication strategy exists. A closely related,
but not identical, pricing problem is studied in Section 5.2 where we study pricing at time t of a
contract initiated at time 0.

Proposition 5.3. Assume that a market model M = (S,D,B,C ,Ψt,xt(C )) is regular on [t, T ]
with respect to the class C . Then for every contract C ∈ C such that C = Ct which can be replicated
on [t, T ] we have:

(i) the replication cost p̂t(x, C) is unique,

(ii) p̂t(xt, C) is the lower bound for superhedging costs and strict superhedging costs, that is,
p̂t(xt, C) = pst (xt, C) = pt(xt, C),

(iii) p̂t(xt, C) is the maximal fair price and the upper bound for strict subhedging prices, that is,
p̂t(xt, C) = pf

t
(xt, C) = p

t
(xt, C).

The proof of Proposition 5.3 is completely analogous to the proof of Proposition 4.8, so it is
omitted. According to Proposition 5.3, in any market model regular on [t, T ], a replication cost is
unique and it is a fair price at time t for the hedger with an endowment xt.

5.2 Hedger’s Ex-dividend Price at Time t

Since it was postulated that the initial endowment of the hedger at time 0 equals x, it is clear that
Definition 5.1 should be complemented by a financial interpretation of the hedger’s endowment xt
at time t and a relationship between the quantity xt and the hedger’s initial endowment x should
be clarified.

One may consider several alternative specifications for xt, which correspond to different financial
interpretations of pricing problems under study:

1. A first natural choice is to set xt = xt(x) := xBt(x) meaning that the hedger has not been
dynamically hedging the contract between time 0 and time t (this particular convention was
adopted and studied in [BR15, NR16c, NR15]). Then the quantity p̂t(xt, Ct) is the future
fair price at time t of the contract Ct, as seen at time 0 by the hedger with the endowment
x at time 0, who decided to postpone trading in C to time t. This specification could be
convenient if one wishes to study, for instance, the issue of pricing at time 0 of the option
with the expiration date t written on the contract Ct.

2. Alternatively, one may postulate that the contract was entered into by the hedger at time 0 at
the price p̂0(x, C) and he decided to keep his position unhedged. In that case, the initial price,
the cash flows, and the adjustments should be appropriately accounted for when computing
the actual hedger’s endowment xt at time t using a particular market model.
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3. Next, one may assume that the contract was entered into by the hedger at time 0 at the
price p̂0(x, C) and was hedged by him on [0, t] through a replicating strategy ϕ̂, as given by
Definition 4.4. Then the hedger’s endowment at time t > 0 equals xt = Vt(x, p̂0(x,A,X ), ϕ̂, C)
and it is natural to expect that the equality p̂t(xt, Ct) = 0 should hold for all t ∈ (0, T ].

4. Finally, one can simply postulate that the endowment xt is exogenously specified. Then Def-
inition 5.1 reduces in fact to Definition 5.1 with essentially the same financial interpretation:
we define the hedger’s initial price at time t for the contract At given his initial endowment
xt at time t. Of course, under this convention, there is no connection between the quantities
x and xt.

In the next definition, we apply Definition 5.1 to the first specification of xt, that is, we set
xt = xt(x) := xBt(x). As in Definition 5.1, the discounted wealth is given by (3.3).

Definition 5.4. For a fixed t ∈ [0, T ], assume that pet is a Gt-measurable random variable. If there
exists a trading strategy (xt(x), pet , ϕ

t, Ct) ∈ Ψt,xt(x)(C ) such that

ṼT (xt(x), pet , ϕ
t, Ct) = xt(x), (5.7)

then pet = pet (x, Ct) is called the hedger’s ex-dividend price at time t for the contract Ct.

Note that p̂0(x, C) = pe0(x, C) and p̂T (x, C) = peT (x, CT ) = 0. The price given in Definition 5.4 is
suitable when dealing with derivatives written on the contract Ct as an underlying asset or, simply,
when the hedger would like to compute the future fair price for Ct without actually entering into
the contract at time 0. Furthermore, it can also be used to define a proxy for the marked-to-market
value of the contract Ct.

It is natural to ask whether the processes p̂t(x, C) and pet (x, Ct) coincide for all t ∈ [0, T ]. We
will argue that this holds when the pricing problem is local, but it is not necessarily true for a global
pricing problem (see Proposition 6.6). The reason is that in the former case the two processes
satisfy identical BSDE, whereas in the latter case one obtains a generalized BSDE for the former
process and a classical BSDE for the latter. It is also intuitively clear that in the case of the
global pricing problem the two processes will typically differ, since the value of pet (x, Ct) is clearly
independent of the hedger’s trading strategy on [0, t], as opposed to p̂t(x, C), which may depend on
the whole history of his trading. Since most pricing problems encountered in the existing literature
have a local nature, to the best of our knowledge, this particular issue was not yet examined by
other authors.

5.3 Marked-to-Market Value

The issue of pricing at time t is also important when we ask the following question: in which way
a contract entered into by the hedger at time 0 can be unwound by him at time t. The easiest
way to unwind at time t a contract initiated at time 0 at the price p̂0(x, C) would be to ‘assign’
all obligations associated with the remaining part of the contract on [t, T ] to another trader. It is
rather clear that the gained value p̂t(x, C) for 0 < t < T is the amount of cash, which the hedger
would be willing to pay to another trader who would then take the hedger’s position from time t
onwards. This leads to the following definition of the marked-to-market value.

Definition 5.5. The marked-to-market value of a contract C entered into at time 0 by the hedger
with the initial endowment x is given by the equality pmt (x, C) := −p̂t(x, C) for every t ∈ [0, T ].
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On the one hand, Definition 5.5 reflects the market practice where the marked-to-market value
is related to the concept of unwinding an existing contract at time t at its current ‘market price’.
Indeed, the equality p̂t(x, C) + pmt (x, C) = 0 holds for every t ∈ [0, T ] meaning that the net value of
the fully hedged position is null at any moment when the contract is marked to market.

On the other hand, a practical implementation of Definition 5.5 could prove difficult when
dealing with a global pricing problem, since it would require to keep track of the past cash flows
and gains from the hedging strategy (of course, provided the hedging strategy has been used by
the hedger). We thus contend that the proxy for the marked-to-market value pmt (x, C) := −pt(x, C)
could be more suitable for practical purposes when dealing with a global pricing problem. Since the
equality p̂t(x, C) = pt(x, C) holds for a local pricing problem, the issue of a choice of the marking
to market convention is immaterial in that case.

5.4 Offsetting Price

Assume that the hedger is unable to “assign” to another trader his existing position in the contract
C entered into at time 0. Then he may attempt to offset his future obligations associated with C by
taking the opposite position in an “equivalent” contract. In next definition, we postulate that the
hedger attempts to unwind his long position in C = (A,X ) at time t by entering into an offsetting
contract (−At,Yt). It is also assumed here that he liquidates at time t the replicating portfolio for
C so that his endowment at time t equals V̂t(x, C) := Vt(x, p̂0(x, C), ϕ̂, C) where ϕ̂ is a replicating
strategy for C on [0, T ].

Definition 5.6. For a fixed t ∈ [0, T ], let pot be a Gt-measurable random variable. If there exists
an admissible trading strategy (V̂t(x, C), pot , ϕt, 0,X t + Yt) on [t, T ] such that

ṼT (V̂t(x, C), pot , ϕt, 0,X t + Yt) = x, (5.8)

then pot = pot (x, Ct) is called the offsetting price of Ct = (At,X t) through (−At,Yt) at time t.

Definition 5.6 takes into account the fact that the cash flows of At and −At (and perhaps also
some cash flows associated with the corresponding adjustments X t and Yt) offset one another and
thus only the residual cash flows need to be accounted for when computing the price at which the
contract C can be unwound by the hedger at time t.

In the special case where the equality X t +Yt = 0 holds for all t ∈ [0, T ] (that is, the offsetting
is perfect) we obtain the equality pot (x, Ct) = −p̂t(x, C) since then, in view of (4.9), we have that

V̂t(x, C) + pot (x, Ct) = p̂t(x, C) + xBt(x) + pot (x, Ct) = xBt(x)

where xBt(x) is the cash amount that is required to replicate the null contract (0, 0) on [t, T ]. Note
also that these computations are consistent with Definition 5.5 of the marked-to-market value.

6 A BSDE Approach to Nonlinear Pricing

For each definition of the price, one may attempt to derive the corresponding backward stochastic
differential equation (BSDE) by combining their definitions with dynamics (2.11) of the hedger’s
wealth or, even more conveniently, with dynamics (3.9) of his discounted wealth. Subsequently,
each particular pricing problem can be addressed by solving a suitable BSDE. In addition, one may
use a BSDE approach to establish the regularity property of a market model at hand. To this end,
one may either use the existing comparison theorems for solutions to BSDEs or establish original
comparison results.
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6.1 BSDE for the Gained Value

We will first derive a generic BSDE associated with the hedger’s gained value p̂(x,A,X ) introduced
in Definition 4.4. For concreteness, we focus on the case of x ≥ 0 so that the equality B(x) = Bl is
valid. To simplify the presentation, we also postulate that Bi,l = Bi,b = Bi for i = 1, 2, . . . , d and
we consider trading strategies satisfying the funding constraint ξ̂itS

i
t+ψ̂

i
tB

i
t = 0 for all i = 1, 2, . . . , d

and every t ∈ [0, T ]. Recall that (see (3.8))

S̃i,cldt (x) := (Bt(x))−1Sit +

∫ t

0
(Bu(x))−1 dDi

u.

Lemma 6.1. Assume that a strategy (x, p̂0, ϕ̂, C) ∈ Ψ0,x(C ) replicates a contract C. Then the
processes Ŷ := Ṽ l(x, p̂0, ϕ̂, C) = (B0,l)−1V l(x, p̂0, ϕ̂, C) and Ẑi := B̃i,lξ̂i satisfy the BSDE

dŶt =
d∑
i=1

Ẑit dŜ
i,cld
t − (B0,b

t )−1
(
ŶtB

0,l
t +

n∑
k=1

αktX
k
t

)−
dB0,b,l

t (6.1)

+ (B0,l
t )−1 dAt −

n∑
k=1

X̂k
t dβ̃

k,l
t +

n∑
k=1

(1− αkt )Xk
t d(B0,l

t )−1

with the terminal condition ŶT = x.

Proof. Under the present assumptions, (3.9) and (3.10) imply

dṼ l
t (x, p̂0, ϕ̂, C) =

d∑
i=1

ξ̂itB̃
i,l
t dŜi,cldt + ψ̂0,b

t dB0,b,l
t + (B0,l

t )−1 dAt −
n∑
k=1

X̂k
t dβ̃

k,l
t

+
n∑
k=1

(1− αkt )Xk
t d(B0,l

t )−1, (6.2)

where B̃i,l := (B0,l)−1Bi, B0,b,l := (B0,l)−1B0,b, β̃k,l := (B0,l)−1βk. Equation (2.10) and conditions
ψ̂0,l ≥ 0, ψ̂0,b ≤ 0 and ψ̂0,lψ̂0,b = 0 yield

ψ̂0,l
t = (B0,l

t )−1
(
Vt(x, p̂0, ϕ̂, C) +

n∑
k=1

αktX
k
t

)+

(6.3)

and

ψ̂0,b
t = −(B0,b

t )−1
(
Vt(x, p̂0, ϕ̂, C) +

n∑
k=1

αktX
k
t

)−
. (6.4)

Note that the process ψ̂0,l does not appear in (6.2) and the process ψ̂0,b can also be eliminated from
(6.2) by using (6.4). If we set Ŷ := Ṽ l(x, p̂0, ϕ̂, C), then (6.2) can be represented as the BSDE

dŶt =
d∑
i=1

ξ̂itB̃
i,l
t dŜi,cldt − (B0,b

t )−1
(
ŶtB

0,l
t −

d∑
i=1

ξ̂itS
i
t −

d∑
i=1

ψ̂itB
i
t +

n∑
k=1

αktX
k
t

)−
dB0,b,l

t

+ (B0,l
t )−1 dAt −

n∑
k=1

X̂k
t dβ̃

k,l
t +

n∑
k=1

(1− αkt )Xk
t d(B0,l

t )−1, (6.5)

with the terminal condition ŶT = Ṽ l
T (x, p̂0, ϕ̂, C) = x. In view of equality (3.10), BSDE (6.5) further

simplifies to (6.1).
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In the next result, we focus on a market model satisfying regularity conditions introduced in
Definition 5.2. From the regularity of a model, it follows that the hedger’s gained value p̂t(x, C) is
unique for each fixed t ∈ [0, T ]. However, this does to suffice to define the process p̂(x, C) and thus
in the next result we will make assumptions regarding BSDE (6.1). First, we postulate that for a
given x ≥ 0 and any contract C ∈ C there exists a unique solution (Ŷ , Ẑ) to (6.1) in a suitable
space of stochastic processes. Second, we assume that BSDE (6.1) enjoys the following variant of
the strict comparison property.

Definition 6.2. We say that the strict comparison property holds for the BSDE (6.1) if for any
contract C ∈ C if (Ŷ 1, Ẑ1) and (Ŷ 2, Ẑ2) are solutions with GT -measurable terminal conditions
ξ1T ≥ ξ2T , respectively, then the equality 1DY

1
t = 1DY

2
t for some t ∈ [0, T ) and some D ∈ Gt implies

that 1Dξ
1
T = 1Dξ

2
T .

It is also important to note that one needs to examine the manner in which the inputs in BSDE
(6.1) (that is, the stochastic processes introduced in Assumption 2.1) may possibly depend on the
unknown processes Ŷ and Ẑ.

Definition 6.3. The pricing problem is local if Xk
t = hk(t, Ŷt, Ẑt) and dβ̃k,lt = hk,l(t, Ŷt, Ẑt) dt

for some functions hk and hk,l and k = 1, 2, . . . , n. The pricing problem is called global if Xk
t =

hk(t, Ŷ·, Ẑ·) and dβ̃k,lt = hk,l(t, Ŷ·, Ẑ·) dt for some non-anticipating functionals hk and hk,l.

We deduce from Lemma 6.1 that local problem can be solved using classical BSDEs. In contrast,
the situation where the inputs depend on the past history of processes is harder to address, since
it leads to a global pricing problem, which requires to study generalized BSDEs with progressively
measurable functionals. Since both situations are covered by Proposition 6.4, we refer the reader
to Cheridito and Nam [CN15] for existence and uniqueness results for generalized BSDEs. It is
worth noting that, to the best of our knowledge, strict comparison theorems for generalized BSDE
are not yet available, as opposed to the case of classical BSDEs.

Proposition 6.4. Assume that the BSDE (6.1) has a unique solution (Ŷ , Ẑ) for any contract C ∈ C
and the strict comparison property for solutions to (6.1) holds. Then the following assertions are
valid:

(i) the market model is regular on [t, T ] for every t ∈ [0, T ];

(ii) the hedger’s gained value satisfies p̂(x, C) = B0,l(Ŷ − x) where (Ŷ , Ẑ) is a solution to BSDE
(6.1) with the terminal condition ŶT = x;

(iii) a unique replicating strategy ϕ̂ for C satisfies ξ̂i = (B̃i,l)−1Ẑi and the cash components ψ̂0,l

and ψ0,b are given by (6.3) and (6.4), respectively, with V (x, p̂0, ϕ̂, C) replaced by B0,lŶ .

Proof. In view of Definition 5.2, it is clear that the existence, uniqueness and the strict comparison
property for the BSDE (6.1) imply that the market model is regular on [t, T ] for every t ∈ [0, T ].
To establish (ii), we recall that the regularity of a model implies that the hedger’s gained value
p̂t(x, C) is unique. Moreover, we also know that p̂(x, C) satisfies for every t ∈ [0, T ] (see (4.9))

p̂t(x, C) = Vt(x, p̂0(x, C), ϕ̂, C)− xBt(x) = B0,l
t Ŷt − xBt(x) = B0,l

t (Ŷt − x),

which establishes the asserted equality p̂(x, C) = B0,l(Ŷ −x). In particular, the hedger’s replication
cost p̂0(x) satisfies p̂0(x) = Ŷ0 − x for any fixed initial endowment x ≥ 0. Finally, part (iii) is an
immediate consequence of Lemma 6.1.
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Of course, one needs to check for which models the assumptions of Proposition 6.4 are satisfied.
For general results regarding BSDEs driven by one- or multi-dimensional continuous martingales,
the reader is referred to Carbone et al. [CFS08], El Karoui and Huang [EKH97] and Nie and
Rutkowski [NR16b] and the references therein. Typically, a suitable variant of the Lipschitz con-
tinuity of a generator to a BSDE is sufficient to guarantee the desired properties of its solutions.
Several instances of nonlinear market models with BSDEs satisfying the comparison property were
studied in [NR15, NR16a, NR16c], although the concept of a regular model was not formally stated
therein. In particular, they analyzed contracts with an endogenous collateral, meaning that an
adjustment process Xk explicitly depends on a solution Ŷ (or even on solutions to the pricing
problems for the hedger and the counterparty).

Let us finally mention that since the model examined in this section is a special case of the
model studied in Sections 3.5 and 3.6, it follows from Proposition 3.9 that to ensure that the model
is arbitrage-free for the trading desk, it suffices to assume that there exists a probability measure Q,
which is equivalent to P on (Ω,GT ) and such that the processes Ŝi,cld, i = 1, 2, . . . , d given be (5.5)
are Q-local martingales. This assumption is also convenient if one wishes to prove the existence
and uniqueness result for BSDE (6.1).

6.2 BSDE for the Ex-dividend Price

Our next goal is to derive the BSDE for the ex-dividend price pe(x, C) introduced in Definition 5.4.
We maintain the assumption that x ≥ 0. Recall that, for a fixed t, the hedger’s ex-dividend price is
implicitly given by the equality Ṽ l

T (xt(x), pet , ϕ
t, Ct) = xt(x) where xt(x) = xBl

t and the discounting
is done using the process Bt· (xt(x)) given by (3.2). We henceforth assume that the pricing problem
is local. This assumption is essential for validity of Lemma 6.5 and Proposition 6.6, so it cannot
be relaxed.

Lemma 6.5. Assume that a strategy (xt(x), pet , ϕ
t, Ct) ∈ Ψt,xt(x)(C ) replicates a contract Ct on

[t, T ]. Then the processes Ȳu := Ṽu(xt(x), pet , ϕ
t, At,X t) and Z̄iu := B̃i,l

u (ξtu)i, u ∈ [t, T ], satisfy the
following BSDE, for all u ∈ [t, T ]

dȲu =

d∑
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Z̄iu dŜ
i,cld
u − (B0,b

u )−1
(
ȲuB

0,l
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αkuX
k
u

)−
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u (6.6)

+ (B0,l
u )−1 dAu −

n∑
k=1

X̂k
u dβ̃

k,l
u +

n∑
k=1

(1− αku)Xk
u d(B0,l

u )−1,

with the terminal condition ȲT = x.

Proof. Arguing as in the proof of Lemma 6.1, we conclude that the dynamics of the discounted
wealth Ṽu(xt(x), pet , ϕ

t, At,X t) for u ∈ [t, T ] are given by (6.2) the thus (6.6) is satisfied by Ŷ and
Ẑ with the terminal condition ỸT = x.

Although BSDEs (6.1) and (6.6) have the same shape, the features of their solutions heavily
depend on a specification of the processes Xk and βk,l. The next result shows that the gained value
and the ex-dividend price coincide when the pricing problem is local, so that the pricing BSDEs
are classical. In contrast, this property will typically fail to hold when a pricing problem is global,
so that (6.1) becomes a generalized BSDE. In that case, equation (6.6) needs to be complemented
by additional conditions regarding the processes Xk and βk,l.
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Proposition 6.6. Under the assumptions of Proposition 6.4, if a pricing problem is local, then for
any contract C ∈ C the hedger’s gained value and the hedger’s ex-dividend price satisfy pet (x, C) =
p̂t(x, Ct) for all t ∈ [0, T ].

Proof. On the one hand, under the postulate of uniqueness of solutions to BSDE (6.1) (and thus
also to BSDE (6.6)), the equality Ŷt = Ȳt is manifestly satisfied for all t ∈ [0, T ]. On the other
hand, from Definition 5.4, we obtain the equality xt(x) + pet (x, Ct) = Bl

tȲt, which in turn yields
pet (x, Ct) = Bl

t(Ȳt − x). Since Ŷt = Ỹt, we conclude that the gained value p̂t(x, C) = Bl
t(Ŷt − x) and

the ex-dividend price pet (x, Ct) coincide for all t ∈ [0, T ].

The property of a local pricing problem established in Proposition 6.6 is fairly general: its
validity hinges on the existence and uniqueness of a common BSDE for the gained value and the
ex-dividend price. This should be contrasted with the case of the global pricing problem where the
equality p̂t(x, C) = pet (x, Ct) is always satisfied for t = 0, but it is unlikely to hold for t > 0.

6.3 BSDE for the CCR Price

We now address the question raised in Section 2.8.2: can we disentangle the clean pricing of a
counterparty credit risky contract from the CRR pricing? Although this is true in the linear setup,
where the price additivity is known to hold, the answer to this question is unlikely to be positive
within a nonlinear framework. On the one hand, according to Proposition 2.10, the counterparty
risky contract (A],X ) admits the following decomposition

(A],X ) = (A,X ) + (ACCR, 0), (6.7)

where the first component is not subject to the counterparty credit risk (although it may include
the margin account) and thus it is referred to as the clean contract, whereas the second component
is concerned exclusively with the CCR (see Definition 2.9 for the specification of the CCR cash
flow ACCR). On the other hand, however, in a nonlinear framework, the price of the full contract
(A],X ) is unlikely to be equal to the sum of prices of its components appearing in the additive
decomposition of the full contract.

To analyze this issue a bit further, let us assume that the underlying market model is suffi-
ciently rich to allow for the replication of the full contract (A],X ), as well as for the replication
of its components (A,X ) and (ACCR, 0). Of course, one could alternatively focus on the decom-
position (A],X ) = (A, 0) + (ACCR,X ) in which the trading adjustments (in particular, the margin
account) are assumed to affect the CCR part, rather than the clean contract (A, 0). The choice of
a decomposition should be motivated by practical considerations; one may argue that collateral-
ization is a standard covenant in most contracts, not necessarily closely related to the actual level
of the counterparty credit risk in a given contract.

If we denote by τh and τ c the default times of the hedger and the counterparty, respectively,
then τ = τh ∧ τ c is the moment of the first default and thus the effective maturity of (A],X ) and
(ACCR, 0) is the random time T̂ = τ ∧T . For the clean contract (A,X ), it is convenient to formally
assume that T is its maturity date, since this component of the full contract is not affected by the
counterparty credit risk.
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By a minor extension of Lemma 6.1, we obtain the following BSDE for the full contract (A],X )
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with the terminal condition Ŷ
T̂

= x. Let x = x1+x2 be an arbitrary split of the hedger’s endowment.
Then we obtain the following BSDE corresponding to the clean contract (A,X )
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with Ŷ 1
T = x1. The BSDE associated with the CRR component (ACCR, 0) reads

dŶ 2
t =

d∑
i=1

Ẑ2,i
t dŜi,cldt − (B0,b

t )−1
(
Ŷ 2
t B

0,l
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)−
dB0,b,l

t + (B0,l
t )−1 dACRR

t , (6.10)

with Ŷ
T̂

= x2. If the initial endowment x = 0, then we may take x1 and x2 to be null as well.
The question formulated at the beginning of this section may be rephrased as follows: under

which conditions the equality Ŷ0 = Ŷ 1
0 + Ŷ 2

0 holds for solutions to BSDEs (6.8), (6.9) and (6.10),
so that the replication costs satisfy the following equality

p̂0(x,A
],X ) = p̂0(x1, A,X ) + p̂0(x2, A

CCR, 0),

which formally corresponds to decomposition (6.7) of the full contract and the split x = x1 + x2 of
the hedger’s initial endowment. Since this equality is unlikely to be satisfied (even when x = x1 =
x2 = 0, as was implicitly assumed in most existing papers on nonlinear approach to credit risk),
one could ask, more generally, whether the quantities Ŷ0 and Ŷ 1

0 + Ŷ 2
0 are close to each other, so

that an approximate equality is satisfied by the replication costs. Of course, an analogous question
can also be formulated for the corresponding replicating strategies.

One needs first to address the issues of regularity and completeness of market models with
default times. To this end, one may employ the existence and uniqueness results, as well as
the strict comparison theorems, obtained for BSDEs with jumps generated by the occurrence of
random times. BSDEs of this form are relatively uncommon in the existing literature on the theory
of BSDEs, but they were studied in papers by Peng and Xu [PX09] and Quenez and Sulem [QS13].
Of course, to be in a position to use any result from [PX09] or [QS13], one needs to be more
specific about the price dynamics for non-defaultable risky assets S1, . . . , Sd−2 (usually driven by a
multidimensional Brownian motion) and the manner in which default times (hence also the prices
of defaultable assets Sd−1 and Sd) are defined. Note the latter problem is tackled in [PX09] or
[QS13] using the so-called intensity-based approach, which was extensively studied in the credit
risk literature. Moreover, it is convenient to assume that the cash and funding accounts as well as
remuneration processes have absolutely continuous sample paths, so that BSDEs can be represented
in the following generic form

dYt = −g(t, Zt, Yt) dt+
d−2∑
i=1

Zit dW
i
t +

d∑
i=d−1

Zit dM
i
t + dĀt,
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where M1 and M2 are purely discontinuous G-martingales associated with Sd−1 and Sd, respec-
tively, and the generator g is obtained from (6.8), (6.9) and (6.10) by straightforward computations.

From the financial perspective, to ensure the completeness of a market, one needs to postulate
that some defaultable securities (typically, defaultable bonds issued by the two parties) are among
primary traded assets. Finally, it is necessary to explicitly specify the closeout valuation process
Q (see Remark 2.8) and the collateral process C. When dealing with a local pricing problem,
the most natural postulate would be to set Qt := pet (x1, C) = p̂t(x1, Ct) and Ct := pet (x,A

],X ) =
p̂t(x, (A

])t,X t) (see Proposition 6.6), although the latter convention of the endogenous collateral is
a bit cumbersome to handle, even when dealing with BSDEs driven by continuous martingales (see
[NR16a]). Note also that it would require to replace Cτ by Cτ− when specifying the closeout payoff
K (hence also the process A]) in Section 2.8.1. For technical problems for BSDEs with jumps arising
in this context and related to the so-called immersion hypothesis, as well as the way in which they
can be overcome, the interested reader is referred to papers by Crépey and Song [CS16, CS15].

For the case of linear market models, the issue of completeness and various methods for repli-
cation in such models were studied in several works (see, in particular, Bielecki et al. [BJR04,
BJR06a, BJR06b, BJR06c, BJR08]). In contrast, only a few papers devoted to nonlinear models
of credit risk are available. More recently, Crépey [Cré15a, Cré15b], Dumitrescu et al. [DQS15]
and Bichuch et al. [BCS15] used BSDEs with jumps to solve the pricing and hedging problems for
contracts with the counterparty credit risk. In [BCS15] and [DQS15], the authors focus on pricing
and hedging of the full contract, whereas in [Cré15a, Cré15b], the problem of the approximate
additivity credit valuation adjustment is addressed.
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7 Appendix: Examples of Non-Regular Models

We give here two examples of models that fail to be regular, but they do satisfy either the no-arbitrage
property with respect to the null contract (see Section 7.1) or even the stronger no-arbitrage property for
the trading desk (see Section 7.2). Recall that, in essence, the regularity of a market model means that if a
model is arbitrage-free in a properly specified sense, then an extended model obtained by adding a derivative
asset with the price process defined by the cost of replication remains arbitrage-free.

7.1 Model with Trading Constraints

To illustrate the issue of the model regularity, we start by considering the Black-Scholes model (B,S1) with
the null interest rate in which, however, the borrowing of cash is precluded. We assume that the hedger’s
initial endowment is null, that is, x = 0. Obviously, the model is arbitrage-free in the classical sense and
the hedger is able to replicate without borrowing of cash the short position in the put option maturing at T
written on the stock S1. Similar arguments show that he may fairly price the contract A = (A, 0) in which
a1 = PU (K) for some 0 < U < T and a2 = −PT (K) = −(K−S1

T )+, where Pt(K) denotes the Black-Scholes
price at time t ≤ T of the put option. Observe that the initial price for A is null not only in the classical
Black-Scholes model, but also in the present model with no borrowing of cash.

Let us now extend the model by introducing the second risky asset with the following price process

S2
t = 1[0,T ](t) + 2K(t− U)(PU (K))−11[U,T ](t).

One may check that the model (B,S1, S2) is still arbitrage-free in the sense of Definition 3.3 if the borrowing
of cash is not allowed, since the only way of investing in the second asset is to sell short the first one.
Furthermore, the price of the contract A based on the concept of replication is still equal to 0. However,
the hedger who enters into the contract A at time 0 at null price has now an obvious arbitrage opportunity,
since he may now use the cash amount PU (K) received at time U to buy the asset S2. This simple strategy
is obviously self-financing and admissible since its wealth process is non-negative. Furthermore, it yields
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the amount 2K(T − U) at time T , which strictly dominates the hedger’s liability PT (K) provided that
T − U ≥ 0.5.

The present example makes it clear that Definition 3.3 of no-arbitrage, which is based on trading in
primary assets only, is to weak to eliminate non-regular nonlinear models. In contrast, one may check that
the model (B,S1, S2) would be rejected if we apply Definition 3.7 of an arbitrage opportunity for the trading
desk.

From the mathematical point of view, the issue with the extended model M̃ = (B,S1, S2) where S3 is
that the strict comparison property for BSDE governing wealth process fails to hold. Hence a superhedging
strategy for the claim PT (K) can be obtained using the same initial wealth as is needed for its replication.
Indeed, it is clear that starting from the null initial endowment, one may either replicate ξ1 := PT (K) or
strictly super-replicate this claim by producing the terminal payoff ξ2 = 2K(T − U) > ξ1 = PT (K). This
is inconsistent with the strict comparison property for solutions of BSDEs, since it states that if ξ2 ≥ ξ1
and the two solutions coincide at time 0, V 1

0 = V 2
0 , then necessarily ξ1 = ξ2. In our case, we have that

V 1
0 = V 2

0 = 0 but V 2
T > V 1

T .

7.2 Model Without Trading Constraints

We start by placing ourselves within the framework of Bergman’s [Ber95] model (Bl, Bb, S1) with differential
borrowing and lending interest rates and we assume that the hedger’s endowment x = 0. This means, in
particular, that the stock price S1 is driven by the Black-Scholes dynamics and the interest rates satisfy rb ≥
rl. It is straightforward to verify that the model (Bl, Bb, S1) is arbitrage-free, in the sense of Definition 3.3.
Moreover, the hedger is able to replicate, with no borrowing of cash, the short position in the put option
on the stock S1 with maturity T and any strike price K > 0. The price of the put is thus given by the
Black-Scholes formula and it is denoted as Pt(K) for t ∈ [0, T ]. We now fix K > 0 and 0 < U < T , and we
introduce an additional risky asset S2 with the price process

S2
t = 1[0,T ](t) + (K(t− U))(PU (K))−11{2PU (K)>K}1[U,T ](t).

To ensure that P(2PU (K) > K) > 0, we may set rl = 0 (of course, it is enough to assume that rl is
low enough). For concreteness, we henceforth take T − U = 1. It is obvious that S2

T = 1 on the event
{2PU (K) < K}. On the event {2PU (K) > K} we have

1 < S2
T = 1 +K(PU (K))−1 < 3 = eln 3.

One may check that the model M = (Bl, Bb, S1, S2) is still arbitrage-free, in the sense of Definition 3.3,
provided that the borrowing rate rb is set to be high enough. Specifically, it suffices to take rb > ln 3 in order
to ensure that the interest rate rb is higher than the rate of return on the asset S2. Of course, the price of
the put option with any strike K in the model (Bl, Bb, S1, S2) can still be defined by replication (using in
fact Bl and S1 only), and thus it is still given by the Black-Scholes formula Pt(K).

We claim that the nonlinear model M = (Bl, Bb, S1, S2) is not regular with respect to the put option
with strike K. Specifically, the hedger who sells the put option at time 0 at the price P0(K) can construct
an arbitrage opportunity. To see this, assume that the hedger uses the replicating strategy for the put on
the interval [0, U ]. On the event {2PU (K) ≤ K}, he continues to replicate the put till its maturity date T .
On the event {2PU (K) > K}, he buys PU (K)/S2

U = PU (K) of shares of the asset S2 and holds it till T .
Then the hedger’s wealth at T , after he delivers the cash amount (K −S1

T )+ to the buyer of the put, equals

VT (0, P0(K), ϕ,−P (K)) =

(
PU (K)

S2
U

S2
T − (K − S1

T )+
)
1{2PU (K)>K} + 0 · 1{2PU (K)≤K}

=
(
PU (K)(1 +K(PU (K))−1)− (K − S1

T )+
)
1{2PU (K)>K} >

=
(
1.5K − (K − S1

T )+
)
1{2PU (K)>K} > 0.5K1{2PU (K)>K}.

Since P(2PU (K) > K) > 0, and it is clear that the wealth is always non-negative (hence the strategy is
admissible), we obtain an arbitrage opportunity for the hedger.

From the mathematical point of view, the issue with the extended model M̃ = (Bl, Bb, S1, S2, S3), where
S3 = P (K) is the replication price for the put, is due to the fact that the strict comparison property for the
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wealth process fails to hold in the modelM = (Bl, Bb, S1, S2). In particular, a strict superhedging strategy
for the claim PT (K) can be obtained using the initial wealth equal to the replication cost. Indeed, it is
clear that starting from the null initial endowment, the hedger may either replicate ξ1 := PT (K) or strictly
super-replicate this claim by producing the terminal payoff

ξ2 = PT (K)1{2PU (K)≤K} + PU (K)(1 +K(PU (K))−1)1{2PU (K)>K}.

It is easy to check that ξ2 ≥ ξ1 and P(ξ2 > ξ1) > 0. Once again, this is manifestly inconsistent with the strict
comparison property for solutions of BSDEs. This model is arbitrage-free with respect to the null contract
and with respect to the trading desk.

8 Appendix: Local and Global Pricing Problems

Market adjustments, represented by X , may depend both on the cash flow process A and the trading
strategy ϕ. By the same token, the trading strategy ϕ typically depends on the trading adjustments. So,
there could be a feedback effect between ϕ and X potentially present in the trading universe, that needs
to be accounted for in valuation and hedging. Furthermore, it is important to distinguish between the case
where the dependence is only on the current composition of the hedging strategy and the current level of
the wealth process and where the dependence is on the history of these processes. If the contract (A,X ), the
cash and funding accounts, and the prices of risky assets do not depend on the strict history (i.e., the history
not including the current values of processes of interest) of a trading strategy ϕ and its value process V p(ϕ),
then we say that the pricing problem is local. Otherwise, it is referred to as a global pricing problem. As
one might guess, the two pricing problem will typically have very different properties for any date t ∈ (0, T ).
In particular, they will typically correspond to different classes of BSDEs. It is important to stress that
the distinction between the local and global problems is not related to the concept of path-independent
contingent claims or to a Markovian property of the underlying model for risky assets. It is only related to
the above-mentioned (either local or global) feedback effect between the hedger’s trading decisions and the
market conditions inclusive of particular adjustments for the contract at hand.

Example 8.1. As a stylized example of a global pricing problem, let us consider a contract, which lasts for
two months (for the sake of concreteness, let us say that it is a combination of the put and the call on the
stock S1 with maturities one month and two months, respectively). The borrowing rate for the hedger is set
to be 5% per annum, rising to 6% after one month if the hedger borrows any cash during the first month and
it will stay at 5% if he doesn’t. Similarly, the lending rate initially equals 3% per annum and drops to 2% if
the hedger borrows any cash during the first month. It is intuitively clear that the pricing/hedging problem
is here global, since its solution on [t, T ] will depend on the strict history of trading. In contrast, if a model
has possibly different, but fixed, borrowing and lending rates, then the pricing problem for any contract will
be local in the sense introduced above, unless the adjustments depend on the strict history of trading. For
instance, if the only adjustment is the collateral with the current amount specified by the hedger’s valuation
and with a constant remuneration rate, then the problem is local.

Precise statements and formal definitions of local and global pricing problems are given in Section 6
where we examine the BSDEs approach to the nonlinear pricing. Note that most pricing problems examined
in the existing financial literature are local and thus they can be solved using existing results for classical
BSDEs. By contrast, the global pricing problems are much harder to analyze since they require to use novel
classes of BSDEs (see Cheridito and Nam [CN15] and the references therein).
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